§2 Digression: differential calculus on \mathbb{R}^{n}

Problem 1. Write down the expressions for
(a) $d\left(x^{n}\right)$,
(b) $d\left(e^{x}\right)$,
(c) $d(\ln x)$,
(d) $d(\sin x)$,
(e) $d \arctan x$, (f) $d \sqrt{x}$.

Problem 2. Find the differentials of the following functions:
(a) $f(\boldsymbol{x})=x^{2}+y^{2}+z^{2}$, (b) $f(\boldsymbol{x})=2 x-3 y+z$, (c) $f(\boldsymbol{x})=\sin x-e^{y z}$, (d) $f(\boldsymbol{x})=e^{-x y z}$, (e) $f(\boldsymbol{x})=\frac{1}{2}\left(\lambda_{1}\left(x^{1}\right)^{2}+\ldots+\lambda_{n}\left(x^{n}\right)^{2}\right)$
Problem 3. Calculate

(a) $d \arctan \frac{y}{x}$, (b) $d \ln \sqrt{x^{2}+y^{2}}$.

In the following problems the derivative along a vector \boldsymbol{v}, notation: $\partial_{\boldsymbol{v}} f$ or $\partial_{\boldsymbol{v}} f(\boldsymbol{x})$, means the value of the covector $d f(\boldsymbol{x})$ at the vector \boldsymbol{v} :

$$
\partial_{\boldsymbol{v}} f=d f(\boldsymbol{x})(\boldsymbol{v})=\langle d f(\boldsymbol{x}), \boldsymbol{v}\rangle .
$$

It depends both on a point \boldsymbol{x} and a vector \boldsymbol{v}.
Problem 4. Find $\partial_{\boldsymbol{v}} f(\boldsymbol{x})$ for the function $f=x^{2}+y^{2}$ in \mathbb{R}^{2} if:
(a) $\boldsymbol{x}=(1,1), \boldsymbol{v}=(0,0)$,
(b) $\boldsymbol{x}=(1,1), \boldsymbol{v}=(1,0)$,
(c) $\boldsymbol{x}=(1,1), \boldsymbol{v}=(0,1)$,
(d) $\boldsymbol{x}=(1,1), \boldsymbol{v}=(1,2)$,
(e) $\boldsymbol{x}=(0,0), \boldsymbol{v}=(1,2)$.

Problem 5. For the function $f(\boldsymbol{x})=x^{2}-y^{2}$ calculate the derivative along the vector $\boldsymbol{v}=(\cos \alpha, \sin \alpha)$ at $\boldsymbol{x}=(x, y)$. Here $\alpha \in \mathbb{R}$ is a parameter. Considering $\partial_{\boldsymbol{v}} f$ as a function of α, find α such that $\partial_{\boldsymbol{v}} f$ is maximal. Find the corresponding vector \boldsymbol{v} and the value of the derivative $\partial_{\boldsymbol{v}} f$.

Problem 6. Given a map $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, where $\boldsymbol{F}(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$. Find the differential $d \boldsymbol{F}$. Express the answer as $d \boldsymbol{F}=\boldsymbol{A}_{1} d x+\boldsymbol{A}_{2} d y$ (with vector coefficients \boldsymbol{A}_{1} and \boldsymbol{A}_{2}), and in the matrix form.

Problem 7. Given a map $\boldsymbol{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
\binom{r}{\theta} \mapsto\binom{x}{y}=\binom{r \cos \theta}{r \sin \theta}
$$

(a) Find the differential of \boldsymbol{F}. Use the matrix notation.
(b) At which values of r, θ the linear transformation $d \boldsymbol{F}$ is not invertible?

To which points (x, y) in \mathbb{R}^{2} do they correspond?
(c) Express $d r, d \theta$ via $d x, d y$. Is it always possible?

Problem 8. A map of a Euclidean vector space \mathbb{R}^{3} to itself is given by $\boldsymbol{F}: \boldsymbol{x} \mapsto \boldsymbol{a} \times \boldsymbol{x}$ (vector product), where $\boldsymbol{a}=\left(a^{1}, a^{2}, a^{3}\right)$ is a constant vector. Find the matrix of the differential of \boldsymbol{F}. (Hint: recall the formulae for the vector product.)

Problem 9. Find the velocity vector for the following parametrized curves:
(a) $\gamma(t)=(\cos t, \sin t)$,
(b) $\gamma(t)=(\cos 2 t, \sin 2 t, t)$,
(c) $\gamma(t)=\left(t, e^{t}\right)$.

