## §4 Integration of forms

Problem 1. Calculate the integral $\int_{\gamma} \omega$ if:
(a) $\gamma: t \mapsto\left(t^{2}, t^{3}\right), t \in[-2,2], \omega=2 d x+d y$;
(b) $\gamma: t \mapsto\left(t^{2}, t^{3}\right), t \in[-1,1], \omega=(x+y) d x+(2 x-y) d y$;
(c) $\gamma: t \mapsto\left(t-1,2 t^{2}\right), t \in[0,1], \omega=2 y d x+(x+y) d y$.

Problem 2. Calculate the integral $\int_{\gamma} A$ if $\gamma: t \mapsto(2 \cos t, 3 \sin t, t), t \in$ $[-\pi, \pi]$, and $A=z d x+d y-x y d z$.

Problem 3. Calculate the integral of the form $\omega=d z$ over the chain $A B+$ $B C+C A$ made of the sides of a triangle $A B C$ in $\mathbb{R}^{3}$, if $A=(1,0,0), B=$ $(0,2,0), C=(0,0,3)$.

Problem 4. Calculate the integral over the same contour as above for the form $\omega=x d z$

Problem 5. Given a 1-form $A=(a x+b y) d x+(p x+q y) d y$ on $\mathbb{R}^{2}$.
(a) Calculate the integral $\oint_{C} A$ where the closed contour $C$ is the boundary of the square with the vertices $K=(0,0), L=(1,0), M=(1,1), N=(0,1)$ oriented "counterclockwise" (i.e., the direction on the sides is from $K$ to $L$, from $L$ to $M$, from $M$ to $N$, from $N$ to $K$ ).
(b) Find the condition for $\oint_{C} A=0$ as a relation on the coefficients in $A$.
(c) Calculate the 2 -form $d A$.
(d) Find the condition on $a, b, p, q$ for $d A$ to be zero. Check that this condition coincides with the one obtained in part (b).
(e) Assuming that the condition on the coefficients obtained in parts (b), (d) is satisfied, show that $\int_{C_{1}} A=\int_{C_{2}} A=\int_{C_{3}} A=\int_{C_{4}} A$ where $C_{1}$ is the broken line $K L M, C_{2}$ is the broken line $K N M, C_{3}$ is the straight line segment $[K M], C_{4}$ is the piece of the parabola $y=x^{2}$ between $K=(0,0)$ and $M=(1,1)$. In all cases the orientation is given by the direction from $K$ to $M$.

Problem 6. For given pairs of bases determine whether they define the same orientation or not:
(a) $\boldsymbol{e}_{1}=(1,1), \boldsymbol{e}_{2}=(-1,1)$ and $\boldsymbol{g}_{1}=(2,-7), \boldsymbol{g}_{2}=(-3,2)$
(b) $\boldsymbol{e}_{1}=(1,1,0), \boldsymbol{e}_{2}=(0,-1,1), \boldsymbol{e}_{3}=(1,0,4)$ and $\boldsymbol{g}_{1}=(1,0,0), \boldsymbol{g}_{2}=$ $(0,1,0), \boldsymbol{g}_{3}=(0,0,1)$
(c) $\boldsymbol{e}_{1}=(1,0,0), \boldsymbol{e}_{2}=(0,1,0), \boldsymbol{e}_{3}=(0,0,1)$ and $\boldsymbol{e}_{\rho}, \boldsymbol{e}_{\varphi}, \boldsymbol{e}_{z}$ (corresponding to the cylindrical coordinates).

Problem 7. Check that "to define the same orientation" is an equivalence relation for bases in $\mathbb{R}^{n}$.

Problem 8. For spherical coordinates in $\mathbb{R}^{3}$ find out which order of coordinates: $r, \varphi, \theta$ or $r, \theta, \varphi$, gives the same orientation as $x, y, z$.

Problem 9. Calculate the integral of the 2-form $\omega=(x+z) d x \wedge d y$ over a parametrized surface $\Gamma: D \rightarrow \mathbb{R}^{3}$ if:
(a) $\Gamma$ : $(u, v) \mapsto\left(u, v, u^{2}-v^{2}\right)$, where $-1 \leqslant u, v \leqslant 1$.
(b) $\Gamma:(u, v) \mapsto(u, v, 3 u v)$, where $-1 \leqslant u, v \leqslant 1$.

Problem 10. Calculate the integral of the 2 -form

$$
\sigma=\frac{1}{3}(x d y \wedge d z+y d z \wedge d x+z d x \wedge d y)
$$

over the sphere $S_{R}^{2}: x^{2}+y^{2}+z^{2}=R^{2}$ with an orientation given by the outward normal. What would happen if we choose the inward normal instead?

