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§6 Forms and vector fields on Rn

In this section we shall consider Rn as a Euclidean space. Recall that this
means the following.

On Rn the scalar product of vectors is defined by the formula

(a, b) = a1b1 + . . . + anbn (1)

where a = (a1, . . . , an), b = (b1, . . . , bn). It follows that the standard basis
vectors e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) satisfy (ei, ej) = 0 if i 6= j
and (ei, ei) = 1. The length of a vector is defined as

|a| =
√

(a,a)

and the angle between two vectors is defined by the equality

(a, b) = |a| |b| cos α

from where we can find cos α if (a, b), (a,a), (b, b) are known. Hence the
relations for ei mean that they all have unit length and are mutually perpen-
dicular. Length of vectors is also called norm or magnitude and alternatively
denoted ||a||. The scalar product is alternatively denoted a · b and hence is
often referred to as the ‘dot product’. We shall use both notations, a · b and
(a, b).

Any basis e1, . . . , en in Rn, not necessarily the standard basis, in which
the scalar product is expressed by the same simple formula (1) where a =
aiei, b = biei, is called orthonormal. In other words, the vectors of an or-
thonormal basis should be mutually perpendicular and have unit length. One
can see that the transition matrix between two orthonormal bases must be
orthogonal, i.e., satisfy AAT = E (where AT is the transpose of A and E de-
notes the identity matrix). The determinant of any orthogonal matrix equals
1 or −1. (Indeed, AAT = E implies (det A)2 = 1, since det AT = det A.)
These are standard facts from linear algebra and we are just reminding them.

Any coordinate system obtained from the standard coordinates by a lin-
ear transformation of the form xi = Ai

i′x
i′ + bi where the matrix A = (Ai

i′)
is orthogonal, is called Cartesian. Hence the standard coordinates on Rn

are, by definition, Cartesian, but besides them there are many other Carte-
sian coordinate systems. The basis of vectors associated with any Cartesian
coordinates on Rn will be orthonormal.

6.1 Areas and volumes

Our principal goal in this subsection is to obtain convenient formulas allowing
to calculate areas and volumes (for bounded domains of Rn or surfaces in
Rn) using arbitrary coordinates. To this end we shall start from formulas in
Cartesian coordinates and then generalize them.
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Let x1, . . . , xn be Cartesian coordinates on the Euclidean space Rn. The
volume of any bounded domain D ⊂ Rn is defined as

vol D :=

∫

D

dx1 ∧ . . . ∧ dxn =

∫

D

dx1 . . . dxn. (2)

The volume is defined for any domain such that the integral makes sense.
It is clear that this definition does not depend on a choice of Cartesian
coordinates if the orientation is not changed. (Indeed, the Jacobian will be
det A where A is an orthogonal matrix, hence it is +1 or −1.) Note that
we have actually defined the “oriented volume” or “signed volume”, which
depends on orientation of D. The absolute value is the usual volume. For
n = 2 volume will be called area. (For n = 1, “volume” is length.)

Example 6.1. Let Π(b, c) be a parallelogram spanned by vectors b and c in
R2. It is the set of all points of the form x = A + tb + sc where 0 6 t, s 6 1.
A is an arbitrary (fixed) point. The area of Π(b, c), clearly, does not depend
on A as soon as the vectors b and c are given. By a direct calculation of the
integral we obtain

area Π(b, c) =

∣∣∣∣
b1 b2

c1 c2

∣∣∣∣ (3)

if b = b1e1 + b2e2, c = c1e1 + c2e2 in Cartesian coordinates.

Obviously, this generalizes to an arbitrary n: in Cartesian coordinates
the volume of a parallelepiped spanned by vectors a1, . . . , an in Rn is

vol Π(a1, . . . , an) =

∣∣∣∣∣∣

a1
1 . . . an

1

. . . . . . . . .
a1

n . . . an
n

∣∣∣∣∣∣
. (4)

Here ai = aj
iej. We are working in the orthonormal basis corresponding to

the Cartesian coordinates x1, . . . , xn.
Starting from (3), (4) it is possible to give an “intrinsic” expression for

this volume, entirely in terms of the lengths of the vectors a1, . . . , an and
angles between them, i.e., in terms of the pairwise scalar products of ai.

Definition 6.1. Consider arbitrary k vectors a1, . . . , ak in Rn. The matrix
G = G(a1, . . . , ak), where

G(a1, . . . , ak) =




(a1, a1) . . . (a1, ak)
. . . . . . . . .

(ak,a1) . . . (ak,ak)


 , (5)

is called the Gram matrix of the vectors a1, . . . , ak. Its determinant is called
the Gram determinant of a1, . . . , ak. Notation: g = det G.
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Theorem 6.1. For arbitrary n vectors a1, . . . , an in Rn the Gram determi-
nant g(a1, . . . , an) is the square of the volume of a parallelepiped spanned by
a1, . . . , an:

(vol Π(a1, . . . , an))2 =

∣∣∣∣∣∣

(a1,a1) . . . (a1, an)
. . . . . . . . .

(an,a1) . . . (an,an)

∣∣∣∣∣∣
. (6)

Proof. Use the expression for vol Π(a1, . . . , an) in Cartesian coordinates:
by (4), it is det A where the rows of the matrix A are the arrays of coor-
dinates of the vectors a1, . . . , an, respectively. For the Gram matrix G =
G(a1, . . . , an) we have

G = AAT ,

where AT is the transpose of A. Indeed, (ij)-th entry of G is (ai,aj) =∑
k ai

k aj
k, which is the (ij)-th entry of the product AAT .

Example 6.2. For n = 2 we get

(area Π(b, c))2 =

∣∣∣∣
(b, b) (b, c)
(c, b) (c, c)

∣∣∣∣ =

∣∣∣∣
|b|2 |b| |c| cos α

|b| |c| cos α |c|2
∣∣∣∣ =

|b|2|c|2 − |b|2|c|2 cos2 α = |b|2|c|2(1− cos2 α) = |b|2|c|2 sin2 α .

Here α is the angle between b and c. Hence the familiar formula

area Π(b, c) = |b| |c| sin α .

The usefulness of Theorem 6.1 is twofold.
First, it gives a coordinate-free formula for the volume of a parallelepiped

(the area of a parallelogram, in dimension two). Hence, as we shall see,
it gives a working formula for the volume of any body in Rn in arbitrary
coordinates.

Second, Theorem 6.1 is also applicable to a system of k vectors in Rn

for k 6 n (as any such system is contained in a k-dimensional Euclidean
subspace). Therefore it gives a formula for a k-volume of a k-dimensional
parallelepiped in the n-space. For example, it gives a formula for the area of
an arbitrary parallelogram in R3. As we shall see, this leads to areas (k = 2)
or volumes (k > 2) of k-dimensional surfaces in Rn.

Corollary 6.1. In arbitrary coordinates xi in Rn, the volume of a domain
D ⊂ Rn is

vol D =

∫

D

√
g dx1 ∧ . . . ∧ dxn (7)

where g = det(gij), and gij = (ei, ej). Here ei = ∂x
∂xi are the basis vectors

associated with the coordinates xi.
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Proof. Indeed, if we calculate the integral in (7) as the limit of integral sums,
then according to (6) the terms in the integral sum will be the volumes of
small parallelipipeds spanned by the vectors e1∆x1, . . . , en∆xn attached to
the points of the grid. Here ∆x1, . . . , ∆xn are the increments of coordinates
giving the partition of D. The parallelipipeds approximate small pieces of
D between xi and xi + ∆xi, and their volumes, the volumes of these pieces.
Passing to the limit gives the volume of D. (An alternative argument would
be to consider the change of variables from xi to some Cartesian coordinates.
Then the Jacobi matrix for it will consist of the Cartesian coordinates of
the vectors ei of the basis associated with xi. Hence its determinant, which
is the Jacobian arising in the change of variables formula, is the volume of
Π(e1, . . . , en) and equals

√
g.)

