§2 Digression: differential calculus on \mathbb{R}^n

Problem 1. Write down the expressions for (a) $d(x^n)$, (b) $d(e^x)$, (c) $d(\ln x)$, (d) $d(\sin x)$, (e) $d \arctan x$, (f) $d\sqrt{x}$.

Problem 2. Find the differentials of the following functions: (a) $f(\boldsymbol{x}) = x^2 + y^2 + z^2$, (b) $f(\boldsymbol{x}) = 2x - 3y + z$, (c) $f(\boldsymbol{x}) = \sin x - e^{yz}$, (d) $f(\boldsymbol{x}) = e^{-xyz}$, (e) $f(\boldsymbol{x}) = \frac{1}{2} \left(\lambda_1 (x^1)^2 + \ldots + \lambda_n (x^n)^2 \right)$

Problem 3. Calculate (a) $d \arctan \frac{y}{x}$, (b) $d \ln \sqrt{x^2 + y^2}$.

In the following problems the *derivative along a vector* \boldsymbol{v} , notation: $\partial_{\boldsymbol{v}} f$ or $\partial_{\boldsymbol{v}} f(\boldsymbol{x})$, means the value of the covector $df(\boldsymbol{x})$ at the vector \boldsymbol{v} :

$$\partial_{\boldsymbol{v}} f = df(\boldsymbol{x})(\boldsymbol{v}) = \langle df(\boldsymbol{x}), \boldsymbol{v} \rangle.$$

It depends both on a point \boldsymbol{x} and a vector \boldsymbol{v} .

Problem 4. Find $\partial_{\boldsymbol{v}} f(\boldsymbol{x})$ for the function $f = x^2 + y^2$ in \mathbb{R}^2 if: (a) $\boldsymbol{x} = (1, 1), \, \boldsymbol{v} = (0, 0),$ (b) $\boldsymbol{x} = (1, 1), \, \boldsymbol{v} = (1, 0),$ (c) $\boldsymbol{x} = (1, 1), \, \boldsymbol{v} = (0, 1),$ (d) $\boldsymbol{x} = (1, 1), \, \boldsymbol{v} = (1, 2),$ (e) $\boldsymbol{x} = (0, 0), \, \boldsymbol{v} = (1, 2).$

Problem 5. For the function $f(\mathbf{x}) = x^2 - y^2$ calculate the derivative along the vector $\mathbf{v} = (\cos \alpha, \sin \alpha)$ at $\mathbf{x} = (x, y)$. Here $\alpha \in \mathbb{R}$ is a parameter. Considering $\partial_{\mathbf{v}} f$ as a function of α , find α such that $\partial_{\mathbf{v}} f$ is maximal. Find the corresponding vector \mathbf{v} and the value of the derivative $\partial_{\mathbf{v}} f$.

Problem 6. Given a map $F: \mathbb{R}^2 \to \mathbb{R}^2$, where $F(x, y) = (x^2 - y^2, 2xy)$. Find the differential dF. Express the answer as $dF = A_1 dx + A_2 dy$ (with vector coefficients A_1 and A_2), and in the matrix form.

Problem 7. Given a map $F \colon \mathbb{R}^2 \to \mathbb{R}^2$,

$$\begin{pmatrix} r\\ \theta \end{pmatrix} \mapsto \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} r\cos\theta\\ r\sin\theta \end{pmatrix}$$

(a) Find the differential of F. Use the matrix notation.

(b) At which values of r, θ the linear transformation dF is not invertible? To which points (x, y) in \mathbb{R}^2 do they correspond?

(c) Express dr, $d\theta$ via dx, dy. Is it always possible?

Problem 8. A map of a Euclidean vector space \mathbb{R}^3 to itself is given by $F: x \mapsto a \times x$ (vector product), where $a = (a^1, a^2, a^3)$ is a constant vector. Find the matrix of the differential of F. (Hint: recall the formulae for the vector product.)

Problem 9. Find the velocity vector for the following parametrized curves: (a) $\gamma(t) = (\cos t, \sin t)$, (b) $\gamma(t) = (\cos 2t, \sin 2t, t)$, (c) $\gamma(t) = (t, e^t)$.

Problem 10. For a path in the space of matrices

$$A(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$$

(a) find the velocity $\dot{A}(t)$ at t = 0; (b) calculate $A^{-1}\dot{A}$ for an arbitrary t.

