VECTOR CALCULUS 214

Fall 2005. COURSEWORK

Deadline: Friday afternoon, 11 November 2005

Answer ALL questions. Each question is worth 4 marks

WRITE SOLUTIONS IN THE PROVIDED SPACES. IF NECESSARY, USE THE OTHER SIDE OF THE PAGE

STUDENT'S NAME:

Problem 1. Consider the form

$$\omega = \frac{dx \wedge dy}{(1 + x^2 + y^2)^2} \,.$$

Find its pullback $F^*\omega$ w.r.t. the map $F: (u, v) \mapsto (x, y)$ where

$$x = \frac{u}{u^2 + v^2}, \quad y = -\frac{v}{u^2 + v^2}.$$

Problem 2. Calculate the exterior differentials of the following forms:

(a) $\omega = r^3 (\cos 4\theta \, dr - r \sin 4\theta \, d\theta)$

(b) $A = e^{i(\mathbf{k}, \mathbf{x})} (A_1 dx + A_2 dy + A_3 dz)$ (c) $B = e^{i(\mathbf{k}, \mathbf{x})} (B_1 dy \wedge dz + B_2 dz \wedge dx + B_3 dx \wedge dy)$

Here (A_1, A_2, A_3) , (B_1, B_2, B_3) , $\mathbf{k} = (k_1, k_2, k_3)$ are arbitrary constant vectors in \mathbb{R}^3 and $(\mathbf{k}, \mathbf{x}) = k_1 x + k_2 y + k_3 z$ is the Euclidean scalar product of \mathbf{k} and the radius-vector $\mathbf{x} = (x, y, z)$.

Problem 3. Consider the following form on $\mathbb{R}^n \setminus \{0\}$:

$$\sigma = r^{\alpha} \sum_{i=1}^{n} (-1)^{i-1} x^{i} dx^{1} \wedge \ldots \wedge dx^{i-1} dx^{i+1} \wedge \ldots \wedge dx^{n} = r^{\alpha} \left(x^{1} dx^{2} \wedge \ldots \wedge dx^{n} - x^{2} dx^{1} \wedge dx^{3} \wedge \ldots \wedge dx^{n} + \ldots + (-1)^{n-1} x^{n} dx^{1} \wedge \ldots \wedge dx^{n-1} \right).$$

Here $\alpha \in \mathbb{R}$ is a parameter, and $r = \sqrt{(x^1)^2 + \ldots + (x^n)^2}$. Find $d\sigma$ and determine for which values of α it vanishes.

Problem 4. Given a map $F: U \to \mathbb{R}^2$ where $U = \{(x, y) \in \mathbb{R}^2 \mid x \neq 0\}$:

$$F: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \frac{1}{2}\ln(x^2 + y^2) \\ \arctan\frac{y}{x} \end{pmatrix}$$

Find the matrix of dF w.r.t. the standard basis $e_1 = (1,0), e_2 = (0,1)$.

Problem 5. In this problem you will have to recall properties of the determinant and trace of square matrices.

(a) Check the following identity (known as the *Liouville formula*):

$$\det e^A = e^{\operatorname{tr} A}$$

for all $n \times n$ matrices. Here the exponential of matrices is defined as the sum of the power series $E + A + \frac{1}{2}A^2 + \frac{1}{3!}A^3 + \dots$ (You may assume that the matrix is diagonalizable.)

(b) Let A = A(t) be an arbitrary parametrized curve in the space of $n \times n$ matrices such that A(0) = E (the identity matrix). Let $\dot{A} = \dot{A}(t)$ denote its velocity. Show, by using the standard expansion of the determinant, det $A = \sum_{\sigma} \operatorname{sgn} \sigma \cdot A_{1\sigma(1)} \dots A_{n\sigma(n)}$ (sum over all permutations), that

$$\left.\frac{d}{dt}\right|_{t=0} \det A(t) = \operatorname{tr} \dot{A}(0) \,.$$

Hint: differentiate using the product rule and recall the value of A(t) at t = 0.

(c) Apply the results of parts (a) and (b) to find the vector space $T_ESL(n)$, the tangent space at E for the special linear group SL(n). Recall that SL(n) is specified by the equation det A = 1 in the space of all $n \times n$ matrices. *Hint:* to know what to look for, you may first consider matrices 2×2 .