We have started our discussion from a parallelepiped spanned by arbi-
trary vectors a1, . . . , an in Rn and obtained for it a formula in Cartesian
coordinates (4). Now we can give a generalization to arbitrary coordinates.

Corollary 6.2. If ai = aj
iej, i = 1, . . . , n, where e1, . . . , en is an arbitrary

basis, then

vol Π(a1, . . . , an) =
√

g

∣∣∣∣∣∣

a1
1 . . . an

1

. . . . . . . . .
a1

n . . . an
n

∣∣∣∣∣∣
, (8)

where
g = det

(
(ei, ej)

)

is the Gram determinant for the basis ei.

Definition 6.2. The n-form defined in arbitrary coordinates as

dV :=
√

g dx1 ∧ . . . ∧ dxn (9)

is called the volume form on Rn.

The integral of dV over a bounded domain gives the volume of the domain.
In particular, in any Cartesian coordinates we have g = 1, and we return to
the original formula for volume.

Similarly, for any k-dimensional surface M ⊂ Rn we can introduce a “k-
dimensional area” (or k-dimensional volume) element dS. Suppose points of
the surface can be locally parametrized by independent variables u1, . . . , uk,
so that we have x = x(u1, . . . , uk) ∈ M . Denote the corresponding basis
vectors in the tangent space TxM by e1, . . . , ek, where now ei = ∂x

∂ui . Let
h = g(e1, . . . , ek) stand for the Gram determinant of e1, . . . , ek.

Definition 6.3. The k-form defined on M as

dS =
√

hdu1 ∧ . . . ∧ duk , (10)

using an arbitrary parametrization x = x(u1, . . . , uk) ∈ M , is called the area
element for M .
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The integral of the area element by definition is the area (for k = 2) or
volume (k > 2) of a bounded region of the surface M . For a justification of
such definition notice that the integral sums for an integral of dS over a piece
of M will be the sums of volumes of small “tangent parallelipipeds” (areas of
parallelograms for k = 2) spanned by e1∆u1, . . . , ek∆uk, i.e., parallelipipeds
in the tangent spaces at the points of the grid, and it should be intuitively
clear that these parallelipipeds approximate “elements of surface”, i.e., small
pieces of M between ui and ui + ∆ui.

Example 6.3. In R2 we have

dS = dx ∧ dy = r dr ∧ dθ

where x, y are Cartesian coordinates, and r, θ are polar coordinates. Indeed,
for the basis er = (cos θ, sin θ), eθ = (−r sin θ, r cos θ) associated with polar
coordinates we have the Gram matrix

G =

(
1 0
0 r2

)

(check!), hence g = r2 and
√

g = r.

Example 6.4. In R3 we have

dV = dx ∧ dy ∧ dz = r2 sin θ dr ∧ dθ ∧ dϕ = ρdρ ∧ dϕ ∧ dz .

Here x, y, z are Cartesian coordinates, r, θ, ϕ are spherical coordinates, and
ρ, ϕ, z are cylindrical coordinates. Indeed, for cylindrical coordinates (where
x = ρ cos ϕ, y = ρ sin ϕ, z = z) we can use the result for polars in R2, and for
spherical coordinates we arrive at the following Gram matrix,




1 0 0
0 r2 0
0 0 r2 sin2 θ




corresponding to the basis er, eθ, eϕ (check!). Hence for sphericals g =
r4 sin2 θ and

√
g = r2 sin θ, as stated.

Example 6.5. Consider the surface S2
R ⊂ R3, the sphere of radius R with

center at O. It can be parametrized using the angular coordinates θ, ϕ, as
x = R cos θ cos ϕ, y = R cos θ sin ϕ, z = R sin θ. Then in the tangent plane
we have the basis eθ, eϕ, which is a part of the basis corresponding to the
spherical coordinates in the ambient space R3 taken at a point of the sphere.
Hence, immediately,

G =

(
R2 0
0 R2 sin2 θ

)

will be the Gram matrix for eθ, eϕ. We have h = det G = R4 sin2 θ, therefore

dS = R2 sin θdθ dϕ

is the area element for the sphere S2
R.
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Remark 6.1. The volume element dV and the area element dS are not
differentials of any “V ” or “S”, in spite of the notation. This notation is
traditional and d in it has the meaning of an “element”, giving the “total”
volume or area after integration.

Remark 6.2. In the above definition of dV as an n-form is implicitly present
a choice of orientation on Rn. Indeed, by the very construction, the integral
of dV gives oriented volume. Hence, strictly speaking, formula (9) should be
used only in coordinate systems compatible with a chosen orientation. For
coordinates giving the opposite orientation, an extra minus sign should be
inserted: dV = −√gdx1∧ . . .∧dxn. The same is true for the element of area
dS on a surface. We should assume a particular choice of orientation, and if
local coordinates on the surface give the wrong orientation, then (10) should
be modified by an extra minus sign.

Suppose f is a function defined on a given k-dimensional surface M ⊂ Rn.
It is possible to consider the integral of f “over the area” of M ,

∫

M

f dS :=

∫

D

f
√

h du1 ∧ . . . ∧ duk (11)

where in the RHS the integration is over an appropriate domain of parameters
u1, . . . , uk. Integrals such as (11) have been traditionally called integrals
of the first kind. Compared to them, integrals of k-forms on Rn over k-
surfaces are traditionally known as integrals of the second kind. (The names
are explained by historical development, where the idea of the area element
appeared before the general theory of forms.)

The differences between the two kinds of integrals are as follows: in the
integral of first kind

∫
M

fdS, a function f “lives” on a particular surface M
and does not have to be defined on the whole Rn; in the integral of the second
kind

∫
M

ω, a k-form ω on Rn is independent of any surfaces; an integral of
the second kind (i.e., integral of a k-form) does not use any extra structure
(such as Euclidean) on Rn or a surface, while the definition of an integral
of the first kind depends on the area element derived from the Euclidean
structure.

However, these differences should not be overestimated. For a fixed k-
dimensional surface M , any integral of the first kind

∫
M

fdS is an integral
of the k-form fdS on M , which is associated with a function f on M due to
the presence of a “chosen” k-form dS. On the other hand, any integral of the
second kind

∫
M

ω, for a fixed surface M can be re-written as an integral of the
first kind. Indeed,

∫
M

ω =
∫

D
Γ∗ω where Γ: D → Rn is a parametrization of

M , and Γ∗ω is a k-form on M , hence Γ∗ω = fdS for a suitable function f .
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6.2 Forms corresponding to a vector field

6.2.1 Vector fields

Let u be a vector field on Rn, i.e., a map associating with each point x
a vector u(x), which we assume to depend smoothly on the point x. For
vector fields we shall use capital letters like A,F ,X, Y , etc., or letters like
u, v. It is instructive to visualize a vector field using a picture where vectors
emanate from the corresponding points. There is a very useful hydrodynamic
interpretation in which the vector u(x) at a point x is considered as the
velocity of particles of a flow of some fluid in Rn passing through x. (The
flow should be stationary, in the sense that the velocity of particles at a given
point x does not depend on the time.)

Remark 6.3. The term ‘field’ simply means a quantity depending on a point
in space. A ‘vector field’ means vectors depending on points. Respectively, a
scalar field is an alternative name for a usual function on Rn taking values in
numbers (‘scalars’). Differential forms, which we consider in these lectures,
are also ‘fields’. For example, a 1-form is a field of covectors (at each point
the value of a 1-form is a covector).

Vector fields can be defined on an open set U ⊂ Rn or at the points of
a surface M ⊂ Rn instead of the whole Rn. For simplicity, we speak about
vector fields on Rn.

