§3 Fundamental topological properties

Problem 1. S^{n} and \mathbb{R}^{n} cannot be homeomorphic, because S^{n} is compact and \mathbb{R}^{n} is non-compact.

Problem 11. The closed n-disk $D^{n}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}| | \boldsymbol{x} \mid \leqslant 1\right\}$ is a closed set in \mathbb{R}^{n}, since its complement $\mathbb{R}^{n} \backslash D^{n}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}| | \boldsymbol{x} \mid>1\right\}$ is open (by definition: every point can be surrounded by a small open ball not intersecting D^{n}), and it is obviously bounded. Hence by the Heine-Borel theorem it is compact.

Problem 12. \mathbb{Z} is non-compact. It is a discrete space, and a discrete space is compact if and only if it is finite. Since \mathbb{Z} is infinite, it is non-compact. Alternatively, one can view \mathbb{Z} as a subspace of \mathbb{R}. It is unbounded, hence non-compact.

Problem 13. We use the facts that S^{n} is compact for all n and that $I=[0,1]$ is compact (both follow from the Heine-Borel theorem).
(a) $S^{n} \times I$ is compact as a product of compact spaces.
(b) $S^{n} \times S^{m}$ is compact as a product of compact spaces.
(c) $T^{n}=S^{1} \times \ldots \times S^{1}$ is compact as a product of compact spaces.
(d) Follows from part (c): $T^{n} \times I$ is compact as a product of compact spaces.
(e) Notice that $\mathbb{R} P^{n}=S^{n} / \sim$, where $v \sim-v, v \in S^{n} \subset \mathbb{R}^{n}$. Therefore $\mathbb{R} P^{n}$ is compact as a continuous image (an identification space) of a compact space.
(f) Similar to part (e). $\mathbb{C} P^{n}$ can be considered as an identification space of $S^{2 n+1} \subset \mathbb{C}^{n+1}$, under an equivalence relation $v \sim e^{i \alpha} v, v \in S^{2 n+1}, \alpha \in \mathbb{R}$. Hence $\mathbb{C} P^{n}$ is compact as an identification space of a compact space.

Problem 14. In the following E stands for the identity matrix; A^{T} means the transpose of $A ; \bar{A}$ means the complex conjugate of a matrix A (i.e., the complex conjugation applied to each matrix entry).
(a) $S O(n)$ is specified by the equations $A A^{T}=E$, $\operatorname{det} A=1$ in the space $\operatorname{Mat}(n, \mathbb{R})$ of all $n \times n$ real matrices, which is just $\mathbb{R}^{n^{2}}$. Since the LHSs of these equations are continuous functions of matrix entries, $S O(n)$ is a closed set in $\operatorname{Mat}(n, \mathbb{R})$ as the preimage of a closed set under a continuous map. The matrix equation $A A^{T}=E$ implies $\operatorname{tr}\left(A A^{T}\right)=\operatorname{tr} E=n$, i.e., $\sum\left(A_{i j}\right)^{2}=n$. Hence $S O(n)$ is contained in the sphere of radius \sqrt{n} with center at the origin in $\operatorname{Mat}(n, \mathbb{R})$, thus is bounded. By the Heine-Borel theorem, $S O(n)$ is compact as a closed bounded subspace of a Euclidean space.
(b) Same as above. $O(n)$ is specified by the equation $A A^{T}=E$ in $\operatorname{Mat}(n, \mathbb{R})$. Hence it is closed and (as above) bounded, because it is contained
in the sphere of radius \sqrt{n}. Hence, by the Heine-Borel theorem, $O(n)$ is compact.
(c) Similar to the above. $U(n)$ is specified by the equation $A \bar{A}^{T}=E$ in $\operatorname{Mat}(n, \mathbb{C})$. It is a closed set as the preimage of a closed set (the one-point set $\{E\}$) under a continuous map (the map $A \mapsto A \bar{A}^{T}$). Now, the equation $A \bar{A}^{T}=E$ implies $\operatorname{tr}\left(A \bar{A}^{T}\right)=\operatorname{tr} E=n$, i.e., $\sum\left|A_{i j}\right|^{2}=n$, which is the equation of a sphere of radius \sqrt{n} in $\operatorname{Mat}(n, \mathbb{C})=\mathbb{C}^{n^{2}}=\mathbb{R}^{2 n^{2}}$. Therefore $U(n)$ is bounded. By the Heine-Borel theorem, $U(n)$ is compact.
(d) Same as above. We have just one extra equation $\operatorname{det} A=1$, with a continuous LHS.

