
THEODORE VORONOV TOPOLOGY. Fall 2005. Selected solutions

§3 Fundamental topological properties

Problem 1. Sn and Rn cannot be homeomorphic, because Sn is compact
and Rn is non-compact.

Problem 11. The closed n-disk Dn = {x ∈ Rn | |x| 6 1} is a closed set in
Rn, since its complement Rn\Dn = {x ∈ Rn | |x| > 1} is open (by definition:
every point can be surrounded by a small open ball not intersecting Dn), and
it is obviously bounded. Hence by the Heine–Borel theorem it is compact.

Problem 12. Z is non-compact. It is a discrete space, and a discrete space
is compact if and only if it is finite. Since Z is infinite, it is non-compact.
Alternatively, one can view Z as a subspace of R. It is unbounded, hence
non-compact.

Problem 13. We use the facts that Sn is compact for all n and that
I = [0, 1] is compact (both follow from the Heine–Borel theorem).

(a) Sn × I is compact as a product of compact spaces.
(b) Sn × Sm is compact as a product of compact spaces.
(c) T n = S1 × . . .× S1 is compact as a product of compact spaces.
(d) Follows from part (c): T n × I is compact as a product of compact

spaces.
(e) Notice that RP n = Sn/ ∼, where v ∼ −v, v ∈ Sn ⊂ Rn. Therefore

RP n is compact as a continuous image (an identification space) of a compact
space.

(f) Similar to part (e). CP n can be considered as an identification space
of S2n+1 ⊂ Cn+1, under an equivalence relation v ∼ eiαv, v ∈ S2n+1, α ∈ R.
Hence CP n is compact as an identification space of a compact space.

Problem 14. In the following E stands for the identity matrix; AT means
the transpose of A; Ā means the complex conjugate of a matrix A (i.e., the
complex conjugation applied to each matrix entry).

(a) SO(n) is specified by the equations AAT = E, det A = 1 in the space
Mat(n,R) of all n × n real matrices, which is just Rn2

. Since the LHSs of
these equations are continuous functions of matrix entries, SO(n) is a closed
set in Mat(n,R) as the preimage of a closed set under a continuous map. The
matrix equation AAT = E implies tr(AAT ) = tr E = n, i.e.,

∑
(Aij)

2 = n.
Hence SO(n) is contained in the sphere of radius

√
n with center at the

origin in Mat(n,R), thus is bounded. By the Heine–Borel theorem, SO(n)
is compact as a closed bounded subspace of a Euclidean space.

(b) Same as above. O(n) is specified by the equation AAT = E in
Mat(n,R). Hence it is closed and (as above) bounded, because it is contained
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in the sphere of radius
√

n. Hence, by the Heine–Borel theorem, O(n) is
compact.

(c) Similar to the above. U(n) is specified by the equation AĀT = E in
Mat(n,C). It is a closed set as the preimage of a closed set (the one-point
set {E}) under a continuous map (the map A 7→ AĀT ). Now, the equation
AĀT = E implies tr(AĀT ) = tr E = n, i.e.,

∑ |Aij|2 = n, which is the
equation of a sphere of radius

√
n in Mat(n,C) = Cn2

= R2n2
. Therefore

U(n) is bounded. By the Heine–Borel theorem, U(n) is compact.
(d) Same as above. We have just one extra equation det A = 1, with a

continuous LHS.

Problem 15. Consider a matrix A which is diagonal with the diagonal
entries et, 1, . . . , 1, where t ∈ R. It belongs to GL(n). The distance between
A and any chosen matrix can be made as large as we wish by a choice of t.
For example, the distance between A and the identity matrix equals |et− 1|;
the distance between A and the zero matrix equals et, for t > 0. Hence
GL(n) is not bounded, therefore is not compact. (We measure distances using
the metric d(A,B) = max |Aij − Bij|, which is equivalent to the Euclidean
distance.)

Problem 16. To show that SL(n) is non-compact we can slightly modify
the previous example. Take the diagonal matrix with the diagonal entries
et, e−t, 1, . . . , 1. It belongs to SL(n) and is as far as we wish from any fixed
matrix, e.g., the zero matrix or the identity matrix. Therefore SL(n) is
unbounded and non-compact. (We assume that n > 1; otherwise, we have
SL(1) = {1} ⊂ R, i.e., a one-point space, which is compact.)

Problem 17. See below a solution for Problem 19, where the complex case
is considered.