6.2.2 Circulation (or work) 1-form. Gradient

With each vector field u on Rn one can associate two differential forms: a
1-form denoted u · dr and an (n − 1)-form denoted u · dS. The definitions
will follow, and the notation will be explained.

Before giving precise definitions, let us give a rough idea. Suppose we
visualize u as a flow of some fluid. If γ is a path (or a 1-chain), it is natural
to look for a measure of fluid that circulates along γ in a unit of time. Or:
suppose u represents a force acting on a material particle staying on the
curve γ. We are interested in the ‘work of force’ u along γ. Likewise, for
an (n − 1)-dimensional surface (or an (n − 1)-chain) in Rn it is natural to
look for a measure of fluid that passes across the surface in a unit of time.
The answers to these two questions will be given by integrals of the forms
u · dr and u · dS, respectively. Notice that both questions assume Euclidean
geometry: what is, precisely, ‘across’ a surface or ‘along’ a curve, or how to
‘count’ particles? (It is is necessary to know unit normals and tangents, as
we shall see.)

Definition 6.4. The circulation form or the work form corresponding to a
vector field u, notation: u · dr (or u · dx), is a 1-form that on every vector
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v takes the value (u,v), the scalar product of u and v:

〈u · dr, v〉 = (u, v). (12)

We immediately conclude that in Cartesian coordinates, if u = uiei, then

u · dr =
n∑

i=1

ui dxi (13)

(notice that we have to use the summation symbol in (12) because both
indices are upper). Indeed, suppose u · dr = ω = ωi dxi. Then the l.h.s.
of (12) is ωiv

i. Comparing with (1), we get (13). In arbitrary coordinates
we in the same way obtain

u · dr = giju
i dxj (14)

(summation over i, j), where gij = (ei, ej).

Example 6.6. In the plane, if a vector field X is given in Cartesian coordi-
nates x, y as X = X1e1 + X2e2, then

X · dr = X1 dx + X2 dy.

If X is given in polar coordinates r, θ as X = X1er + X2eθ (the coefficients
X1, X2 now have a different meaning), then

X · dr = X1 dr + r2 X2 dθ.

The correspondence between vectors fields and 1-forms given by the map
u 7→ u · dr is invertible. Any 1-form ω = ωi dxi is the circulation form for a
unique vector field u. All we have to do is to solve the equation (14) for the
coefficients ui. We obtain

u = gijωj ei (15)

(summation over i, j), where gij (with upper indices) are the coefficients of
the inverse matrix for the Gram matrix (gij).

An important example is given by the notion of the gradient of a function.

Definition 6.5. The gradient of a function f , notation: grad f , is the vector
field corresponding to the 1-form df :

grad f · dr = df. (16)

It follows that in arbitrary coordinates

grad f = gij ∂f

∂xi
ej . (17)
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Example 6.7. In Cartesian coordinates on Rn

grad f =
∂f

∂x1
e1 + . . . +

∂f

∂xn
en. (18)

Example 6.8. In polar coordinates r, θ on R2

grad f =
∂f

∂r
er +

1

r2

∂f

∂θ
eθ. (19)

Example 6.9. In spherical coordinates r, θ, ϕ on R3

grad f =
∂f

∂r
er +

1

r2

∂f

∂θ
eθ +

1

r2 sin2 θ

∂f

∂ϕ
eϕ. (20)

We see that while df has a universal form in all coordinate systems, the
expression for grad f depends on particular coordinates.

There is an alternative notation for gradient introduced by the famous
Irish mathematician Hamilton. Consider grad as a linear transformation
mapping functions to vector fields. A new notation for it will be ∇ (pro-
nounced: “nabla”1) We have

grad f = ∇f

and

∇ = gijej
∂

∂xi
.

The point is that ∇ as a vector-valued differential operator can be also
treated as a “symbolic” vector field taking values in differential operators
(the “components” of ∇ being gij ∂

∂xi ). Manipulating with ∇ in this way
turns out to be very convenient. In Cartesian coordinates Hamilton’s ∇
takes a particularly simple form:

∇ = e1
∂

∂x1
+ . . . + en

∂

∂xn
.

Coming back to the circulation (or work) 1-form of a vector field u, let
us consider its integral over a path γ : (0, 1) → Rn, t 7→ x(t). We have

∫

γ

u · dr =

∫ 1

0

γ∗(u · dr) =

∫ 1

0

〈
u · dr,

dx

dt

〉
dt =

∫ 1

0

(
u · dx

dt

)
dt .

If we introduce the radius-vector r (with respect to some origin O ∈ Rn),
then x = O + r and dx/dt = dr/dt, so we have

∫

γ

u · dr =

∫ 1

0

(
u · dr

dt

)
dt .

1Nabla is a word in Aramaic, a language akin to Hebrew, meaning a “harp” or similar
musical instrument of the triangle-like shape. As a mathematical symbol, with this name,
∇ was introduced by Hamilton. Sometimes this symbol is also called “del”, a modification
of “delta”. Better use nabla.
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The above formulas, which do not depend on a particular path γ, explain
the notation for the 1-form u · dr. The integral of u · dr over γ is called the
circulation of the vector field u along the path γ.

Without any path, the expression dx = dr, the “infinitesimal displacement of
a point x” can be interpreted as a “1-form taking values in vectors”. By definition,
set 〈dx,v〉 = v for any vector v. Hence dx is nothing but the identity operator on
vectors! Written as a vector-valued 1-form it is dx = eidxi. This expression has
the same form in all coordinate systems and it can be equally seen as a “vector
with coefficients in 1-forms”. Now, for a given vector field u, the 1-form u · dx

acquires a direct meaning of the scalar product of u and dx; the output is a 1-form
because dx as a vector is “1-form valued”.

Remark 6.4. The length of a (piece of a) parametrized curve γ : (0, 1) → Rn

between the given values of the parameter, is defined as the integral

`(γ) = s(γ) :=

∫ 1

0

|ẋ| dt (21)

(` and s are alternative notations for length, equally popular). For motivation
one can consider integral sums. In each such sum, the terms will be the
lengths of small tangent segments dx

dt
∆t approximating the pieces of the

curve between the values of the parameter t and t+∆t. In is natural to think
that in the limit ∆t → 0 the “correct” length of the curve will be obtained.
Length of curves is also referred to as arc length. It is clear that the integral
in (21) is independent of parametrization. If the upper limit in (21) is made
variable, then we arrive at the length of γ between t = 0 and t. It smoothly
depends on t and can be taken as a new parameter. Parametrization by arc
length s is known as ‘natural parametrization’ (s is defined up to a constant
corresponding to a choice of initial point). One immediately sees that the
velocity vector for the natural parametrization has unit length:

∣∣∣∣
dx

ds

∣∣∣∣ = 1 .

Indeed, for any parameter t, ds = |ẋ|dt, hence for t = s, |ẋ| must be 1.

This remark can be applied to the circulation 1-form. Suppose we choose
a natural parametrization of γ. Then on γ, we have γ∗(u · dx) = (u · τ )ds,
where τ = dx

ds
, and for the circulation of u along γ we obtain

∫

γ

u · dx =

∫

γ

(u · τ ) ds ,

where the scalar product at the r.h.s. is exactly the projection of u on the
tangent line to γ (the tangential component of u), since |τ | = 1.
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6.2.3 Flux (n− 1)-form

Now we shall define the flux form F ·dS for a vector field F . (Because we are
going to integrate over surfaces, where parameters are commonly denoted by
letters like u, we have picked a new letter for a our vector field.) To do so,
we will have to recall the above discussion of volumes in a Euclidean spaces.

First we shall define F ·dS working in some Cartesian coordinates. After
that we shall see that this definition has a geometric meaning independent
of a choice of coordinates, which will allow to give an expression for F · dS
in an arbitrary coordinate system.

