VECTOR CALCULUS 214

Fall 2005. COURSEWORK
Deadline: Friday afternoon, 11 November 2005
Answer ALL questions. Each question is worth 4 marks

WRITE SOLUTIONS IN THE PROVIDED SPACES.
IF NECESSARY, USE THE OTHER SIDE OF THE PAGE

Problem 1. Consider the form

$$
\omega=\frac{d x \wedge d y}{\left(1+x^{2}+y^{2}\right)^{2}} .
$$

Find its pullback $F^{*} \omega$ w.r.t. the map $F:(u, v) \mapsto(x, y)$ where

$$
x=\frac{u}{u^{2}+v^{2}}, \quad y=-\frac{v}{u^{2}+v^{2}} .
$$

Problem 2. Calculate the exterior differentials of the following forms:
(a) $\omega=r^{3}(\cos 4 \theta d r-r \sin 4 \theta d \theta)$
(b) $A=e^{i(\boldsymbol{k}, \boldsymbol{x})}\left(A_{1} d x+A_{2} d y+A_{3} d z\right)$
(c) $B=e^{i(\boldsymbol{k}, \boldsymbol{x})}\left(B_{1} d y \wedge d z+B_{2} d z \wedge d x+B_{3} d x \wedge d y\right)$

Here $\left(A_{1}, A_{2}, A_{3}\right),\left(B_{1}, B_{2}, B_{3}\right), \boldsymbol{k}=\left(k_{1}, k_{2}, k_{3}\right)$ are arbitrary constant vectors in \mathbb{R}^{3} and $(\boldsymbol{k}, \boldsymbol{x})=$ $k_{1} x+k_{2} y+k_{3} z$ is the Euclidean scalar product of \boldsymbol{k} and the radius-vector $\boldsymbol{x}=(x, y, z)$.

Problem 3. Consider the following form on $\mathbb{R}^{n} \backslash\{0\}$:

$$
\begin{aligned}
\sigma= & r^{\alpha} \sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \ldots \wedge d x^{i-1} d x^{i+1} \wedge \ldots \wedge d x^{n}= \\
& r^{\alpha}\left(x^{1} d x^{2} \wedge \ldots \wedge d x^{n}-x^{2} d x^{1} \wedge d x^{3} \wedge \ldots \wedge d x^{n}+\ldots+(-1)^{n-1} x^{n} d x^{1} \wedge \ldots \wedge d x^{n-1}\right)
\end{aligned}
$$

Here $\alpha \in \mathbb{R}$ is a parameter, and $r=\sqrt{\left(x^{1}\right)^{2}+\ldots+\left(x^{n}\right)^{2}}$. Find $d \sigma$ and determine for which values of α it vanishes.

Problem 4. Given a map $F: U \rightarrow \mathbb{R}^{2}$ where $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq 0\right\}$:

$$
F:\binom{x}{y} \mapsto\binom{\frac{1}{2} \ln \left(x^{2}+y^{2}\right)}{\arctan \frac{y}{x}}
$$

Find the matrix of $d F$ w.r.t. the standard basis $\boldsymbol{e}_{1}=(1,0), \boldsymbol{e}_{2}=(0,1)$.

Problem 5. In this problem you will have to recall properties of the determinant and trace of square matrices.
(a) Check the following identity (known as the Liouville formula):

$$
\operatorname{det} e^{A}=e^{\operatorname{tr} A}
$$

for all $n \times n$ matrices. Here the exponential of matrices is defined as the sum of the power series $E+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\ldots$. (You may assume that the matrix is diagonalizable.)
(b) Let $A=A(t)$ be an arbitrary parametrized curve in the space of $n \times n$ matrices such that $A(0)=E$ (the identity matrix). Let $\dot{A}=\dot{A}(t)$ denote its velocity. Show, by using the standard expansion of the determinant, $\operatorname{det} A=\sum_{\sigma} \operatorname{sgn} \sigma \cdot A_{1 \sigma(1)} \ldots A_{n \sigma(n)}$ (sum over all permutations), that

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{det} A(t)=\operatorname{tr} \dot{A}(0) .
$$

Hint: differentiate using the product rule and recall the value of $A(t)$ at $t=0$.
(c) Apply the results of parts (a) and (b) to find the vector space $T_{E} S L(n)$, the tangent space at E for the special linear group $S L(n)$. Recall that $S L(n)$ is specified by the equation $\operatorname{det} A=1$ in the space of all $n \times n$ matrices. Hint: to know what to look for, you may first consider matrices 2×2.