Problem 10. For a path in the space of matrices

$$
A(t)=\left(\begin{array}{cc}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

(a) find the velocity $\dot{A}(t)$ at $t=0$; (b) calculate $A^{-1} \dot{A}$ for an arbitrary t.

Problem 11. (a) Suppose a curve $\boldsymbol{v}=\boldsymbol{v}(t)$ in \mathbb{R}^{n} is such that $\|\boldsymbol{v}\|=1$ (i.e., the curve remains on the surface of the unit sphere with centre at the origin). Check that $\dot{\boldsymbol{v}}$ and \boldsymbol{v} are orthogonal. Hint: differentiate the equation $(\boldsymbol{v}, \boldsymbol{v})=1$.
(b) Check that the curve $\boldsymbol{v}(t)=(\cos t, \sin t, 0)$ in \mathbb{R}^{3} remains on the sphere $x^{2}+y^{2}+z^{2}=1$, find the velocity vector and check directly that $\dot{\boldsymbol{v}} \perp \boldsymbol{v}$.

Problem 12. For polar coordinates in the plane, express the basis $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}$ associated with them via the standard basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ (associated with Cartesian coordinates x, y), and conversely.

Problem 13. Sketch the basis $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}$ associated with polar coordinates at the following points of the plane: $x=1, y=0 ; x=2, y=0 ; x=0, y=1$; $x=0, y=2 ; x=1 / \sqrt{2} ; y=1 / \sqrt{2} ; x=1, y=1$.

Problem 14. A curve is given in polar coordinates: $r=t, \theta=t$. Find the velocity vector $\dot{\boldsymbol{x}}$:
(a) in terms of the basis $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}$ (associated with polar coordinates);
(b) in terms of the basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ (associated with Cartesian coordinates x, y). Hint: for part (b) you can either express the curve in Cartesian coordinates or use the result of part (a) and the expression of $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}$ via $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$.

Problem 15. Consider spherical coordinates in \mathbb{R}^{3} :

$$
\begin{aligned}
& x=r \sin \theta \cos \varphi \\
& y=r \sin \theta \sin \varphi \\
& z=r \cos \theta
\end{aligned}
$$

Express the basis $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}, \boldsymbol{e}_{\varphi}$ in terms of the basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ (corresponding to the coordinates x, y, z). Write the answer in the matrix form.

Problem 16. For polar and Cartesian coordinates in \mathbb{R}^{2} do the following: (a) give the expression for $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}$ via $\boldsymbol{e}_{x}, \boldsymbol{e}_{y}$ in the matrix notation as

$$
\binom{\boldsymbol{e}_{r}}{\boldsymbol{e}_{\theta}}=T\binom{\boldsymbol{e}_{x}}{\boldsymbol{e}_{y}}
$$

where T is a 2×2 matrix;
(b) conversely, express $\boldsymbol{e}_{x}, \boldsymbol{e}_{y}$ via $\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}$ writing the answer as

$$
\binom{\boldsymbol{e}_{x}}{\boldsymbol{e}_{y}}=S\binom{\boldsymbol{e}_{r}}{\boldsymbol{e}_{\theta}}
$$

(c) express the differentials $d x, d y$ via $d r, d \theta$ writing the answer as

$$
\binom{d x}{d y}=U\binom{d r}{d \theta}
$$

(d) conversely, express $d r, d \theta$ via $d x, d y$ as

$$
\binom{d r}{d \theta}=R\binom{d x}{d y}
$$

Find the relations between the matrices T, S, U, R.
Problem 17. For the surface specified by the equation $z=x^{2}+y^{2}$ in \mathbb{R}^{3}, find a basis of the tangent plane at the points: (a) $P=(0,0,0)$, (b) $P=(1,0,1),($ c) $P=(1,1,2)$. Hint: take as coordinates on the surface u, v so that $x=u, y=v, z=u^{2}+v^{2}$ and consider the associated basis $\boldsymbol{e}_{u}, \boldsymbol{e}_{v}$.

Problem 18. Orthogonal matrices are specified by the equation $A A^{T}=E$, where E is the identity matrix. Consider the set $O(n)$ of the orthogonal $n \times n$ matrices as a surface in the space of all $n \times n$ matrices. Show that the tangent space for $O(n)$ at the point E is the vector space of all $n \times n$ skew-symmetric matrices.

Problem 19. (a) Expand the expression $a^{i} e_{i}$ assuming that the index i runs over $1,2,3$. Write the answer in the matrix form (in two possible ways).
(b) Do the same task (expand and write in the matrix form) for the expression $e_{i} F_{j}^{i} a^{j}$ assuming that i and j take values 1,2 .

