
Introduction to Topology (Maths 353)

Theodore Voronov

A. List of statements

X, Y , . . . denote topological spaces (unless stated otherwise), and OX , OY ,
. . . , their respective topologies.

1 Topological spaces and continuous maps

Theorem. For a map of metric spaces f : X → Y , the continuity of f at a
point x0 ∈ X is equivalent to the following condition: for every neighborhood
V of y0 = f(x0) there is a neighborhood U of x0 such that f(U) ⊂ V .

Theorem. A map of topological spaces f : X → Y is continuous at all points
x ∈ X if and only if for every open set V ⊂ Y its preimage f−1(V ) is open
in X.

Theorem. The composition of continuous maps is continuous. For each
topological space the identity map is continuous.

Theorem. A map between two topological spaces is continuous if and only
if it is continuous at every point.

Theorem. Homeomorphism is an equivalence relation for topological spaces.

2 Topological constructions

2.1 Induced topology and subspaces

Theorem. Let f : X → Y be a map where X is a set, Y is a topological
space. Denote f ∗OY := {U ⊂ X |U = f−1(V ) where V ∈ OY }. Then:
(1) f ∗OY is a topology on X, called the induced topology (more precisely,
the topology induced by f); (2) f : (X, f ∗OY ) → (Y,OY ) is continuous; (3)
f ∗OY is the smallest topology on X with this property (i.e., every topology
w.r.t. which the map f is continuous contains f ∗OY ).

Theorem. Let A ⊂ X be a subspace in X. A map f : Z → A is continuous
if and only if the map i ◦ f : Z → X is continuous. (Here i : A → X stands
for the inclusion).
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2.2 Coinduced topology and identification spaces

Theorem. Let f : X → Y be a map where X is a topological space, Y is a
set. Denote f∗OX := {V ⊂ Y | f−1(V ) ∈ OX}. Then: (1) f∗OX is a topology
on Y , called the coinduced topology (more precisely, the topology coinduced
by f); (2) f : (X,OX) → (Y, f∗OX) is continuous; (3) f∗OX is the largest
topology on Y with this property (i.e., every topology w.r.t. which the map f
is continuous is contained in f∗OX).

Theorem. For an identification space X/R, a map f : X/R → Y is contin-
uous if and only if f ◦ p : X → Y is continuous. (Here p : X → X/R stands
for the projection)

2.3 Product topology

Theorem. (1) BX×Y := {U × V |U ∈ OX , V ∈ OY } is a base, the topology
generated by this base is called the product topology, notation: OX×Y ; (2)
the maps p1 : X × Y → X and p2 : X × Y → Y are continuous w.r.t. the
product topology on X × Y ; (3) the product topology is the smallest topology
on X × Y with such property.

Theorem. A map f : Z → X × Y is continuous (w.r.t. the product topol-
ogy) if and only if the maps f1 = p1 ◦ f : Z → X and f2 = p2 ◦ f : Z → Y
are continuous.

Theorem. Given an arbitrary topological space Z and continuous maps
f1 : Z → X and f2 : Z → Y , there exists a unique continuous map f : Z →
X × Y such that f1 = p1 ◦ f , f2 = p2 ◦ f .

3 Fundamental topological properties

3.1 Closed sets

Theorem. A map f : X → Y is continuous if and only if for every closed
set C ⊂ Y its preimage f−1(C) is closed in X.

3.2 Hausdorff property

Theorem. Every metric space is Hausdorff. (In particular, Rn is Hausdorff.)

Proposition. Every point in a Hausdorff space is closed.

Theorem. Every subspace of a Hausdorff topological space is Hausdorff.

Corollary. Every subspace of RN is Hausdorff.

Theorem. If X, Y are Hausdorff, then X × Y is Hausdorff.
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3.3 Compactness

Theorem. If X is compact, f : X → Y is continuous, then f(X) is compact.

Theorem. If X, Y are compact, then X×Y is compact. (Proof required for MSc only)

Theorem. A closed subspace of a compact space is compact.

