THEODORE VORONOV  TOPOLOGY. Fall 2005. Selected solutions
83 Fundamental topological properties

Problem 1. S™ and R" cannot be homeomorphic, because S™ is compact
and R"™ is non-compact.

Problem 11. The closed n-disk D" = {& € R" | |z| < 1} is a closed set in
R", since its complement R™\ D™ = {& € R" | |z| > 1} is open (by definition:
every point can be surrounded by a small open ball not intersecting D"), and
it is obviously bounded. Hence by the Heine-Borel theorem it is compact.

Problem 12, Z is non-compact. It is a discrete space, and a discrete space
is compact if and only if it is finite. Since Z is infinite, it is non-compact.
Alternatively, one can view Z as a subspace of R. It is unbounded, hence
non-compact.

Problem 13. We use the facts that S™ is compact for all n and that
I =10,1] is compact (both follow from the Heine-Borel theorem).

(a) S™ x I is compact as a product of compact spaces.

(b) S™ x S™ is compact as a product of compact spaces.

(c) T" = S x ... x S' is compact as a product of compact spaces.

(d) Follows from part (c): T™ x I is compact as a product of compact
spaces.

(e) Notice that RP™ = S™/ ~, where v ~ —v, v € 8" C R". Therefore
RP™ is compact as a continuous image (an identification space) of a compact
space.

(f) Similar to part (e). CP™ can be considered as an identification space
of §?"*1 ¢ C"!, under an equivalence relation v ~ e™v, v € S?"*! o € R.
Hence CP™ is compact as an identification space of a compact space.

Problem [14. In the following E stands for the identity matrix; A7 means
the transpose of A; A means the complex conjugate of a matrix A (i.e., the
complex conjugation applied to each matrix entry).

(a) SO(n) is specified by the equations AAT = E, det A = 1 in the space
Mat(n,R) of all n x n real matrices, which is just R”*. Since the LHSs of
these equations are continuous functions of matrix entries, SO(n) is a closed
set in Mat(n, R) as the preimage of a closed set under a continuous map. The
matrix equation AAT = E implies tr(AA”) = tr E = n, ie., Y (A;)* = n.
Hence SO(n) is contained in the sphere of radius y/n with center at the
origin in Mat(n,R), thus is bounded. By the Heine-Borel theorem, SO(n)
is compact as a closed bounded subspace of a Euclidean space.

(b) Same as above. O(n) is specified by the equation AAT = E in
Mat(n,R). Hence it is closed and (as above) bounded, because it is contained
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in the sphere of radius y/n. Hence, by the Heine-Borel theorem, O(n) is
compact.

(c) Similar to the above. U(n) is specified by the equation AAT = E in
Mat(n,C). It is a closed set as the preimage of a closed set (the one-point
set {E}) under a continuous map (the map A — AAT). Now, the equation
AAT = FE implies tr(AAT) = tr E = n, ie, Y |A;|> = n, which is the
equation of a sphere of radius y/n in Mat(n,C) = C™ = R?"”. Therefore
U(n) is bounded. By the Heine-Borel theorem, U(n) is compact.

(d) Same as above. We have just one extra equation det A = 1, with a
continuous LHS.

Problem 15. Consider a matrix A which is diagonal with the diagonal
entries €', 1,...,1, where t € R. It belongs to GL(n). The distance between
A and any chosen matrix can be made as large as we wish by a choice of .
For example, the distance between A and the identity matrix equals |e* — 1;
the distance between A and the zero matrix equals e!, for ¢ > 0. Hence
G L(n) is not bounded, therefore is not compact. (We measure distances using
the metric d(A, B) = max|A;; — Byj|, which is equivalent to the Euclidean
distance.)

Problem 16l To show that SL(n) is non-compact we can slightly modify
the previous example. Take the diagonal matrix with the diagonal entries
el et 1,...,1. Tt belongs to SL(n) and is as far as we wish from any fixed
matrix, e.g., the zero matrix or the identity matrix. Therefore SL(n) is
unbounded and non-compact. (We assume that n > 1; otherwise, we have
SL(1) = {1} C R, i.e., a one-point space, which is compact.)

Problem [17. See below a solution for Problem 19, where the complex case
is considered.