Definition 6.6. Suppose x1, . . . , xn are Cartesian coordinates on Rn. The
flux form corresponding to a vector field F on Rn, notation: F · dS, is an
(n− 1)-form defined as

F · dS = F 1 dx2 ∧ dx3 ∧ . . . ∧ dxn − F 2 dx1 ∧ dx3 ∧ . . . ∧ dxn + . . . +

(−1)n−1F n dx1 ∧ dx2 ∧ . . . ∧ dxn−1, (22)

if F = F iei and ei is the basis associated with the coordinates xi.

The terms in the sum in (22) are obtained from dx1∧. . .∧dxn by omitting
one differential dxi and replacing it by the coefficient F i with an extra sign
(−1)i−1. We have used the expression in the r.h.s. of (22) before without a
connection with vector fields, as a convenient expression for (n−1)-forms on
an n-dimensional space. In particular, it is clear that any (n − 1)-form can
be written as the flux form for some vector field.

Recall the interpretation of k-forms as alternating multilinear functions
on vectors (see Section 3). For example, for the basis forms we have

(dxi ∧ dxj)(a, b) =
1

2

∣∣∣∣
ai aj

bi bj

∣∣∣∣

if a = aiei, b = biei (for k = 2), and

(dxi1 ∧ . . . ∧ dxik)(a1, . . . , ak) =
1

k!

∣∣∣∣∣∣

ai1
1 . . . aik

1

. . . . . . . . .

ai1
k . . . aik

k

∣∣∣∣∣∣

if a1 = ai
1ei, . . . , ak = ai

kei (for arbitrary k).

Proposition 6.1. At every given point in Rn, the value of the flux form
corresponding to F on arbitrary vectors a1, . . . , an−1 is, up to a factor, the
oriented volume of the parallelepiped built on F ,a1 . . . , an−1:

(F · dS)(a1 . . . , an−1) =
1

(n− 1)!
vol Π(F , a1 . . . , an−1). (23)

11
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Proof. In the given Cartesian coordinate system we have

(F ·dS)(a1 . . . , an−1) =
(
F 1 dx2∧dx3∧. . .∧dxn−F 2 dx1∧dx3∧. . .∧dxn+. . . +

(−1)n−1F n dx1 ∧ dx2 ∧ . . . ∧ dxn−1
)
(a1 . . . , an−1) =

F 1 (dx2∧dx3∧. . .∧dxn)(a1 . . . , an−1)−F 2 (dx1∧dx3∧. . .∧dxn)(a1 . . . , an−1)+. . . +

(−1)n−1F n (dx1 ∧ dx2 ∧ . . . ∧ dxn−1)(a1 . . . , an−1) =

F 1 1

(n− 1)!

∣∣∣∣∣∣

a2
1 a3

1 . . . an
1

. . . . . . . . . . . .
a2

n−1 a3
1 . . . an

n−1

∣∣∣∣∣∣
−F 2 1

(n− 1)!

∣∣∣∣∣∣

a1
1 a3

1 . . . an
1

. . . . . . . . . . . .
a1

n−1 a3
1 . . . an

n−1

∣∣∣∣∣∣
+ . . . +

(−1)n−1F n 1

(n− 1)!

∣∣∣∣∣∣

a1
1 a2

1 . . . an−1
1

. . . . . . . . . . . .
a1

n−1 a2
1 . . . an−1

n−1

∣∣∣∣∣∣
=

1

(n− 1)!

∣∣∣∣∣∣∣∣

F 1 F 2 . . . F n

a1
1 a2

1 . . . an
1

. . . . . . . . . . . .
a1

n−1 a2
1 . . . an

n−1

∣∣∣∣∣∣∣∣
.

The obtained determinant of order n is exactly the oriented volume of the
parallelepiped Π(F , a1 . . . , an−1).

Remark 6.5. The factor 1
(n−1)!

appearing in the above formulae depends
on convention. Namely, its source is our definition of the action of a k-form
on k vectors (see Section 3), which includes the factor of 1

k!
. An alternative

definition, without 1
k!

, is possible, and it will give the same formulae as above
without extra factors.

Now, the r.h.s. of (23) does not depend on any coordinate system. We can
take it as a ‘geometric’ definition of the flux form. Recalling the expression
for the volume of a parallelepiped in arbitrary coordinates (8), we arrive at
the following statement.

Corollary 6.3. In arbitrary coordinates the flux form for a vector field F is
given by the formula

F · dS = F 1√gdx2 ∧ dx3 ∧ . . . ∧ dxn − F 2√gdx1 ∧ dx3 ∧ . . . ∧ dxn + . . . +

(−1)n−1F n√gdx1 ∧ dx2 ∧ . . . ∧ dxn−1, (24)

where g = det
(
ei · ej

)
.

If g = 1 (in particular, in any Cartesian coordinates), then the flux form
is given by the simple formula (22).

Similarly to Proposition 6.1 we can also obtain the following.

Proposition 6.2. For any (n−1)-dimensional surface M ⊂ Rn, the restric-
tion of F · dS on M equals (F · n) dS where n is a unit normal vector for
M .

12
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Proof. Suppose Γ: D → Rn, x = x(u1, . . . , un−1), is a local parametrization
of the surface M , where D ⊂ Rn−1. Then the restriction of F · dS on M
equals

Γ∗(F · dS) =
√

g

n∑
i=1

(−1)i−1F i ∂x1

∂uα1
· . . . · ∂xi−1

∂uαi−1
· ∂xi+1

∂uαi+1
· . . . · ∂xn

∂uαn

duα1 ∧ . . . ∧ duαi−1 ∧ duαi+1 ∧ . . . ∧ duαn =

√
g

n∑
i=1

(−1)i−1F i

∣∣∣∣∣∣

∂x1

∂u1 . . . ∂xi−1

∂u1
∂xi+1

∂u1 . . . ∂xn

∂u1

. . . . . . . . . . . . . . .
∂x1

∂un−1 . . . ∂xi−1

∂un−1
∂xi+1

∂un−1 . . . ∂xn

∂un−1

∣∣∣∣∣∣
du1 ∧ . . . ∧ dun−1 =

√
g

∣∣∣∣∣∣∣∣

F 1 . . . F n

∂x1

∂u1 . . . ∂xn

∂u1

. . . . . . . . .
∂x1

∂un−1 . . . ∂xn

∂un−1

∣∣∣∣∣∣∣∣
du1 ∧ . . . ∧ dun−1 =

vol Π(F , e1, . . . , en−1) du1 ∧ . . . ∧ dun−1,

where ei = ∂x
∂ui , i = 1, . . . , n−1. It remains to notice that the n-volume of the

parallelepiped Π(F , e1, . . . , en−1) is the product of the (n− 1)-volume of the
base Π(e1, . . . , en−1) and the height F ·n, where n is the unit normal vector to
the plane spanned by e1, . . . , en−1. Also notice that vol Π(e1, . . . , en−1) du1∧
. . . ∧ dun−1 = dS.

The integral of the form F · dS over an (n− 1)-surface M ⊂ Rn is called
the flux of the vector field F through M . As it follows from Proposition 6.2,
the flux is zero if the vector field is tangent to the surface. The input of
the points of M where the field F is normal to M is maximal by absolute
value (relative to the magnitude of F ). However, this input can be positive or
negative depending on whether F and n are pointing in the same or opposite
directions. This agrees with the hydrodynamic interpretation outlined above,
as of the “flow across the surface S”.

Notice that a choice of n specifies an orientation of M . Namely, the
vectors n, g1, . . . , gn−1 (in this order), where g1, . . . , gn−1 is a basis in the
tangent plane for M , should give the ‘positive’ orientation of Rn. We assume
everywhere that Rn is oriented by the standard coordinates.

