Introduction to Topology (Maths 353)

Theodore Voronov

A. List of statements

 X, Y, \ldots denote topological spaces (unless stated otherwise), and $\mathcal{O}_X, \mathcal{O}_Y, \ldots$, their respective topologies.

1 Topological spaces and continuous maps

Theorem. For a map of metric spaces $f: X \to Y$, the continuity of f at a point $x_0 \in X$ is equivalent to the following condition: for every neighborhood V of $y_0 = f(x_0)$ there is a neighborhood U of x_0 such that $f(U) \subset V$.

Theorem. A map of topological spaces $f: X \to Y$ is continuous at all points $x \in X$ if and only if for every open set $V \subset Y$ its preimage $f^{-1}(V)$ is open in X.

Theorem. The composition of continuous maps is continuous. For each topological space the identity map is continuous.

Theorem. A map between two topological spaces is continuous if and only if it is continuous at every point.

Theorem. Homeomorphism is an equivalence relation for topological spaces.

2 Topological constructions

2.1 Induced topology and subspaces

Theorem. Let $f: X \to Y$ be a map where X is a set, Y is a topological space. Denote $f^*\mathcal{O}_Y := \{U \subset X | U = f^{-1}(V) \text{ where } V \in \mathcal{O}_Y\}$. Then: (1) $f^*\mathcal{O}_Y$ is a topology on X, called the induced topology (more precisely, the topology induced by f); (2) $f: (X, f^*\mathcal{O}_Y) \to (Y, \mathcal{O}_Y)$ is continuous; (3) $f^*\mathcal{O}_Y$ is the smallest topology on X with this property (i.e., every topology w.r.t. which the map f is continuous contains $f^*\mathcal{O}_Y$).

Theorem. Let $A \subset X$ be a subspace in X. A map $f: Z \to A$ is continuous if and only if the map $i \circ f: Z \to X$ is continuous. (Here $i: A \to X$ stands for the inclusion).

2.2 Coinduced topology and identification spaces

Theorem. Let $f: X \to Y$ be a map where X is a topological space, Y is a set. Denote $f_*\mathcal{O}_X := \{V \subset Y \mid f^{-1}(V) \in \mathcal{O}_X\}$. Then: (1) $f_*\mathcal{O}_X$ is a topology on Y, called the coinduced topology (more precisely, the topology coinduced by f); (2) $f: (X, \mathcal{O}_X) \to (Y, f_*\mathcal{O}_X)$ is continuous; (3) $f_*\mathcal{O}_X$ is the largest topology on Y with this property (i.e., every topology w.r.t. which the map fis continuous is contained in $f_*\mathcal{O}_X$).

Theorem. For an identification space X/R, a map $f: X/R \to Y$ is continuous if and only if $f \circ p: X \to Y$ is continuous. (Here $p: X \to X/R$ stands for the projection)

2.3 Product topology

Theorem. (1) $\mathcal{B}_{X \times Y} := \{U \times V | U \in \mathcal{O}_X, V \in \mathcal{O}_Y\}$ is a base, the topology generated by this base is called the product topology, notation: $\mathcal{O}_{X \times Y}$; (2) the maps $p_1: X \times Y \to X$ and $p_2: X \times Y \to Y$ are continuous w.r.t. the product topology on $X \times Y$; (3) the product topology is the smallest topology on $X \times Y$ with such property.

Theorem. A map $f: Z \to X \times Y$ is continuous (w.r.t. the product topology) if and only if the maps $f_1 = p_1 \circ f: Z \to X$ and $f_2 = p_2 \circ f: Z \to Y$ are continuous.

Theorem. Given an arbitrary topological space Z and continuous maps $f_1: Z \to X$ and $f_2: Z \to Y$, there exists a unique continuous map $f: Z \to X \times Y$ such that $f_1 = p_1 \circ f$, $f_2 = p_2 \circ f$.

3 Fundamental topological properties

3.1 Closed sets

Theorem. A map $f: X \to Y$ is continuous if and only if for every closed set $C \subset Y$ its preimage $f^{-1}(C)$ is closed in X.

3.2 Hausdorff property

Theorem. Every metric space is Hausdorff. (In particular, \mathbb{R}^n is Hausdorff.) **Proposition.** Every point in a Hausdorff space is closed. **Theorem.** Every subspace of a Hausdorff topological space is Hausdorff. **Corollary.** Every subspace of \mathbb{R}^N is Hausdorff. **Theorem.** If X, Y are Hausdorff, then $X \times Y$ is Hausdorff.

3.3 Compactness

Theorem. If X is compact, $f: X \to Y$ is continuous, then f(X) is compact. **Theorem.** If X, Y are compact, then $X \times Y$ is compact. (Proof required for MSc only) **Theorem.** A closed subspace of a compact space is compact.

