$\S 3$ Forms on \mathbb{R}^{n}

Problem 1. (a) Expand the expression $a^{i} e_{i}$ assuming that the index i runs over $1,2,3,4$. Write the answer in the matrix form (in two possible ways).
(b) Do the same task (expand and write in the matrix form) for the expression $e_{i} F_{j}^{i} a^{j}$ assuming that i and j take values $1,2,3$.

Problem 2. Check that if a 1 -form $A=A_{i} d x^{i}$ is the differential of a function ($A=d f$ for some f), then the following relation holds:

$$
\frac{\partial A_{j}}{\partial x^{i}}-\frac{\partial A_{i}}{\partial x^{j}}=0
$$

for all i, j. Hint: use a property of mixed partial derivatives.
Problem 3. Let $A=A_{i} d x^{i}$ be an arbitrary 1-form on \mathbb{R}^{n}. Show that its differential has the form

$$
d A=\frac{1}{2}\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right) d x^{i} \wedge d x^{j}
$$

Here ∂_{i} denotes the partial derivative $\partial / \partial x^{i}$.
Problem 4. Let $F=\frac{1}{2} F_{i j} d x^{i} \wedge d x^{j}$ be an arbitrary 2-form on \mathbb{R}^{n}. Show that its differential has the form

$$
d F=\frac{1}{3!}\left(\partial_{i} F_{j k}+\partial_{k} F_{i j}+\partial_{j} F_{k i}\right) d x^{i} \wedge d x^{j} \wedge d x^{k} .
$$

Check that the coefficients $T_{i j k}=\partial_{i} F_{j k}+\partial_{k} F_{i j}+\partial_{j} F_{k i}$ are antisymmetric with respect to its indices.

Problem 5. Coordinates on \mathbb{R}^{4} considered as the 'Minkowski space-time' are traditionally denoted $x^{0}, x^{1}, x^{2}, x^{3}$ where $x^{0}=c t$ (t being the time, c being a constant identified with the speed of light in vacuum) and $x^{1}=x$, $x^{2}=y, x^{3}=z$ are Cartesian coordinates on the Euclidean 3 -space.
(a) Consider a 1 -form on \mathbb{R}^{4} written as

$$
A=A_{i} d x^{i}=\varphi c d t-A_{x} d x-A_{y} d y-A_{z} d z
$$

(so that $A_{0}=\varphi, A_{1}=-A_{x}, A_{2}=-A_{y}, A_{3}=-A_{z}$). The function φ is known as the 'scalar potential' and the functions A_{x}, A_{y}, A_{z} are the components of the 'vector potential'. Find $d A$ (you should simplify the answer as much as possible).
(b) An arbitrary 2-form on \mathbb{R}^{4} can be written as follows:

$$
F=\frac{1}{2} F_{i j} d x^{i} \wedge d x^{j}=E_{\alpha} c d t \wedge d x^{\alpha}-H_{1} d y \wedge d z-H_{2} d z \wedge d x-H_{3} d x \wedge d y
$$

where $\alpha=1,2,3$. Write down the matrix $\left(F_{i j}\right)$ in terms of E_{α}, H_{α}.
(c) Suppose $F=d A$. Express it as relations between E_{α}, H_{α} and $\varphi, A_{x}, A_{y}, A_{z}$. (d) Show that the equation $d F=0$ written in terms of E_{α}, H_{α} will have the appearance of (a part of) 'Maxwell's equations'

$$
\frac{\partial H_{1}}{\partial x}+\frac{\partial H_{2}}{\partial y}+\frac{\partial H_{3}}{\partial z}=0
$$

and

$$
\begin{aligned}
& \frac{1}{c} \frac{\partial H_{1}}{\partial t}+\frac{\partial E_{3}}{\partial y}-\frac{\partial E_{2}}{\partial z}=0 \\
& \frac{1}{c} \frac{\partial H_{2}}{\partial t}+\frac{\partial E_{1}}{\partial z}-\frac{\partial E_{z}}{\partial x}=0 \\
& \frac{1}{c} \frac{\partial H_{3}}{\partial t}+\frac{\partial E_{2}}{\partial x}-\frac{\partial E_{1}}{\partial y}=0
\end{aligned}
$$

Problem 6. On \mathbb{R}^{n} consider the ($n-1$)-form

$$
\sigma=\sum_{i=1}^{n}(-1)^{i+1} x^{i} d x^{1} \wedge \ldots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \ldots \wedge d x^{n} .
$$

Find its exterior differential.
Problem 7. On \mathbb{R}^{n} consider the $(n-1)$-form

$$
\omega=r^{\alpha} \sum(-1)^{i+1} x^{i} d x^{1} \wedge \ldots \wedge d x^{i-1} \wedge d x^{i+1} \wedge \ldots \wedge d x^{n}
$$

where $r=\left(\left(x^{1}\right)^{2}+\ldots+\left(x^{n}\right)^{2}\right)^{1 / 2}$. Find its exterior differential. For which values of the parameter α does $d \omega$ vanish?