Example 6.10. In R3, if a piece of a surface is given in the parametric
form as x = x(u, v), then the parameters u, v define an orientation of the
surface via the basis eu = ∂x

∂u
, ev = ∂x

∂v
of the tangent plane. The unit normal

corresponding to this orientation is given by

n =
eu × ev

|eu × ev| . (25)

Indeed, the rule defining the cross product is that a, b,a × b should give a
positive basis, and this is equivalent to a× b, a, b giving a positive basis.

13
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Actually, this is valid for arbitrary dimension n if the notion of a “cross
product” is suitably generalized, so that it takes as arguments n− 1 vectors
instead of 2 vectors in R3.

Example 6.11. Find the flux of a “constant flow” along the x-axis,

X = a e1

across a unit square in the plane Pα passing through the y-axis with an
orientation specified by a unit normal n = (cos α, 0, sin α) (so the plane is at
angle α with the z-axis). Solution: by Proposition 6.2, X ·dS = (a cos α) dS;
thus the flux is a cos α. It takes the maximal value a when α = 0, and when
we rotate the plane the flux decreases to 0 for α = π/2, becomes negative,
and takes the value −a for α = π, when the orientation is “opposite to the
flow”.

Example 6.12. Find the flux of u = e3 (in Cartesian coordinates) through
a unit square in the plane ax + by + cz = d in R3. Solution: the unit normal
is n = 1√

a2+b2+c2
(a, b, c); by taking its scalar product with u = e3 we obtain

c√
a2+b2+c2

. It is a constant, and integrating it over a unit square will give the
same number. Answer: the flux equals c√

a2+b2+c2
.

Example 6.13. Find the flux of the vector field F = rαr where r is the
radius-vector and r = |r| through the spherical region given by 0 6 θ 6 π

2
,

0 6 ϕ 6 π
4
, for the sphere r = R in R3. Solution: the scalar product F · n

equals rαr · r
|r| = Rα+2R−1 = Rα+1, which is a constant on the sphere. The

area the given region is one-eighth of the total area of the sphere, i.e., 1
8
4πR2.

Hence the flux is π
2
Rα+3.

Remark 6.6. The expression for the flux form on a surface, (F · n) dS, as

(F · n) dS = vol Π(F , e1, . . . , en−1) du1 ∧ . . . ∧ dun−1 =

√
g

∣∣∣∣∣∣∣∣

F 1 . . . F n

∂x1

∂u1 . . . ∂xn

∂u1

. . . . . . . . .
∂x1

∂un−1 . . . ∂xn

∂un−1

∣∣∣∣∣∣∣∣
du1 ∧ . . . ∧ dun−1 (26)

is the most convenient for calculations if the unit normal n is not apparent
geometrically as in the previous examples. The square root of the Gram
determinant for the surface does not appear explicitly in (26): if we calculate
n and dS separately, then in dS =

√
h du1 ∧ . . .∧ dun−1 it will appear in the

numerator and in n, in the denominator; so they will be mutually cancelled.

Example 6.14. Evaluate the flux of the vector field H = xe1 (in Cartesian
coordinates) through the part M of the round paraboloid z = 1 − x2 − y2

above the xy-plane. Solution: consider x, y as parameters on our surface

14
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(and take the corresponding orientation); we arrive at a basis ex, ey in the
tangent planes, where ex = ∂x

∂x
= (1, 0,−2x), ey = ∂x

∂y
= (0, 1,−2y). Hence

the “elementary flux” will be

Γ∗(H ·dS) = (H ·n) dS =

∣∣∣∣∣∣

x 0 0
1 0 −2x
0 1 −2y

∣∣∣∣∣∣
dx∧dy = x(2x) dx∧dy = 2x2 dx∧dy .

For the considered part of the paraboloid x2 + y2 6 1. Hence

∫

M

H · dS =

∫

x2+y261

2x2 dx ∧ dy =

∫ 2π

0

∫ 1

0

2r3 cos2 θdr ∧ dθ =

∫ 2π

0

(cos 2θ + 1) dθ

∫ 1

0

r3 dr = 2π
1

4
=

π

2
.

(We used polar coordinates to find the integral over the disk.) Answer: π
2
.

6.3 Divergence, curl, and Laplacian

Shortly, divergence and curl of a vector field are particular manifestations of
exterior differential. More specifically, consider a vector field u in a Euclidean
space Rn. As we have seen, there are two differential forms associated with
u: the flux form u ·dS and the circulation form u ·dr. To both we can apply
the operator d. Consider first the flux form.

As u · dS is an (n − 1)-form, its differential d (u · dS) is an n-form.
Each n-form has the appearance f dV where f is a function. As before,
dV =

√
g dx1 ∧ . . . ∧ dxn stands for the volume form.

Definition 6.7. The divergence of a vector field u is a function defined by
the equality

d (u · dS) = (div u) dV.

From the above considerations (the formulas for the volume element and
the flux form) it follows that in arbitrary coordinates we have the following
equation for determining the function div u:

d
(∑

(−1)i−1√guidx1 ∧ . . . ∧ dxi−1 ∧ dxi+1 ∧ . . . ∧ dxn
)

= (div u)
√

g dx1∧. . .∧dxn .

We have calculated before the LHS; using the results of the previous calcu-
lations, we immediately get

∂(
√

gui)

∂xi
dx1 ∧ . . . ∧ dxn = (div u)

√
g dx1 ∧ . . . ∧ dxn

or

div u =
1√
g

∂(
√

gui)

∂xi
, (27)

15
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which is the formula for calculating divergence in an arbitrary coordinate
system.

Remark 6.7. As it is obvious from the explicit formula, divergence does not
depend on the whole of the Euclidean structure (which is given, in particular
coordinates, by the coefficients gij), but on the volume element only, specified
by

√
g. There are ways of defining divergence geometrically so that this

relation with volume become manifest: the divergence of a vector field u,
in the hydrodynamic interpretation, is the ‘logarithmic rate of change of the
volume form dV ’ under the flow of u. One can make this precise.

Example 6.15. In Cartesian coordinates x1, . . . , xn on Rn the general for-
mula for divergence simplifies to

div u =
∂ui

∂xi
=

∂u1

∂x1
+ . . . +

∂un

∂xn
. (28)

Example 6.16. In polar coordinates r, θ on R2 we have

div u =
1

r

(
∂(ru1)

∂r
+

∂(ru2)

∂θ

)
=

1

r

∂(ru1)

∂r
+

∂u2

∂θ
(29)

for u = u1er + u2eθ.

Example 6.17. In spherical coordinates r, θ, ϕ on R3 we have

div u =
1

r2 sin θ

(
∂(r2 sin θ u1)

∂r
+

∂(r2 sin θ u2)

∂θ
+

∂(r2 sin θ u3)

∂ϕ

)
= (30)

1

r2

∂(r2 u1)

∂r
+

1

sin θ

∂(sin θ u2)

∂θ
+

∂u3

∂ϕ
(31)

for u = u1er + u2eθ + u3eϕ.

One of the applications of the formulas obtained is to the Laplace oper-
ator.

Definition 6.8. The Laplace operator, or the Laplacian, notation: ∆ (not
to be confused with the same notation for the increment), acts on functions
as follows:

∆f = div grad f . (32)

We immediately obtain from (17) and (27) that in arbitrary coordinates

∆f =
1√
g

∂

∂xi

(√
ggij ∂f

∂xj

)
. (33)

Notice that without prior knowing that ∆f does not depend on a choice of
coordinates (as defined by (32), where both operations, div and grad , do not
depend on coordinates), it would be not easy to show it by a direct change
of coordinates in (33).

