$\S 2$ Topological constructions

Problem 1. Consider a map $f: \mathbb{R} \rightarrow \mathbb{R}_{+}, f(x)=e^{x}$. It is continuous. The inverse map, $f^{-1}: \mathbb{R}_{+} \rightarrow \mathbb{R}, f^{-1}(y)=\ln y$, is also continuous. Hence they together give a desired homeomorphism $\mathbb{R} \cong \mathbb{R}_{+}$.

Problem 2. Denote this subspace by H. We can solve for z :

$$
z=\sqrt{x^{2}+y^{2}+1} .
$$

The map $f: H \rightarrow \mathbb{R}^{2},(x, y, z) \mapsto(x, y)$ is continuous and the inverse map $(x, y) \mapsto\left(x, y, \sqrt{x^{2}+y^{2}+1}\right)$ is also continuous. Hence they define a homeomorphism between H and \mathbb{R}^{2}.

Problem 3. The space $S U(2)$ as a subspace of the space of all complex 2×2 matrices is specified by the equations $A \bar{A}^{T}=E$ and $\operatorname{det} A=1$. Here bar over a matrix means complex conjugation of its entries, A^{T} means the transpose of A. Writing

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

gives the following set of equations in terms of the matrix entries a, b, c, d :

$$
\begin{aligned}
& a \bar{a}+b \bar{b}=1 \\
& a \bar{c}+b \bar{d}=0 \\
& c \bar{c}+d \bar{d}=1 \\
& a d-b c=1
\end{aligned}
$$

The second equation means that $(c, d)=u(-\bar{b}, \bar{a})$ where u is an arbitrary factor. Taking into account the third equation leads to $u \bar{u}=1$, i.e., $u=e^{i t}$, $t \in \mathbb{R}$. Hence, without the condition $\operatorname{det} A=1$, i.e., for $U(2)$, we get an explicit description

$$
A=\left(\begin{array}{cc}
a & b \\
-e^{i t} \bar{b} & e^{i t} \bar{a}
\end{array}\right)
$$

where $a, b \in \mathbb{C}$ are subject to the condition $a \bar{a}+b \bar{b}=1$ and $t \in \mathbb{R}$. Imposing $\operatorname{det} A=1$ gives $e^{i t}=1$. Hence, finally, for $A \in S U(2)$

$$
A=\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)
$$

where $a \bar{a}+b \bar{b}=1$, and we can identify such matrices with unit vectors in $\mathbb{C}^{2}=\mathbb{R}^{4}$, so $S U(2) \cong S^{3}$.

Problem 9. Suppose f is continuous. Then both compositions $f_{1}=p_{1} \circ$ $f: Z \rightarrow X$ and $f_{2}=p_{2} \circ f: Z \rightarrow Y$ are continuous, since the canonical
projections p_{1} and p_{2} are continuous. Conversely, suppose the compositions $f_{1}=p_{1} \circ f: Z \rightarrow X$ and $f_{2}=p_{2} \circ f: Z \rightarrow Y$ are continuous. That means that for arbitrary open sets $U \in \mathcal{O}_{X}, V \in \mathcal{O}_{Y}$ the sets $f_{1}^{-1}(U)=$ $\left(p_{1} \circ f\right)^{-1}(U)=f^{-1}(U \times Y)$ and $f_{2}^{-1}(V)=\left(p_{2} \circ f\right)^{-1}(V)=f^{-1}(X \times V)$ are open in Z. Take an open set in $X \times Y$. It suffices to consider a set of the form $U \times V$ where $U \in \mathcal{O}_{X}, V \in \mathcal{O}_{Y}$. As $U \times V=(U \times Y) \cap(X \times V)$, we have $f^{-1}(U \times V)=f^{-1}(U \times Y) \cap f^{-1}(X \times V)$, hence open.

