§6 Forms and vector fields on Euclidean space

Problem 1. Using the general formula for the volume form

$$
d V=\sqrt{g} d x^{1} \wedge \ldots \wedge d x^{n}
$$

(where $\left.g=\operatorname{det}\left(g_{i j}\right), g_{i j}=\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)\right)$ valid for arbitrary coordinates in \mathbb{R}^{n}, check that in spherical coordinates in \mathbb{R}^{3}

$$
d V=d x \wedge d y \wedge d z=r^{2} \sin \theta d r \wedge d \theta \wedge d \varphi
$$

Problem 2. Find the formula for the area form $d S$ for the sphere of radius R and center at the origin in \mathbb{R}^{3}
(a) using as parameters the angles θ, φ;
(a) using the parametrization $z=\sqrt{R^{2}-x^{2}-y^{2}}$ (taking x, y as parameters), valid for the upper hemisphere.

Problem 3. For a vector field \boldsymbol{X} in \mathbb{R}^{3} find the forms $\boldsymbol{X} \cdot d \boldsymbol{r}$ and $\boldsymbol{X} \cdot d \boldsymbol{S}$ working in Cartesian coordinates x, y, z :
(a) $\boldsymbol{X}=2 e_{1}-3 e_{2}+4 e_{3}$
(b) $\boldsymbol{X}=(2 x+z) \boldsymbol{e}_{1}+5 y \boldsymbol{e}_{2}+(x-y+z) \boldsymbol{e}_{3}$
(c) $\boldsymbol{X}=\boldsymbol{r}$ (where \boldsymbol{r} is the radius-vector).

Problem 4. Deduce the formulae for the gradient in polar coordinates in \mathbb{R}^{2} and in spherical coordinates in \mathbb{R}^{3}.

Problem 5. Find the gradient of the function $r=|\boldsymbol{r}|$ where \boldsymbol{r} is the radiusvector
(a) in Cartesian coordinates in \mathbb{R}^{n};
(b) in polar coordinates in \mathbb{R}^{2};
(c) in spherical coordinates in \mathbb{R}^{3}.

Problem 6. Find the divergence of the vector field $\boldsymbol{X}=f(r) \boldsymbol{r}$ in \mathbb{R}^{n} where \boldsymbol{r} is the radius-vector and $r=|\boldsymbol{r}|$.

Problem 7. Find the divergence of the vector field $\boldsymbol{X}=r^{\alpha} \boldsymbol{r}$ in \mathbb{R}^{n}, where \boldsymbol{r} is the radius-vector and $r=|\boldsymbol{r}|$. For which value of the parameter $\alpha \in \mathbb{R}$ the divergence vanishes?

Problem 8. Calculate div and curl for the following vector fields in \mathbb{R}^{3} (given in Cartesian coordinates):
(a) $\boldsymbol{X}=(x-y+3 z) \boldsymbol{e}_{1}-(2 x+z) \boldsymbol{e}_{2}+(-x+y+z) \boldsymbol{e}_{3}$
(b) $\boldsymbol{X}=\left(a_{11} x+a_{12} y+a_{13} z\right) \boldsymbol{e}_{1}+\left(a_{12} x+a_{22} y+a_{23} z\right) \boldsymbol{e}_{2}+\left(a_{13} x+a_{23} y+a_{33} z\right) \boldsymbol{e}_{3}$ where the coefficients $a_{i j}$ are arbitrary constants;
(c) $\boldsymbol{X}=\left(a_{12} y+a_{13} z\right) \boldsymbol{e}_{1}+\left(-a_{12} x+a_{23} z\right) \boldsymbol{e}_{2}+\left(-a_{13} x-a_{23} y\right) \boldsymbol{e}_{3}$ where the coefficients $a_{i j}$ are arbitrary constants.

Problem 9. Let \boldsymbol{r} be the radius-vector in \mathbb{R}^{3} and $r=|\boldsymbol{r}|$.
(a) Show that $\operatorname{curl}(f(r) \boldsymbol{r})=0$ for any function f.
(b) Show that $\operatorname{curl}(\Omega \times \boldsymbol{r})=2 \Omega$ for any constant vector Ω.

Problem 10. Check the formula: $\operatorname{div}(f \boldsymbol{X})=\operatorname{grad} f \cdot \boldsymbol{X}+f \operatorname{div} \boldsymbol{X}$.
Problem 11. Using the Stokes theorem show that the integral of the 1 -form

$$
\omega=\frac{1}{2} r^{2} d \varphi
$$

(given in polar coordinates) over the boundary of any bounded domain in \mathbb{R}^{2} equals the area of the domain. The area of D is defined as $\int_{D} d x \wedge d y$ in Cartesian coordinates.

Problem 12.

(a) Apply the Stokes theorem to calculate the integral of the 2 -form

$$
\omega=a x d y \wedge d z+b y d z \wedge d x+c z d x \wedge d y
$$

(where a, b, c are constants) over the sphere of radius R with center at the origin in \mathbb{R}^{3}. The orientation of the sphere is induced from that for the ball given by the coordinates x, y, z. You may want to use the formula for the volume of a ball of radius R in $\mathbb{R}^{3}: \operatorname{vol} B_{R}=4 \pi R^{3} / 3$.
(b) Calculate the integral of the same form over the boundary of the cube $0 \leqslant x, y, z \leqslant 1$.

Problem 13. Let S_{R} be the sphere of radius R with center at the origin in \mathbb{R}^{3}.
(a) Show that the integral over S_{R} of the 2-form $\omega=r^{\alpha}(x d y \wedge d z+y d z \wedge$ $d x+z d x \wedge d y)$ for any $\alpha \in \mathbb{R}$ coincides with the integral over S_{R} of the 2-form $\sigma=R^{\alpha}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)$. Here $r=\sqrt{x^{2}+y^{2}+z^{2}}$.
(b) Use the result of part (a) and the Stokes theorem to evaluate $\oint_{S_{R}} \omega$ for any α. Hint: compare with Problem 12, part (a).

Problem 14. For an arbitrary $\alpha \in \mathbb{R}$ find the flux:

$$
\int_{S_{R}} \boldsymbol{X} \cdot d \boldsymbol{S}
$$

where S_{R} is the sphere of radius R with center at the origin in \mathbb{R}^{3} and $\boldsymbol{X}=r^{\alpha} \boldsymbol{r}$. Here \boldsymbol{r} is the radius-vector, $r=|\boldsymbol{r}|$. Hint: you can replace $\boldsymbol{X}=r^{\alpha} \boldsymbol{r}$ by $\boldsymbol{X}^{\prime}=R^{\alpha} \boldsymbol{r}$ at the surface of the sphere and then apply the Ostrogradski-Gauss theorem. What is the value of the flux for $\alpha=-3$? (For $\alpha=-3$ the field \boldsymbol{X} can be interpreted as the 'Coulomb force'.)