16
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Example 6.18. Laplacian in Cartesian coordinates:

∆f = δij ∂

∂xi

∂f

∂xj
=

∂2f

∂x2
1

+ . . . +
∂2f

∂x2
n

on Rn, where it is customary to use lower indices for the coordinates: x1 = x1,
. . . , xn = xn. (Here δij = δij equals 1 for i = j and 0, for i 6= j.)

Example 6.19. In particular, in traditional notation for R3,

∆f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
.

Applying (33) or combining the results of Examples 6.8, 6.16, and 6.9,
6.17, we arrive at the important formulas for the Laplacian in polars on the
plane and in spherical coordinates in 3-space.

Example 6.20. In polar coordinates on R2:

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2

∂2f

∂θ2
. (34)

Example 6.21. In cylindrical coordinates on R3:

∆f =
1

ρ

∂

∂ρ

(
ρ
∂f

∂ρ

)
+

1

ρ2

∂2f

∂ϕ2
+

∂2f

∂z2
. (35)

Example 6.22. In spherical coordinates on R3:

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
. (36)

These formulas have lots of applications in mathematical physics, where
the Laplace operator appear in fundamental differential equations. The pos-
sibility of looking for solutions of these equations working in the coordinate
system most appropriate for a particular problem is of paramount impor-
tance.

Example 6.23. Let us find ∆(rα), where r = |r| is the radius, for R2 and
R3. According to (34) and (36) we obtain:

∆(rα) =
1

r

∂

∂r

(
r
∂(rα)

∂r

)
=

1

r

∂(αrα)

∂r
= α2rα−2 for R2

and

∆(rα) =
1

r2

∂

∂r

(
r2∂(rα)

∂r

)
=

1

r2

∂(αrα+1)

∂r
= α(α + 1)rα−2 for R3 .

Hence, on R3, ∆1
r

= 0 for r 6= 0. On the other hand, on R2 no power of
r is annihilated by the Laplace operator except for the trivial case α = 0
(constant).

17
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Example 6.24. Consider f = ln r on R2. We have

∆ ln r =
1

r

∂

∂r

(
r
∂(ln r)

∂r

)
=

1

r

∂

∂r
(1) = 0 .

The Laplace operator, as well as divergence and gradient, make sense not
only for the Euclidean space, but also for surfaces therein, since all what is
needed is the notion of the scalar product, which surfaces inherit from the
ambient space.

Example 6.25. Using the angles θ, ϕ as local coordinates on the sphere of
radius R with center at the origin in R3, we have the Gram matrix

(gij) =

(
R2 0
0 R2 sin2 θ

)
,

so
√

g = R2 sin θ, and the inverse matrix gij is diagonal with the entries
R−2, (R sin θ)−2. Hence for the gradient of a function on the sphere we have

grad f =
1

R2

(
∂f

∂θ
eθ +

1

sin2 θ

∂f

∂ϕ
eϕ

)
.

For the divergence of a vector field u = u1eθ + u2eϕ on the sphere we have

div u =
1

sin θ

∂

∂θ

(
sin θ u1

)
+

∂u2

∂ϕ

(notice independence of R). Finally, for the Laplacian of a function on the
sphere we have

∆f =
1

R2

(
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂ϕ2

)
.

From Example 6.25, comparing it with formula (36), we immediately see
that on R3

∆ = ∆R +
1

r2
∆A

where the first term

∆R =
1

r2

∂

∂r
r2 ∂

∂r

is called the radial part of the Laplace operator, and the second term is
nothing but the Laplace operator on the sphere of radius r; the operator

∆A =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
,

which is the Laplacian on the unit sphere, is known as the angular part of
the Laplace operator on R3.

18
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One can show that a similar decomposition holds for Rn for any n. We
have

∆ = ∆R + r−2∆A

where the ‘radial part’ is

∆Rf =
1

rn−1

∂

∂r

(
rn−1 ∂f

∂r

)
for Rn

and ∆A is the Laplace operator for the unit sphere Sn−1 ⊂ Rn with center
at the origin in Rn. (Partial differentiation in r is understood as the usual
differentiation when the ‘direction’ e = r−1r ∈ Sn−1 is fixed. Points of Rn

can be treated as pairs (r, e) where r = re.)

Example 6.26. Let us find all functions annihilated by ∆ (such functions
are called harmonic) on Rn with the condition that they depend only on the
radius r. For f = f(r) we obtain ∆f = ∆Rf , and the condition ∆f = 0
gives

d

dr

(
rn−1 df

dr

)
= 0

from where

rn−1 df

dr
= a

for some constant a. Hence

f(r) =

∫
ar−n+1dr =

{
a 1
−n+2

r−n+2 + b for n 6= 2

a ln r + b for n = 2 ,

which gives a two-dimensional space of solutions. Notice that besides trivial
solutions (constants) we get an extra basis element, which is f(r) = r on the
line R, and in higher dimensions is f(r) = ln r on R2 and f(r) = 1/rn−2 on
Rn, n > 2. It has singularity at the origin (for n > 1).

It is not fitting here to go into the theory of harmonic functions in the
general case when they can depend also on angular variables. (In particular,
this involves the eigenvalue problem for the Laplace operator on the sphere.)
This is done in textbooks on partial differential equations and equations of
mathematical physics.

Now let us consider curl. Recall that divergence of a vector field u arises
from considering the exterior differential of the flux form u · dS. Similarly,
curl is related with the circulation form. Consider the 1-form u · dr. Its
differential d (u · dr) is a 2-form. In general, there is no relation with vector
fields. However, if 2 = n− 1, i.e., on a 3-space, we can view d (u · dr) as the
flux form of a new vector field. The corresponding linear map from vector
fields to vector fields is precisely curl:
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Definition 6.9. For vector fields on R3, the curl (or rotor or rotation) is
the linear operator from vector fields to vector fields, notation: curl or rot ,
defined by the formula

d (u · dr) = curl u · dS .

Using the formulas for circulation and flux forms it is not hard to obtain an
explicit expression for curl. Denote by ui (with lower indices) the components
of the circulation 1-form of a vector field u = uiei. We have ui = giju

j. Hence
d (u · dr) =

∑
i<j(∂iuj − ∂jui) dxi ∧ dxj = (∂1u2 − ∂2u1) dx1 ∧ dx2 + (∂1u3 −

∂3u1) dx1 ∧ dx3 + (∂2u3 − ∂3u2) dx2 ∧ dx3. Comparing it with the expression
w · dS =

√
g(w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx1 ∧ dx2) for the flux 2-form

of a vector field w, we arrive at the following statement.

Proposition 6.3. In arbitrary coordinates on R3, the curl of a vector field
u is given by the formula

curl u =
1√
g

(
e1(∂2u3 − ∂3u2)− e2(∂1u3 − ∂3u1) + e3(∂1u2 − ∂2u1)

)
=

1√
g

∣∣∣∣∣∣

e1 e2 e3

∂1 ∂2 ∂3

u1 u2 u3

∣∣∣∣∣∣
.

Here ui = giju
j. (The symbolic determinant above is understood via the ex-

pansion in the first row, and is a mnemonic version of the preceding formula.)

Remark 6.8. The name “curl” is also used for n > 3, but then a “curl” of
a vector field is just a 2-form d (u · dr) with the coefficients ∂iuj − ∂jui.

Example 6.27. In Cartesian coordinates on R3 we have

curl u =

∣∣∣∣∣∣

e1 e2 e3

∂1 ∂2 ∂3

u1 u2 u3

∣∣∣∣∣∣
,

where u = u1e1 + u2e2 + u3e3.