Lemma. Let X be Hausdorff, $K \subset X$ be a compact subspace, and $a \notin K$. Then there are open sets U and V such that $a \in U, K \subset V$, and $U \cap V = \emptyset$.

Theorem. Let X be Hausdorff and $K \subset X$ be a compact subspace. Then K is a closed subset.

Theorem (Homeomorphism Theorem). If X is compact, Y is Hausdorff, $f: X \to Y$ is continuous and invertible, then f is a homeomorphism. (In other words, the inverse map will be automatically continuous.)

Corollary. If X is compact, Y is Hausdorff, $f: X \to Y$ is continuous and invjective (one-to-one), then f is a homeomorphism of X onto the subspace $f(X) \subset Y$.

Theorem. If a metric space is compact, then it is bounded.

Lemma (Heine–Borel Lemma). A cube in \mathbb{R}^n is compact. (Proof required for MSc only) Theorem (Heine–Borel Theorem). A subspace in \mathbb{R}^n is compact if and only if it is closed and bounded.

3.4 Connectedness and path-connectedness

Theorem. If X is connected, $f: X \to Y$ is continuous, then f(X) is connected.

Theorem. If X, Y are connected, then $X \times Y$ is connected. (Proof required for MSc only)

Lemma. Every segment [a, b] is connected. (Proof required for MSc only)

Theorem. If X is path-connected, then X is connected.

Theorem. If X, Y are path-connected, then $X \times Y$ is path-connected.

Theorem. If X is path-connected, $f: X \to Y$ is continuous, then f(X) is path-connected.

Theorem. Every connected open subspace of a Euclidean space $U \subset \mathbb{R}^n$ is path-connected.

Theorem. If every point of X has a path-connected open neighborhood and X is connected, then X is path-connected.

4 Manifolds and surfaces

Theorem (Classification Theorem for Closed Surfaces). Every closed surface is homeomorphic to one of the standard surfaces: the sphere S^2 , the sphere with g handles H_a^2 , or the sphere with μ Möbius strips M_{μ}^2 .

5 Simplicial complexes and Euler characteristic

Theorem (Topological Invariance of Euler Characteristic). For simplicial complexes K and L, if $|K| \cong |L|$, then $\chi(K) = \chi(L)$. [No proof] **Theorem (Excision Formula).** Suppose K, L are subcomplexes of a simplicial complex N so that $N = K \cup L$. Then

$$\chi(K \cup L) = \chi(K) + \chi(L) - \chi(K \cap L).$$

B. Extra material for MSc students

1. Compactness:

Theorem 1. If X, Y are compact, then $X \times Y$ is compact.

Proof. Suppose X, Y are compact. To prove that the product space $X \times Y$ is compact, consider an arbitrary cover of $X \times Y$ by open sets of the form $U_{\alpha} \times V_{\alpha}$, where $U_{\alpha} \in \mathcal{O}_X$, $V_{\alpha} \in \mathcal{O}_Y$. Let $x \in X$ be an arbitrary point of X. Consider the subspace $\{x\} \times Y \subset X \times Y$. It is compact (as homeomorphic to Y), hence

$$\{x\} \times Y \subset U_{\alpha_1(x)} \times V_{\alpha_1(x)} \cup \ldots \cup U_{\alpha_N(x)} \times V_{\alpha_N(x)}.$$

Consider the intersection $U^x := U_{\alpha_1(x)} \cap \ldots \cap U_{\alpha_N(x)}$. Notice that it is an open subset of X. We have, clearly,

$$U^x \times Y \subset U_{\alpha_1(x)} \times V_{\alpha_1(x)} \cup \ldots \cup U_{\alpha_N(x)} \times V_{\alpha_N(x)}.$$

On the other hand, the collection of all U^x (for all $x \in X$) is an open cover of X. Since X is compact, there is a finite subcover: $X = U^{x_1} \cup \ldots \cup U^{x_{N'}}$. It follows that

$$X \times Y = U^{x_1} \times Y \cup \ldots \cup U^{x_{N'}} \times Y \subset \left(U_{\alpha_1(x_1)} \times V_{\alpha_1(x_1)} \cup \ldots \cup U_{\alpha_N(x_1)} \times V_{\alpha_N(x_1)} \right) \cup \ldots \cup \left(U_{\alpha_1(x_{N'})} \times V_{\alpha_1(x_{N'})} \cup \ldots \cup U_{\alpha_N(x_{N'})} \times V_{\alpha_N(x_{N'})} \right).$$

2. Connectedness and path-connectedness:

You should use the book by Armstrong, *Basis Topology*, Section 3.5. There you can find the proofs of the following statements:

Theorem. If X, Y are connected, then $X \times Y$ is connected. **Theorem.** Real line is connected. Every segment [a, b] is connected.