
THEODORE VORONOV TOPOLOGY. Fall 2005. Selected solutions

§5 Triangulations and Euler characteristic

Problem 1. (a) A triangulation of I = [0, 1] consists of two vertices and one
edge, hence c0 = 2, c1 = 1, and χ(I) = 2− 1 = 1.

(b) A triangulation of I2 can be obtained by cutting the square into two
triangles by a diagonal; hence it contains four vertices, five edges and two
2-simplices. Hence χ(I2) = 4− 5 + 2 = 1.

(c) A triangulation of S1 will contain k vertices and k edges (the smallest
possible k is 3). Hence χ(S1) = k − k = 0.

(d) A triangulation of S2 can be obtained by viewing the sphere as home-
omorphic to the boundary of the tetrahedron. Hence for this triangulation
c0 = 4, c1 = 6, c2 = 4, and we obtain χ(S2) = 4 − 6 + 4 = 2. Alternatively,
S2 can be viewed as homeomorphic to the boundary of the cube. To get a
triangulation we have to subdivide each face of the cube (a square) into two
triangles, by diagonals. Hence for this triangulation c0 = 8, c1 = 18, c2 = 12,
and again we obtain χ(S2) = 8− 18 + 12 = 2.

(e) This is a cylinder. We can view it as an identification space of a rec-
tangle ABCD (with two parallel vertical sides, AB and DC, identified). Let
us first consider the following triangulation of the rectangle ABCD. On the
horizontal side AD take points P0 = A, P1, P2, and so on, so that PN = D
(for some N), and similarly on the side BC take points Q0 = B, Q1, and
so on, so that QN = C. Hence we subdivided our rectangle into smaller
rectangles PkQkQk+1Pk+1. Subdividing each of them into two triangles by
a diagonal (e.g., by PkQk+1), we get a triangulation of the ‘large’ rectangle
ABCD. Now, a triangulation of the cylinder is obtained by identifying P0

with PN and Q0 with QN . (The number N now cannot be too small, in order
to satisfy the axioms of a simplicial complex, namely, that the intersection
of two simplices can be only by a single common face.) Hence for this trian-
gulation of the cylinder we have c0 = 2N (N vertices for each horizontal side
AD and BC, taking into account the identifications P0 = PN and Q0 = QN),
c1 = 4N (2N horizontal edges, N diagonal edges, and N vertical edges, if
we take into account the identification P0Q0 = PNQN), and c2 = 2N (2N
triangles from N rectangles). It follows that χ(S1×I) = 2N−4N +2N = 0.

(f) The closed Möbius strip M can be viewed as an identification space
of a rectangle, similarly to the cylinder. In the notation as above, M is
obtained from ABCD by the identification of AB with CD (two vertical
sides are identified with opposite orientations). We can use a triangulation
similar to the above. Namely, we first triangulate ABCD as above and then
identify P0 with QN and Q0 with PN (instead of the identifications P0 = PN

and Q0 = QN used above). This is the only difference, which does not affect
the counting of vertices, edges and triangles. We obtain the same c0 = 2N ,
c1 = 4N , and c2 = 2N , hence χ(M) = 0.
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Problem 2. (a) For I2 we can consider a triangulation obtained by sub-
dividing into two triangles by a diagonal, see the solution to Problem 1(b).
We get c0 = 4, c1 = 5, c2 = 2, giving χ(I2) = 4 − 5 + 2 = 1. Alternatively,
we can consider subdividing I2 into four smaller squares with side 1/2 and
then subdividing each of them by a diagonal. Then c0 = 9, c1 = 16, c2 = 8,
giving χ(I2) = 9− 16 + 8 = 1. There are (infinitely) many other options as
well.

(b) All triangulations of S1 are described in the solution to Problem 1(c).
(c) See the solution to Problem 1(d). There are infinitely many other

options.

Problem 3. (a) 4− 4 + 1 = 1 = χ(I2).
(b) From any such tiling one can get a triangulation by subdividing each

square by a diagonal. Hence the number of vertices will remain the same,
the number of edges will increase by the number of squares, and the number
of triangles (2-simplices) will be the number of squares doubled. Denote the
number of vertices in the tiling by q0, the number of edges by q1, the number
of squares by q2. Hence χ = c0− c1 + c2 = q0− (q1 + q2) + 2q2 = q0− q1 + q2,
as stated.

(c) χ(S2) = q0 − q1 + q2 = 8− 12 + 6 = 2

Problem 4. We first triangulate the unit square by I2 subdividing it
into 9 squares with side 1/3 by lines parallel to the sides. Each square
can be then subdivided into two triangles. It is convenient to denote the
vertices of the triangulation by Pij, where i, j = 0, 1, 2, 3. Here Pij has
coordinates ( i

3
, j

3
). We assume that the coordinate lines go along the sides and

the original vertices are (0, 0), (1, 0), (0, 1) and (1, 1). (Draw a picture!) For
each of the surfaces a triangulation can be obtained by taking into account the
corresponding identifications of I2. The Euler characteristic can be calculated
from these triangulations, or (using the result of Problem 3) directly from
the tilings by small squares. It is easier not to count all the numbers involved
explicitly, but only check the changes due to gluing.