Problem 15. Consider a matrix A which is diagonal with the diagonal entries $e^{t}, 1, \ldots, 1$, where $t \in \mathbb{R}$. It belongs to $G L(n)$. The distance between A and any chosen matrix can be made as large as we wish by a choice of t. For example, the distance between A and the identity matrix equals $\left|e^{t}-1\right|$; the distance between A and the zero matrix equals e^{t}, for $t>0$. Hence $G L(n)$ is not bounded, therefore is not compact. (We measure distances using the metric $d(A, B)=\max \left|A_{i j}-B_{i j}\right|$, which is equivalent to the Euclidean distance.)

Problem 16. To show that $S L(n)$ is non-compact we can slightly modify the previous example. Take the diagonal matrix with the diagonal entries $e^{t}, e^{-t}, 1, \ldots, 1$. It belongs to $S L(n)$ and is as far as we wish from any fixed matrix, e.g., the zero matrix or the identity matrix. Therefore $S L(n)$ is unbounded and non-compact. (We assume that $n>1$; otherwise, we have $S L(1)=\{1\} \subset \mathbb{R}$, i.e., a one-point space, which is compact.)

Problem 17. See below a solution for Problem 19, where the complex case is considered.

Problem 18. Using the result of problem 17, $\mathbb{R} P^{n}$ is (homeomorphic to) a subspace of a Euclidean space, which is Hausdorff. Hence $\mathbb{R} P^{n}$ is Hausdorff as a subspace of a Hausdorff space.

Problem 19. Similar to Problem 17, $\mathbb{C} P^{n}$ is defined as the identification space of $\mathbb{C}^{n+1} \backslash\{0\}$ w.r.t. the equivalence relation $\boldsymbol{v} \sim \boldsymbol{w}$ iff $\boldsymbol{w}=k \boldsymbol{v}, k \neq 0$, $k \in \mathbb{C}$. Geometrically that means the space of lines through the origin in \mathbb{C}^{n+1}. The idea of an embedding into Euclidean space is associating a linear operator with each line. For example, one can use reflection operators. Any line $L \subset \mathbb{C}^{n+1}$ is uniquely defined by the reflection operator that takes an arbitrary vector $\boldsymbol{v}=\boldsymbol{v}_{\|}+\boldsymbol{v}_{\perp} \in \mathbb{C}^{n+1}$ where $\boldsymbol{v}_{\|} \in L$ and \boldsymbol{v}_{\perp} is orthogonal to L, to the vector $R_{L}(\boldsymbol{v})=\boldsymbol{v}_{\|}-\boldsymbol{v}_{\perp}$. (L is recovered as the subspace consisting of all vectors \boldsymbol{v} such that $R_{L}(\boldsymbol{v})=\boldsymbol{v}$.) Explicitly, if $\boldsymbol{a} \neq 0$ spans L, then for any \boldsymbol{v} we have $\boldsymbol{v}_{\|}=\frac{(\boldsymbol{v}, \boldsymbol{a})}{(\boldsymbol{a}, \boldsymbol{a})} \boldsymbol{a}$ and $\boldsymbol{v}_{\perp}=\boldsymbol{v}-\boldsymbol{v}_{\|}$. It follows that $R_{L}(\boldsymbol{v})=2 \frac{(\boldsymbol{v}, \boldsymbol{a})}{(\boldsymbol{a}, \boldsymbol{a})} \boldsymbol{a}-\boldsymbol{v}$.

