§5 Stokes theorem

Problem 1. Prove using the Stokes theorem that the integral of a 1 -form $\frac{1}{2}(x d y-y d x)$ over the boundary of an oriented domain D in the Euclidean plane \mathbb{R}^{2} gives the (oriented) area of D.

Problem 2. Directly verify the statement of Problem 1 for:
(a) the square with vertices $(0,0),(2,0),(2,2),(0,2)$;
(b) the parallelogram with vertices $(0,0),(4,0),(1,2),(5,2)$;
(c) the disk with centre at the origin and radius R.

Problem 3. Calculate the integral of the 2 -form

$$
\omega=r^{\alpha}(x d y \wedge d z-y d x \wedge d z+z d x \wedge d y)
$$

where $r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$ over the sphere of radius R with center at $O=(0,0,0)$, if $\alpha \geqslant 0$. The orientation of the sphere is given by the outward normal. Hint: apply the Stokes theorem.
Problem 4. Consider the 2-form in $\mathbb{R}^{3} \backslash\{O\}$ (here $\left.r=\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\right)$:

$$
\omega=\frac{x d y \wedge d z-y d x \wedge d z+z d x \wedge d y}{r^{3}}
$$

(a) Calculate the integral of ω over the sphere of radius R with center at $O=(0,0,0)$. The orientation is as in the previous problem. Notice that you cannot apply the Stokes theorem to ω directly, to reduce to an integral over the ball, because ω is not defined at the origin. Hint: use spherical coordinates or replace ω by another form so that the Stokes theorem will be applicable to it.
(b) Check that ω is closed. Deduce from here, using the Stokes theorem, that $\oint_{C} \omega$ is the same for all cycles in $\mathbb{R}^{3} \backslash\{O\}$ representing closed oriented surfaces of the form ∂D where D is a bounded region containing the origin.
Problem 5. Consider the 1-form

$$
\omega=\frac{-y d x+x d y}{x^{2}+y^{2}}
$$

in the plane. Prove that for an arbitrary function f in \mathbb{R}^{2}

$$
\lim _{\varepsilon \rightarrow 0} \oint_{C_{\varepsilon}} f \omega=2 \pi f(O)
$$

where C_{ε} is the circle of radius ε with center at the origin O. (We assume that f is defined and continuous near O.) What can you say about the integral of $f \omega$ over an arbitrary cycle in $\mathbb{R}^{2} \backslash\{O\}$?
Problem 6. If the boundary of an oriented segment $(A B)$ is defined as the chain $(B)-(A)$ (formal difference), and the boundary of an oriented square $(A B C D)$ is defined as the chain $(A B)+(B C)+(C D)+(D A)$, check that $\partial \partial(A B C D)=0$. Do the same for a 3-cube.