Problem 18. Using the result of problem 17, RP n is (homeomorphic to) a
subspace of a Euclidean space, which is Hausdorff. Hence RP n is Hausdorff
as a subspace of a Hausdorff space.

Problem 19. Similar to Problem 17. CP n is defined as the identification
space of Cn+1 \ {0} w.r.t. the equivalence relation v ∼ w iff w = kv, k 6= 0,
k ∈ C. Geometrically that means the space of lines through the origin in
Cn+1. The idea of an embedding into Euclidean space is associating a linear
operator with each line. For example, one can use reflection operators. Any
line L ⊂ Cn+1 is uniquely defined by the reflection operator that takes an
arbitrary vector v = v‖+v⊥ ∈ Cn+1 where v‖ ∈ L and v⊥ is orthogonal to L,
to the vector RL(v) = v‖−v⊥. (L is recovered as the subspace consisting of
all vectors v such that RL(v) = v.) Explicitly, if a 6= 0 spans L, then for any

v we have v‖ = (v,a)
(a,a)

a and v⊥ = v−v‖. It follows that RL(v) = 2 (v,a)
(a,a)

a−v.
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We have a map a 7→ RL from Cn+1 \ {0} to linear operators on Cn+1; if we
introduce a basis and write it using matrices, it will be clear that this map
is continuous. It factors through a map L 7→ RL from CP n to the space of
linear operators on Cn+1, which, therefore, is continuous (by a property of the
identification topology). Now, CP n is compact as the continuous image of the
sphere S2n+1 and the space of linear operators is Hausdorff (as a vector space
with Euclidean topology). Hence the map L 7→ RL is a homeomorphism on
its image, which gives a desired embedding of CP n into a Euclidean space.
Any subspace of a Euclidean space is Hausdorff, therefore CP n will also be
Hausdorff.

Problem 21. R is path-connected, because any two points x, y ∈ R can
be joined by a segment xt = (1 − t)x + ty, t ∈ [0, 1]. Path-connectedness
implies connectedness. (This follows from the fact that a finite segment [a, b]
is connected.)

Problem 22. (a) Z is disconnected as a discrete space with more than
one point (for example, Z = {n ∈ Z | n 6 0} ∪ {n ∈ Z | n > 0} is the
union of two disjoint open sets) and hence is not path-connected; (b) R
is connected (proved at the lectures) and path-connected (obviously: any
two points can be joined by a segment); (c) O(2) is disconnected (indeed,
consider the continuous map det : O(2) → R; its image consists of 1 and −1,
which is a disconnected subspace of R).

Problem 23. The Klein bottle is connected as an identification space of
the unit square I2 ⊂ R2, which is path-connected, hence connected (“the
continuous image of a connected space”).

Problem 24. The same as for Problem 23. (T 2 is also an identification
space of the square.)

Problem 25. Suppose S2 and T 2 are homeomorphic. Consider a closed
curve without self-intersections in S2, i.e., a subspace C ⊂ S2 homeomorphic
to a circle. Then S2 \ C is disconnected. (This is intuitively clear – draw
a picture – and you can assume it without proof.) On the other hand, for
the torus considered as the surface of revolution of a circle in the xz-plane
about the z-axis in R3, consider the section by a vertical plane (passing
through the z-axis). It is a circle S1 ⊂ T 2; notice that T 2 \ S1 is connected.
A homeomorphism f : T 2 → S2 would homeomorphically map S1 ⊂ T 2 to
some C ⊂ S2 and homeomorphically map T 2 \ S1 on S2 \ C. But the space
T 2 \ S1 is connected and the space S2 \ C is disconnected, which gives a
contradiction. Thus no homeomorphism between T 2 and S2 is possible.

Problem 26. Every element U ∈ U(n) can be joined by a path with the
identity matrix as follows. Let U = gDg−1 where D = diag(eix1 , . . . , eixn);

3

file:/prob_properties.pdf#prob.21�
file:/prob_properties.pdf#prob.22�
file:/prob_properties.pdf#prob.23�
file:/prob_properties.pdf#prob.24�
file:/prob_properties.pdf#prob.23�
file:/prob_properties.pdf#prob.25�
file:/prob_properties.pdf#prob.26�


THEODORE VORONOV TOPOLOGY. Fall 2005. Selected solutions

consider a continuous path t 7→ Ut = gDtg
−1 where Dt = diag(eitx1 , . . . , eitxn),

t ∈ [0, 1]. Then U0 = E (the identity matrix), U1 = U . Hence the topological
group U(n) is path-connected (moreover, connected).

4