Example 6.28. Consider on R3 the vector field u = Ω × r (the vector
product), where r is the radius-vector and Ω is a constant vector. It cor-
responds to a circular flow around the axis in the direction of Ω through
the origin. The vector Ω has the meaning of the (constant) angular ve-
locity. Let us find its curl. Working in Cartesian coordinates, we have
u = e1(Ω2x3 − Ω3x2) − e2(Ω1x3 − Ω3x1) + e3(Ω1x2 − Ω2x1); hence for curl
we obtain

curl u =

∣∣∣∣∣∣

e1 e2 e3

∂1 ∂2 ∂3

Ω2x3 − Ω3x2 −Ω1x3 + Ω3x1 Ω1x2 − Ω2x1

∣∣∣∣∣∣
=

e1(Ω1 + Ω1) + e2(Ω2 + Ω2) + e3(Ω3 + Ω3) = 2Ω .
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Hence curl gives (double) the angular velocity of the flow. This answer
explains in part the names “curl” and “rotation”.

Example 6.29. Consider on R3 a ‘central’ field u, i.e., one of the appearance
u = f(r)r where r is the radius-vector and r = |r|. Let us find its curl. Apply
spherical coordinates. We have u = f(r)rer (since er = r/r). Recalling that
in spherical coordinates

√
g = r2 sin θ and the matrix (gij) is diagonal with

the entries 1, r2, r2 sinθ, we can write the formula for curl as

curl u =
1

r2 sin θ

∣∣∣∣∣∣

er eθ eϕ

∂/∂r ∂/∂θ ∂/∂ϕ
u1 r2 u2 r2 sin2 θ u3

∣∣∣∣∣∣

if u = u1er + u2eθ + u3eϕ. Hence, in our particular case,

curl (f(r)r) =
1

r2 sin θ

∣∣∣∣∣∣

er eθ eϕ

∂/∂r ∂/∂θ ∂/∂ϕ
f(r)r 0 0

∣∣∣∣∣∣
= 0 .

Remark 6.9. Developing Example 6.28, one can show, by considering the Tay-
lor expansion of a vector field u on Rn (viewed as a map u : Rn → Rn) near an
arbitrary point and retaining only the constant and the first-order terms, that
near any point the flow corresponding to the field is, approximately, the compo-
sition of a constant shift (which corresponds to the zero-order term), a stretch-
ing/compressing in three orthogonal directions, and a rotation. The latter two
transformations arise from the symmetric and antisymmetric parts of the linear
term (i.e., the differential of the map at the given point), respectively. The di-
vergence is the trace of the symmetric part and it is responsible for the change of
volume as the result of the stretching/compression. The “curl” (which is in general
just a 2-form and specified by an antisymmetric matrix) is the antisymmetric part
and it corresponds to the rotation.

There is a convenient description of the divergence, Laplacian and curl
using the nabla notation introduced above. Notice that nabla has a twofold
nature: it is a differential operator and a vector. One can try to use the
‘vector nature’ of ∇ and apply to it vector operations such as the scalar
product (in Rn, for any n) and the vector product (in R3). Doing so, one,
however, should be careful and not forget that the ‘components’ of the vector
∇ are operators of differentiation, hence it should be clarified to which object
they will be applied. It follows that familiar features such as commutativity
could be lost: consider, for example the scalar products ∇ · u and u · ∇
where u is an arbitrary vector field on Rn. (The ‘dot’ notation for the scalar
product is convenient here.) Are they the same?

The rule is as follows: the operation of differentiation is applied to all
what is to the right of it (but not, to the left), unless otherwise prescribed
explicitly. With this understanding, the following statement holds.
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Proposition 6.4. For any vector field u on Rn, the scalar product ∇ · u is
nothing but the divergence of u:

∇ · u = div u . (37)

The scalar product u ·∇ is the operator of differentiation along u:

u ·∇ = ∂u (38)

(which by definition acts on any function as 〈df, u〉).
Proof. To prove (37), use Cartesian coordinates. We have ∇ =

∑
ei∂i; if

u = uiei, then ∇ · u = ∂iu
i = div u (we took the sum of ‘products’ of

components and used the rule that differentiation applies to what is to the
right of it). A calculation in any other coordinates, non-Cartesian, will of
course give the same result but take more time. To prove (38), we can work
without coordinates. Since u · ∇ is going to be a differential operator (∇
applies to what will appear at the right of it and not applies to u), we have
to check its value on an arbitrary ‘test’ function f . We have (u ·∇)(f) =
u ·∇f = u · grad f = grad f · u = 〈df, u〉 = ∂uf . We used the definition of
grad f as the vector field corresponding to the 1-form df .

(We see that ∇·u and u·∇ are not only the same, but objects of different
nature: a function and a differential operator.)

In R3 one can consider the vector (“cross”) product.

Proposition 6.5. For an arbitrary vector field u on R3 we have

∇× u = curl u . (39)

Proof. In Cartesian coordinates the cross product ∇ × u is given by the
symbolic determinant ∣∣∣∣∣∣

e1 e2 e3

∂1 ∂2 ∂3

u1 u2 u3

∣∣∣∣∣∣
(where it is understood that partial derivatives act on the components of u;
here ui = ui). It is precisely the same determinant that expresses curl u.

Consider, finally, the scalar product of ∇ with itself.

Proposition 6.6. The scalar square of ∇ is the Laplace operator:

∇2 = ∇ ·∇ = ∆ .

Proof. In Cartesian coordinates ∇ =
∑

ei∂i and ∇2 =
∑

(∂i)
2 = ∆.
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Notation ∇·u and ∇×u for the divergence and curl of u, and ∇2 for the
Laplace operator, is especially popular in physical and engineering literature.
Historically, it was the first condensed language for vector calculus, before
the introduction of theory of differential forms. Working with ∇ and using
its ‘vector properties’, with the appropriate care, can be very handy.

Example 6.30. Deduce the identity:

div (fu) = grad f · u + f div u .

Solution: div (fu) = ∇·(fu); it is not possible to simply take f out, as ∇ has
to act on it. Partial derivatives that are ‘inside’ of ∇ obey the product rule.
A convenient way of taking it into account is to write ∇ = ∇(f)+∇(u), where
in this provisional notation a label such as f or u attached to ∇ means that
differentiation will be applied the the specified object and only to it. After
attaching these labels we can deal with nabla as with a usual vector, moving
it around as we please. Hence we have div (fu) = (∇(f) + ∇(u)) · (fu) =
∇(f) · (fu) + ∇(u) · (fu) = ∇(f)f · u + f∇(u) · u = ∇f · u + f∇ · u =
grad f · u + f div u.

To summarize our discussion of divergence and curl, let us use diagrams
to represent various vector spaces and linear transformations between them.
Let Ωk(Rn) be the space of k-forms on Rn, as usual, and denote the spaces of
(infinitely differentiable) functions and vector fields on Rn by Fun(Rn) and
Vect(Rn), respectively. Then we have two commutative diagrams:

Ω0(Rn)
d−−−→ Ω1(Rn)

d−−−→ Ω2(Rn)
d−−−→ . . .

d−−−→ Ωn−1(Rn)
d−−−→ Ωn(Rn)

=

x
x·dr ·dS

x
x·dV

Fun(Rn)
grad−−−→ Vect(Rn) Vect(Rn)

div−−−→ Fun(Rn)

for Rn, if n 6= 3, and

Ω0(R3)
d−−−→ Ω1(R3)

d−−−→ Ω2(R3)
d−−−→ Ω3(R3)

=

x
x·dr ·dS

x
x·dV

Fun(R3)
grad−−−→ Vect(R3)

curl−−−→ Vect(R3)
div−−−→ Fun(R3)

for R3.
(“Commutative” means that if it is possible to get from one point at

the diagram to another point travelling along the arrows by two different
ways, then the compositions of maps along these ways will be the same.
For example, above one can start from u ∈ Vect(Rn), take the dot product
with dS getting the (n − 1)-form u · dS ∈ Ωn−1(Rn) and apply d, arriving
at d(u · dS) ∈ Ωn(Rn). Or one take the divergence, obtaining div u ∈
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Fun(Rn), and multiply by the volume form, obtaining (div u) dV ∈ Ωn(Rn).
By definition of divergence, the results coincide.)