Lemma. Let X be Hausdorff, K ⊂ X be a compact subspace, and a /∈ K.
Then there are open sets U and V such that a ∈ U , K ⊂ V , and U ∩V = ∅.

Theorem. Let X be Hausdorff and K ⊂ X be a compact subspace. Then K
is a closed subset.

Theorem (Homeomorphism Theorem). If X is compact, Y is Haus-
dorff, f : X → Y is continuous and invertible, then f is a homeomorphism.
(In other words, the inverse map will be automatically continuous.)

Corollary. If X is compact, Y is Hausdorff, f : X → Y is continuous and
invjective (one-to-one), then f is a homeomorphism of X onto the subspace
f(X) ⊂ Y .

Theorem. If a metric space is compact, then it is bounded.

Lemma (Heine–Borel Lemma). A cube in Rn is compact. (Proof required for MSc only)

Theorem (Heine–Borel Theorem). A subspace in Rn is compact if and
only if it is closed and bounded.

3.4 Connectedness and path-connectedness

Theorem. If X is connected, f : X → Y is continuous, then f(X) is
connected.

Theorem. If X, Y are connected, then X × Y is connected.
(Proof required for MSc only)

Lemma. Every segment [a, b] is connected. (Proof required for MSc only)

Theorem. If X is path-connected, then X is connected.

Theorem. If X, Y are path-connected, then X × Y is path-connected.

Theorem. If X is path-connected, f : X → Y is continuous, then f(X) is
path-connected.

Theorem. Every connected open subspace of a Euclidean space U ⊂ Rn is
path-connected.

Theorem. If every point of X has a path-connected open neighborhood and
X is connected, then X is path-connected.

4 Manifolds and surfaces

Theorem (Classification Theorem for Closed Surfaces). Every closed
surface is homeomorphic to one of the standard surfaces: the sphere S2, the
sphere with g handles H2

g , or the sphere with µ Möbius strips M2
µ.
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5 Simplicial complexes and Euler character-

istic

Theorem (Topological Invariance of Euler Characteristic). For sim-
plicial complexes K and L, if |K| ∼= |L|, then χ(K) = χ(L). [No proof]

Theorem (Excision Formula). Suppose K, L are subcomplexes of a sim-
plicial complex N so that N = K ∪ L. Then

χ(K ∪ L) = χ(K) + χ(L)− χ(K ∩ L).

B. Extra material for MSc students

1. Compactness:

Theorem 1. If X, Y are compact, then X × Y is compact.

Proof. Suppose X, Y are compact. To prove that the product space X × Y
is compact, consider an arbitrary cover of X × Y by open sets of the form
Uα × Vα, where Uα ∈ OX , Vα ∈ OY . Let x ∈ X be an arbitrary point of X.
Consider the subspace {x} × Y ⊂ X × Y . It is compact (as homeomorphic
to Y ), hence

{x} × Y ⊂ Uα1(x) × Vα1(x) ∪ . . . ∪ UαN (x) × VαN (x).

Consider the intersection Ux := Uα1(x) ∩ . . . ∩ UαN (x). Notice that it is an
open subset of X. We have, clearly,

Ux × Y ⊂ Uα1(x) × Vα1(x) ∪ . . . ∪ UαN (x) × VαN (x).

On the other hand, the collection of all Ux (for all x ∈ X) is an open cover
of X. Since X is compact, there is a finite subcover: X = Ux1 ∪ . . . ∪ UxN′ .
It follows that

X × Y = Ux1 × Y ∪ . . . ∪ UxN′ × Y ⊂(
Uα1(x1) × Vα1(x1) ∪ . . . ∪ UαN (x1) × VαN (x1)

)
∪ . . .∪

(
Uα1(xN′ ) × Vα1(xN′ ) ∪ . . . ∪ UαN (xN′ ) × VαN (xN′ )

)
.

2. Connectedness and path-connectedness:

You should use the book by Armstrong, Basis Topology, Section 3.5. There
you can find the proofs of the following statements:

Theorem. If X, Y are connected, then X × Y is connected.

Theorem. Real line is connected. Every segment [a, b] is connected.

4