We have a map $\boldsymbol{a} \mapsto R_{L}$ from $\mathbb{C}^{n+1} \backslash\{0\}$ to linear operators on \mathbb{C}^{n+1}; if we introduce a basis and write it using matrices, it will be clear that this map is continuous. It factors through a map $L \mapsto R_{L}$ from $\mathbb{C} P^{n}$ to the space of linear operators on \mathbb{C}^{n+1}, which, therefore, is continuous (by a property of the identification topology). Now, $\mathbb{C} P^{n}$ is compact as the continuous image of the sphere $S^{2 n+1}$ and the space of linear operators is Hausdorff (as a vector space with Euclidean topology). Hence the map $L \mapsto R_{L}$ is a homeomorphism on its image, which gives a desired embedding of $\mathbb{C} P^{n}$ into a Euclidean space. Any subspace of a Euclidean space is Hausdorff, therefore $\mathbb{C} P^{n}$ will also be Hausdorff.

Problem 21. \mathbb{R} is path-connected, because any two points $x, y \in \mathbb{R}$ can be joined by a segment $x_{t}=(1-t) x+t y, t \in[0,1]$. Path-connectedness implies connectedness. (This follows from the fact that a finite segment $[a, b]$ is connected.)

Problem 22. (a) \mathbb{Z} is disconnected as a discrete space with more than one point (for example, $\mathbb{Z}=\{n \in \mathbb{Z} \mid n \leqslant 0\} \cup\{n \in \mathbb{Z} \mid n>0\}$ is the union of two disjoint open sets) and hence is not path-connected; (b) \mathbb{R} is connected (proved at the lectures) and path-connected (obviously: any two points can be joined by a segment); (c) $O(2)$ is disconnected (indeed, consider the continuous map det: $O(2) \rightarrow \mathbb{R}$; its image consists of 1 and -1 , which is a disconnected subspace of \mathbb{R}).

Problem 23. The Klein bottle is connected as an identification space of the unit square $I^{2} \subset \mathbb{R}^{2}$, which is path-connected, hence connected ("the continuous image of a connected space").

Problem 24. The same as for Problem 23. (T^{2} is also an identification space of the square.)

Problem 25. Suppose S^{2} and T^{2} are homeomorphic. Consider a closed curve without self-intersections in S^{2}, i.e., a subspace $C \subset S^{2}$ homeomorphic to a circle. Then $S^{2} \backslash C$ is disconnected. (This is intuitively clear - draw a picture - and you can assume it without proof.) On the other hand, for the torus considered as the surface of revolution of a circle in the $x z$-plane about the z-axis in \mathbb{R}^{3}, consider the section by a vertical plane (passing through the z-axis). It is a circle $S^{1} \subset T^{2}$; notice that $T^{2} \backslash S^{1}$ is connected. A homeomorphism $f: T^{2} \rightarrow S^{2}$ would homeomorphically map $S^{1} \subset T^{2}$ to some $C \subset S^{2}$ and homeomorphically map $T^{2} \backslash S^{1}$ on $S^{2} \backslash C$. But the space $T^{2} \backslash S^{1}$ is connected and the space $S^{2} \backslash C$ is disconnected, which gives a contradiction. Thus no homeomorphism between T^{2} and S^{2} is possible.

Problem 26. Every element $U \in U(n)$ can be joined by a path with the identity matrix as follows. Let $U=g D g^{-1}$ where $D=\operatorname{diag}\left(e^{i x_{1}}, \ldots, e^{i x_{n}}\right)$;
consider a continuous path $t \mapsto U_{t}=g D_{t} g^{-1}$ where $D_{t}=\operatorname{diag}\left(e^{i t x_{1}}, \ldots, e^{i t x_{n}}\right)$, $t \in[0,1]$. Then $U_{0}=E$ (the identity matrix), $U_{1}=U$. Hence the topological group $U(n)$ is path-connected (moreover, connected).