Problem 11. (a) Suppose a curve $\boldsymbol{v} = \boldsymbol{v}(t)$ in \mathbb{R}^n is such that $||\boldsymbol{v}|| = 1$ (i.e., the curve remains on the surface of the unit sphere with centre at the origin). Check that $\dot{\boldsymbol{v}}$ and \boldsymbol{v} are orthogonal. Hint: differentiate the equation $(\boldsymbol{v}, \boldsymbol{v}) = 1$.

(b) Check that the curve $\boldsymbol{v}(t) = (\cos t, \sin t, 0)$ in \mathbb{R}^3 remains on the sphere $x^2 + y^2 + z^2 = 1$, find the velocity vector and check directly that $\dot{\boldsymbol{v}} \perp \boldsymbol{v}$.

Problem 12. For polar coordinates in the plane, express the basis e_r, e_θ associated with them via the standard basis e_1, e_2 (associated with Cartesian coordinates x, y), and conversely.

Problem 13. Sketch the basis e_r, e_θ associated with polar coordinates at the following points of the plane: $x = 1, y = 0; x = 2, y = 0; x = 0, y = 1; x = 0, y = 2; x = 1/\sqrt{2}; y = 1/\sqrt{2}; x = 1, y = 1.$

Problem 14. A curve is given in polar coordinates: $r = t, \theta = t$. Find the velocity vector \dot{x} :

(a) in terms of the basis e_r, e_θ (associated with polar coordinates);

(b) in terms of the basis e_1, e_2 (associated with Cartesian coordinates x, y). Hint: for part (b) you can either express the curve in Cartesian coordinates or use the result of part (a) and the expression of e_r, e_θ via e_1, e_2 .

Problem 15. Consider spherical coordinates in \mathbb{R}^3 :

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

Express the basis e_r, e_θ, e_φ in terms of the basis e_1, e_2, e_3 (corresponding to the coordinates x, y, z). Write the answer in the matrix form.

Problem 16. For polar and Cartesian coordinates in \mathbb{R}^2 do the following: (a) give the expression for e_r, e_θ via e_x, e_y in the matrix notation as

$$\begin{pmatrix} \boldsymbol{e}_r \\ \boldsymbol{e}_\theta \end{pmatrix} = T \begin{pmatrix} \boldsymbol{e}_x \\ \boldsymbol{e}_y \end{pmatrix}$$

where T is a 2×2 matrix;

(b) conversely, express e_x, e_y via e_r, e_θ writing the answer as

$$\begin{pmatrix} \boldsymbol{e}_x \\ \boldsymbol{e}_y \end{pmatrix} = S \begin{pmatrix} \boldsymbol{e}_r \\ \boldsymbol{e}_\theta \end{pmatrix}$$

(c) express the differentials dx, dy via $dr, d\theta$ writing the answer as

$$\begin{pmatrix} dx \\ dy \end{pmatrix} = U \begin{pmatrix} dr \\ d\theta \end{pmatrix}$$

(d) conversely, express $dr, d\theta$ via dx, dy as

$$\begin{pmatrix} dr \\ d\theta \end{pmatrix} = R \begin{pmatrix} dx \\ dy \end{pmatrix}.$$

Find the relations between the matrices T, S, U, R.

Problem 17. For the surface specified by the equation $z = x^2 + y^2$ in \mathbb{R}^3 , find a basis of the tangent plane at the points: (a) P = (0,0,0), (b) P = (1,0,1), (c) P = (1,1,2). Hint: take as coordinates on the surface u, v so that $x = u, y = v, z = u^2 + v^2$ and consider the associated basis e_u, e_v .

Problem 18. Orthogonal matrices are specified by the equation $AA^T = E$, where E is the identity matrix. Consider the set O(n) of the orthogonal $n \times n$ matrices as a surface in the space of all $n \times n$ matrices. Show that the tangent space for O(n) at the point E is the vector space of all $n \times n$ skew-symmetric matrices.

Problem 19. (a) Expand the expression $a^i e_i$ assuming that the index *i* runs over 1, 2, 3. Write the answer in the matrix form (in two possible ways). **(b)** Do the same task (expand and write in the matrix form) for the expression $e_i F_i^i a^j$ assuming that *i* and *j* take values 1, 2.