§6 Forms and vector fields on Euclidean space

Problem 1. Using the general formula for the volume form

$$dV = \sqrt{g} \, dx^1 \wedge \ldots \wedge dx^i$$

(where $g = \det(g_{ij}), g_{ij} = (e_i, e_j)$) valid for arbitrary coordinates in \mathbb{R}^n , check that in spherical coordinates in \mathbb{R}^3

$$dV = dx \wedge dy \wedge dz = r^2 \sin \theta \, dr \wedge d\theta \wedge d\varphi.$$

Problem 2. Find the formula for the area form dS for the sphere of radius R and center at the origin in \mathbb{R}^3

(a) using as parameters the angles θ, φ ;

(a) using the parametrization $z = \sqrt{R^2 - x^2 - y^2}$ (taking x, y as parameters), valid for the upper hemisphere.

Problem 3. For a vector field X in \mathbb{R}^3 find the forms $X \cdot dr$ and $X \cdot dS$ working in Cartesian coordinates x, y, z:

(a) $X = 2e_1 - 3e_2 + 4e_3$

(b) $X = (2x+z)e_1 + 5ye_2 + (x-y+z)e_3$

(c) X = r (where r is the radius-vector).

Problem 4. Deduce the formulae for the gradient in polar coordinates in \mathbb{R}^2 and in spherical coordinates in \mathbb{R}^3 .

Problem 5. Find the gradient of the function $r = |\mathbf{r}|$ where \mathbf{r} is the radius-vector

(a) in Cartesian coordinates in \mathbb{R}^n ;

(b) in polar coordinates in \mathbb{R}^2 ;

(c) in spherical coordinates in \mathbb{R}^3 .

Problem 6. Find the divergence of the vector field $\mathbf{X} = f(r)\mathbf{r}$ in \mathbb{R}^n where \mathbf{r} is the radius-vector and $r = |\mathbf{r}|$.

Problem 7. Find the divergence of the vector field $\mathbf{X} = r^{\alpha} \mathbf{r}$ in \mathbb{R}^{n} , where \mathbf{r} is the radius-vector and $r = |\mathbf{r}|$. For which value of the parameter $\alpha \in \mathbb{R}$ the divergence vanishes?

Problem 8. Calculate div and curl for the following vector fields in \mathbb{R}^3 (given in Cartesian coordinates):

(a) $X = (x - y + 3z)e_1 - (2x + z)e_2 + (-x + y + z)e_3$

(b) $X = (a_{11}x + a_{12}y + a_{13}z)e_1 + (a_{12}x + a_{22}y + a_{23}z)e_2 + (a_{13}x + a_{23}y + a_{33}z)e_3$ where the coefficients a_{ij} are arbitrary constants;

(c) $X = (a_{12}y + a_{13}z)e_1 + (-a_{12}x + a_{23}z)e_2 + (-a_{13}x - a_{23}y)e_3$ where the coefficients a_{ij} are arbitrary constants.

Problem 9. Let \boldsymbol{r} be the radius-vector in \mathbb{R}^3 and $r = |\boldsymbol{r}|$. (a) Show that curl $(f(r)\boldsymbol{r}) = 0$ for any function f. (b) Show that curl $(\Omega \times \boldsymbol{r}) = 2\Omega$ for any constant vector Ω .

Problem 10. Check the formula: $\operatorname{div}(f\mathbf{X}) = \operatorname{grad} f \cdot \mathbf{X} + f \operatorname{div} \mathbf{X}$.

Problem 11. Using the Stokes theorem show that the integral of the 1-form

$$\omega = \frac{1}{2} r^2 \, d\varphi$$

(given in polar coordinates) over the boundary of any bounded domain in \mathbb{R}^2 equals the area of the domain. The area of D is defined as $\int_D dx \wedge dy$ in Cartesian coordinates.

Problem 12.

(a) Apply the Stokes theorem to calculate the integral of the 2-form

$$\omega = ax \, dy \wedge dz + by \, dz \wedge dx + cz \, dx \wedge dy$$

(where a, b, c are constants) over the sphere of radius R with center at the origin in \mathbb{R}^3 . The orientation of the sphere is induced from that for the ball given by the coordinates x, y, z. You may want to use the formula for the volume of a ball of radius R in \mathbb{R}^3 : vol $B_R = 4\pi R^3/3$.

(b) Calculate the integral of the same form over the boundary of the cube $0 \leq x, y, z \leq 1$.

Problem 13. Let S_R be the sphere of radius R with center at the origin in \mathbb{R}^3 .

(a) Show that the integral over S_R of the 2-form $\omega = r^{\alpha}(x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)$ for any $\alpha \in \mathbb{R}$ coincides with the integral over S_R of the 2-form $\sigma = R^{\alpha}(x \, dy \wedge dz + y \, dz \wedge dx + z \, dx \wedge dy)$. Here $r = \sqrt{x^2 + y^2 + z^2}$. (b) Use the result of part (a) and the Stokes theorem to evaluate $\oint_{S_R} \omega$ for any α . *Hint:* compare with Problem 12, part (a).

Problem 14. For an arbitrary $\alpha \in \mathbb{R}$ find the flux:

$$\int_{S_R} \boldsymbol{X} \cdot d\boldsymbol{S}$$

where S_R is the sphere of radius R with center at the origin in \mathbb{R}^3 and $\mathbf{X} = r^{\alpha} \mathbf{r}$. Here \mathbf{r} is the radius-vector, $r = |\mathbf{r}|$. *Hint:* you can replace $\mathbf{X} = r^{\alpha} \mathbf{r}$ by $\mathbf{X}' = R^{\alpha} \mathbf{r}$ at the surface of the sphere and then apply the Ostrogradski–Gauss theorem. What is the value of the flux for $\alpha = -3$? (For $\alpha = -3$ the field \mathbf{X} can be interpreted as the 'Coulomb force'.)