(a) For the Klein bottle K we have to identify the side P00P30 with the
side P03P33 (preserving orientation) and the side P00P03 with P33P30 (with
opposite orientations). Hence we get the following identifications: P00 =
P03 = P30 = P33, P01 = P32, P02 = P31, P10 = P13, P20 = P23 (use the
picture!). It follows that when we glue the Klein bottle from I2, the number
of vertices decreases by 7. The number of edges decreases by 6, since we
identify the three edges on a horizontal side with the three edges on the
parallel side, and the same for vertical sides. The number of triangles does
not change. Counting the effect for the Euler characteristic, we conclude
that χ(K) = χ(I2)− (7− 6 + 0) = 1− 1 = 0.

(b) For RP 2 we have to identify the antipodal points of the boundary of
I2 (those symmetric w.r.t. the center of the square). Hence the side P00P30 is
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identified with the side P33P03 and the side P00P03 with P33P30 (in both cases
with opposite orientations). We get the following identifications for vertices:
P00 = P03, P10 = P23, P20 = P13, P30 = P03, P01 = P32, P02 = P31. It follows
that, compared with the triangulation of I2, the number of vertices decreases
by 6 (notice the difference with the Klein bottle!). In the same way as for
the Klein bottle, the number of edges decreases by 6 (the different way of
identifying edges does not affect the counting), and the number of triangles
does not change. Altogether we have χ(RP 2) = χ(I2)−(6−6+0) = 1−0 = 1.

(c) The case of T 2 is very similar to that of the Klein bottle. We have to
identify P00P30 with P03P33 and P00P03 with P30P33 (preserving orientations).
Hence for vertices we have the identifications P00 = P03 = P33 = P30, P01 =
P31, P02 = P32, P10 = P13, P20 = P23. The number of vertices decreases
by 7, the number of edges decreases by 6, and the number of triangles does
not change, compared with the triangulation of I2. It follows that χ(T 2) =
χ(I2)− (7− 6 + 0) = 1− 1 = 0.

Problem 5. We can apply the excision formula as follows. Let S2
k stand for

the sphere with k holes, i.e. S2 with k disjoint open disks removed. Then

S2 = S2
k ∪ {k closed disks},

and the intersection of S2
k with these closed disks consists of k (disjoint)

circles. Hence, by the excision formula, we have the following equation:
χ(S2) = χ(S2

k)+kχ(D2)−kχ(S1). Here D2 stands for the closed disk, which
is homeomorphic to the square. We know that χ(S2) = 2, χ(D2) = χ(I2) = 1
and χ(S1) = 0. Hence we have: 2 = χ(S2

k) + k, or χ(S2
k) = 2− k.

Alternatively, if we consider a sufficiently fine triangulation of S2, cutting
a hole amounts to the removing of a 2-simplex (the boundary of the simplex
remains), and cutting k holes amounts to the removing of k 2-simplices (the
boundaries of them remaining). Hence the number of vertices and the number
of edges do not change under such operation, while the number of 2-simplices
decreases by k. Hence χ = c0 − c1 + c2 also decreases by k, and we obtain
S2

k = S2 − k = 2− k.

Problem 6. (a) The surface H2
g is obtained from the sphere S2 by cutting

2g holes and gluing in g handles (homeomorphic to the cylinder S1 × I).
We can apply the excision formula to obtain the equation χ(H2

g ) = χ(S2
2g) +

g χ(S1 × I) − 2g χ(S1), where we denoted by S2
k the sphere with k holes.

Either by a suitable triangulation or applying the excision formula again
(see Problem 5), we can obtain χ(S2

k) = χ(S2) − k = 2 − k. Also, by
triangulations, we have χ(S1) = χ(S1 × I) = 0 (see Problem 1(e) and (f)).
Hence, we obtain χ(H2

g ) = χ(S2
2g) = 2− 2g.

(b) Similar to part (a). The surface M2
ν is obtained from the sphere S2 by

cutting ν holes and gluing in ν closed Möbius strips. Hence, by the excision
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formula, χ(M2
ν ) = χ(S2

ν) + ν χ(M)− ν χ(S1) = 2− ν (where we denoted by
M the Möbius strip).

Problem 7. Similar to Problem 6. The surface Xg,ν is obtained from the
sphere by cutting 2g + ν holes and gluing in g cylinders (along 2g boundary
circles) and ν closed Möbius strips (along the remaining ν boundary circles).
Hence, by the excision formula we have χ(Xg,ν) = χ(S2

2g+ν) + g χ(S1 × I) +
ν χ(M)− (2g + ν) χ(S1) = 2− 2g − ν.

Problem 8. The surface Xg,ν is non-orientable because it contains a Möbius
strip (we assume that ν > 0). Hence, by the classification theorem for closed
surfaces, it is homeomorphic to the standard non-orientable surface M2

k for
some k. To find k, consider the Euler characteristic. Since χ(M2

k ) = 2 − k
and χ(Xg,ν) = 2 − 2g − ν (using the result of Problem 7), we must have
k = 2g + ν. Hence Xg,ν

∼= M2
2g+ν , as claimed.
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