For Rn, n 6= 3, instead of curl taking values in vector fields, we can
consider a map Vect(Rn) → Ω2(Rn), the composition of the map u 7→ u · dr
with d.

The identity d2 = 0 is equivalent in R3 to

curl grad f = 0, div curl u = 0

for all functions f and vector fields u. Vector fields of the appearance E =
grad f and H = curl A are called potential and solenoidal, respectively.
(Then the function f is called a ‘scalar potential’ for E, and the vector field
A, a ‘vector potential’ for H .) They correspond to exact 1- and 2-forms on
R3. Vector fields satisfying curl E = 0 and div H = 0 are called irrotational
and divergence-free, respectively. They correspond to closed 1- and 2-forms.
Each potential field is irrotational, and each solenoidal field, divergence-free.
The converse is true in simple domains, such as the whole space R3, but may
be wrong in the domains “with holes”. (See examples of closed forms that
are not exact.)

What about other possible compositions of grad , div and curl ? We know
that div grad = ∇2 gives the Laplace operator ∆ on functions. Consider grad div
and curl curl . Both are operators on vector fields. It turns out that together they
combine into an analog of the Laplacian, this time for vector fields on R3. Recall
the vector identity a×(b×c) = (a ·c)b−(a ·b)c. Let us make a formal calculation
with the operator nabla:

curl curlu = ∇× (∇× u) = (∇ · u)∇(u) − (∇ ·∇)u =

∇(∇ · u)−∇2u = grad div u−∇2u

(we put a label on ∇ appearing to the right of u to show that it should act on
u). Hence ∆ = ∇2 acting on vector fields can be defined using the above formal
equality.

Definition 6.10. The Laplace operator acting on vector fields on R3, notation:
∆ or ∇2 (the same as for functions), is defined by

∆u = grad div u− curl curlu . (40)

Example 6.31. Consider Cartesian coordinates. We have ∇ = e1∂1+e2∂2+e3∂3;
if applied to a vector field, a partial derivative acts only on the components (since
the basis vectors ei are constant). Therefore the formal calculation above can
be fully justified with the understanding that partial derivatives are applied to
components. As the result we have

∆u = ∇(∇ · u)−∇× (∇× u) = (∆u1)e1 + (∆u2)e2 + (∆u3)e3

if u = u1e1 + u2e2 + u3e3. In other words, in Cartesian coordinates ∆ on vec-
tor fields simply acts as the usual Laplacian on functions applied to each of the
components.
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In non-Cartesian coordinates the explicit expression for ∆ on vector fields
will be more complicated, and it will not reduce to the Laplacian for functions
acting componentwise. One should use equation (40). As the reader may suspect,
behind all this is a more general theory of Laplace operators acting on differential
k-forms, for each k, and valid for any dimension n. (In R3 there are just two
basically different cases: k = 0, i.e., functions; and k = 1 and k = 2 = 3−1, which
are essentially the same, both corresponding to vector fields.)

6.4 Classical integral theorems

6.4.1 Ostrogradski–Gauß theorem

The specialization of the general Stokes theorem for the flux form F ·dS and
the circulation form X ·dr gives two classical integral theorems traditionally
associated with the names of Ostrogradski, Gauß, and Stokes.

Recall that for any oriented surface S of dimension n − 1 in Rn or an
(n− 1)-chain the flux of a vector field F through S is defined as the integral
of the flux form F · dS over S: ∫

S

F · dS.

The general Stokes theorem and the definition of div F immediately imply

Theorem 6.2 (Ostrogradski–Gauß theorem). The flux of a vector field
F defined on a bounded domain D ⊂ Rn through the boundary of D, equals
the volume integral of the divergence of F :

∮

∂D

F · dS =

∫

D

div F dV. (41)

or ∮

∂D

(F · n)dS =

∫

D

div F dV (42)

where n is the unit normal to ∂D.

Passing from (41) to (42) takes into account Proposition 6.2.

Example 6.32. Consider the flux of the vector field

E = − r

r3
(43)

on R3 (the “Coulomb force”), through the sphere of radius R oriented by
the outward normal. The Ostrogradski–Gauß theorem is not applicable to
E because E is not defined at the origin O. Let us evaluate the flux directly.
Indeed, r points in the direction of the outward normal and we have (E ·
n) dS = −RR−3 dS = −R−2 dS (as r = R on the sphere). Hence

∮

SR

E · dS =

∮

SR

(E · n) dS = −R−2

∮

SR

dS = −R−2 area SR = −4π. (44)

25



THEODORE VORONOV. VECTOR CALCULUS. Fall 2005. Lecture notes

We see that remarkably the flux does not depend on radius. The explanation
is that the form −r−3r · dS is closed, or, equivalently, that div (−r−3r) = 0,
for r 6= 0, in R3. Therefore for two concentric spheres of radii R and R′ the
difference of the fluxes of E, which is the flux through the boundary of the
region between the two spheres, can be now found using the Ostrogradski–
Gauß theorem, and it vanishes because div E vanishes.

Example 6.33. The Ostrogradski–Gauß theorem can be applied to calcu-
lating the flux in the previous Example if we use a trick. Notice that on
the surface of the sphere r = R, hence E = − r

r3 can be replaced by the
field E′ = − r

R3 , which well-defined at the origin. We have div (− r
R3 ) =

−R−3div r = −3R−3, as div r in Rn is n. Hence, by the Ostrogradski–Gauß
theorem,

∮

SR

E · dS =

∮

SR

E′ · dS =

∫

BR

div E′ =
∫

BR

(−3R−3) = −3R−3 vol BR = −3R−3 4

3
πR3 = −4π ,

agreeing, of course, with the result of the direct calculation. Here BR stands
for the ball of radius R, so SR = ∂BR.

From the Ostrogradski–Gauß theorem follows an “integral definition” of
the divergence: at any point x0 ∈ Rn

div F (x0) = lim
D→x0

∮
∂D

F · dS

vol D
. (45)

Here x0 ∈ D and D → x0 means that the domain D “shrinks” to a point
x0. Thus the divergence at x0 measures the intensity of a “source” of the
flow at the point x0. If it is negative, the “source” is actually a “sink”. All
these concepts come from the hydrodynamical interpretation.

6.4.2 The classical Stokes theorem

Another statement following from the general Stokes theorem and which gave
to it the name, is the “classical Stokes theorem”. Unlike the Ostrogradski–
Gauß theorem, it is stated only for R3.

Theorem 6.3 (Classical Stokes theorem). The circulation of a vector
field over the boundary of any oriented surface or 2-chain S in R3 equals the
flux of the curl of X through S:

∮

∂S

X · dr =

∫

S

curl X · dS.
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It immediately follows from the definition of curl: curl X ·dS = d(X ·dr).
Like in the Ostrogradski–Gauß theorem, the flux in the classical Stokes

theorem can be re-written as an integral of the first kind, and we have

∮

∂S

X · dr =

∫

S

(curl X · n) dS ,

where n is the unit normal for S.
Theorem 6.3 gives rise to an “integral definition” of curl similar to that

of divergence above: at any point x0 ∈ R3 and any unit vector n

curl X(x0) · n = lim
S→x0

∮
∂S

X · dr

area S
. (46)

Here S is a bounded surface such that x0 ∈ S and n is the unit normal to S
at x0. Here the limit S → x0 means that the surface S “shrinks” to the point
x0. Therefore the projection of curl X onto a given direction n measures the
circulation of the flow of X around x0 in the surface normal to n, relative
to the area of the surface.
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