Problem 18. Using the result of problem [17, RP™ is (homeomorphic to) a
subspace of a Euclidean space, which is Hausdorff. Hence RP™ is Hausdorft
as a subspace of a Hausdorff space.

Problem 19. Similar to Problem [17. CP" is defined as the identification
space of C"*1\ {0} w.r.t. the equivalence relation v ~ w iff w = kv, k # 0,
k € C. Geometrically that means the space of lines through the origin in
C™*. The idea of an embedding into Euclidean space is associating a linear
operator with each line. For example, one can use reflection operators. Any
line L C C"*! is uniquely defined by the reflection operator that takes an
arbitrary vector v = vj4+v, € C"*! where v € L and v, is orthogonal to L,
to the vector Ri(v) = v —wv,. (L is recovered as the subspace consisting of
all vectors v such that Ry (v) = v.) Explicitly, if a # 0 spans L, then for any

v we have v = E ;aandefv v|. It follows that Ry (v )*2523‘1 v.
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We have a map a — Ry, from C"™!\ {0} to linear operators on C"™!: if we
introduce a basis and write it using matrices, it will be clear that this map
is continuous. It factors through a map L — Rj, from CP" to the space of
linear operators on C"!, which, therefore, is continuous (by a property of the
identification topology). Now, CP™ is compact as the continuous image of the
sphere S?"! and the space of linear operators is Hausdorff (as a vector space
with FEuclidean topology). Hence the map L — Ry is a homeomorphism on
its image, which gives a desired embedding of CP" into a Euclidean space.
Any subspace of a Euclidean space is Hausdorff, therefore CP" will also be
Hausdorft.

Problem 21. R is path-connected, because any two points x,y € R can
be joined by a segment z; = (1 — t)z + ty, t € [0,1]. Path-connectedness
implies connectedness. (This follows from the fact that a finite segment [a, b]
is connected.)

Problem 22, (a) Z is disconnected as a discrete space with more than
one point (for example, Z = {n € Z | n < 0fU{n € Z | n > 0} is the
union of two disjoint open sets) and hence is not path-connected; (b) R
is connected (proved at the lectures) and path-connected (obviously: any
two points can be joined by a segment); (c) O(2) is disconnected (indeed,
consider the continuous map det: O(2) — R; its image consists of 1 and —1,
which is a disconnected subspace of R).

Problem 23. The Klein bottle is connected as an identification space of
the unit square I? C R?, which is path-connected, hence connected (“the
continuous image of a connected space”).

Problem 24, The same as for Problem 23. (72 is also an identification
space of the square.)

Problem 25. Suppose S? and T2 are homeomorphic. Consider a closed
curve without self-intersections in S?, i.e., a subspace C' C S? homeomorphic
to a circle. Then S\ C is disconnected. (This is intuitively clear — draw
a picture — and you can assume it without proof.) On the other hand, for
the torus considered as the surface of revolution of a circle in the zz-plane
about the z-axis in R3 consider the section by a vertical plane (passing
through the z-axis). It is a circle S' C T?; notice that 7%\ S! is connected.
A homeomorphism f: 72 — S? would homeomorphically map S* C T? to
some C' C S? and homeomorphically map 72\ S* on S? \ C. But the space
T2\ S' is connected and the space S? \ C is disconnected, which gives a
contradiction. Thus no homeomorphism between T2 and S? is possible.

Problem 26. Every element U € U(n) can be joined by a path with the
identity matrix as follows. Let U = gDg~! where D = diag(e™!, ..., e%n);

3


file:/prob_properties.pdf#prob.21�
file:/prob_properties.pdf#prob.22�
file:/prob_properties.pdf#prob.23�
file:/prob_properties.pdf#prob.24�
file:/prob_properties.pdf#prob.23�
file:/prob_properties.pdf#prob.25�
file:/prob_properties.pdf#prob.26�

THEODORE VORONOV  TOPOLOGY. Fall 2005. Selected solutions

consider a continuous path t — U; = gD;g~! where D; = diag(e®1, ... e't*n),
t € [0,1]. Then Uy = E (the identity matrix), U; = U. Hence the topological
group U(n) is path-connected (moreover, connected).



