§3 Fundamental topological properties

Problem 1. Show that the following sets are closed:
(a) $I=[0,1] \subset \mathbb{R}$, (b) $I^{n} \subset \mathbb{R}^{n}$, (c) $S^{n} \subset \mathbb{R}^{n+1}$, (d) the set of all noninvertible matrices in $\operatorname{Mat}(n)$, (e) the set of all orthogonal matrices in $\operatorname{Mat}(n)$, (f) the set of all unitary matrices in $\operatorname{Mat}(n, \mathbb{C})$.

Problem 2. Show that the following spaces are Hausdorff:
(a) I^{n}, (b) S^{n}, (c) T^{2}, (d) T^{n}.

Problem 3. Show that the Klein bottle is Hausdorff. Hint: investigate various "types" of points on I^{2} (on the boundary, inside, etc.).

Problem 4. Show that an indiscrete space is non-Hausdorff.
Problem 5. Show that \mathbb{R} with the cofinite topology is non-Hausdorff.
Problem 6. Prove that if both X and Y are Hausdorff then the product space $X \times Y$ is Hausdorff.

Problem 7. Consider a topological space X. Suppose \mathcal{B} is a base of the topology of X. Show that if every cover of X by elements of \mathcal{B} contains a finite subcover then X is compact.

Problem 8. Show that if two spaces X and Y are homeomorphic and X is compact then Y is also compact.

Problem 9. Prove that S^{n} is compact for all n.
Problem 10. Can S^{n} and \mathbb{R}^{n} be homeomorphic? Justify your answer.
Problem 11. Prove that the closed n-disk $D^{n}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}| | \boldsymbol{x} \mid \leqslant 1\right\}$ is compact for all n.

Problem 12. Is \mathbb{Z} compact? Justify your answer.
Problem 13. Show that the following spaces are compact:
(a) $S^{n} \times I$;
(b) $S^{n} \times S^{m}$; (c) T^{n};
(d) $T^{n} \times I$;
(e) $\mathbb{R} P^{n} ;$ (f) $\mathbb{C} P^{n}$.

Problem 14. Prove that the following topological groups are compact:
(a) $S O(n)$;
(b) $O(n)$;
(c) $U(n)$;
(d) $S U(n)$.

Problem 15. Show that the topological group $G L(n)$ is non-compact. Hint: give an example of a matrix $g \in G L(n)$ which is as far as you wish from the zero matrix (look among the diagonal matrices).

Problem 16. Show that the topological group $S L(n)$ is non-compact. Hint: use the example from the previous problem modifying it if necessary.

Problem 17. Consider the straight line in \mathbb{R}^{n+1} (through the origin) spanned by a nonzero vector $\boldsymbol{v}=\left(x^{1}, \ldots, x^{n+1}\right)$. Let $R_{\boldsymbol{v}}$ denote the reflection of the space \mathbb{R}^{n+1} in the plane orthogonal to \boldsymbol{v} (i.e., the map which fixes all the vectors in this plane and sends $k \boldsymbol{v}$ to $-k \boldsymbol{v})$.
(a) Write down explicitly $R_{\boldsymbol{v}}(\boldsymbol{y})$ for an arbitrary vector $\boldsymbol{y} \in \mathbb{R}^{n+1}$. Hint: decompose \boldsymbol{y} into the sum of a vector proportional to \boldsymbol{x} and a vector in the orthogonal plane.
(b) Write the operator R_{v} as a matrix.
(c) Check that $[\boldsymbol{v}] \mapsto R_{\boldsymbol{v}}$ is a well-defined map $\mathbb{R} P^{n} \rightarrow \operatorname{Mat}(n+1)$. Check that it is injective.
(d) Show that the above map is continuous (use the properties of identification topology).
(e) Using the homeomorphism theorem, show that the map above is a homeomorphism of $\mathbb{R} P^{n}$ onto a subspace of $\operatorname{Mat}(n+1) \cong \mathbb{R}^{(n+1)^{2}}$.

Problem 18. Show that $\mathbb{R} P^{n}$ is Hausdorff.
Problem 19. Construct an embedding of $\mathbb{C} P^{n}$ into a Euclidean space. Show that $\mathbb{C} P^{n}$ is Hausdorff.

Problem 20. Suppose that topological spaces X and Y are homeomorphic.
(a) Prove that X is connected if and only if Y is connected.
(b) Prove that X is path-connected if and only if Y is path-connected.

Problem 21. Assuming without proof that every finite segment $[a, b]$ is connected, show that \mathbb{R} is connected.

Problem 22. Are the following spaces connected? Path-connected?
(a) \mathbb{Z}; (b) \mathbb{R}; (c) $O(2)$.

Problem 23. Show that the Klein bottle is connected.
Problem 24. Show that the torus T^{n} is connected.
Problem 25. Using the notion of connectedness give an argument showing that S^{2} and T^{2} are not homeomorphic.

Problem 26. Use the fact that for every matrix $U \in U(n)$ there is an invertible matrix g such that $U=g D g^{-1}$ where $D=\operatorname{diag}\left(e^{i x_{1}}, \ldots, e^{i x_{n}}\right)$ (here x_{1}, \ldots, x_{n} are real numbers) to show that the topological group $U(n)$ is connected. Hint: show that every point of $U(n)$ can be joined by a path with the identity matrix.

Problem 27. Use the fact that every matrix $g \in G L(n, \mathbb{C})$ can be presented as a product $g=R U$ where R is a Hermitian matrix with positive eigenvalues and U is a unitary matrix to show that $G L(n, \mathbb{C})$ is connected. Hint: use the results of the previous problem; consider the matrix logarithm to check that the space of Hermitian matrices with positive eigenvalues is path-connected.

Problem 28. (a) Show that $S O(2)$ is connected.
(b) Show that $S O(3)$ is connected.
(c) Show that $S O(n)$ is connected for all n.

Hint: for $n \geqslant 3$ use an argument similar to that in Problem 26.
Problem 29. A path-connected component of a topological space consists of all points that can be joined by a path (i.e., two points belong to the same component if they can be joined by a path, and to different components otherwise). The path-connected component of a point is the path-connected component containing this point.
(a) Prove that $O(n)$ has exactly two path-connected components.
(a) Prove that $G L(n)$ has exactly two path-connected components. Hint: use an argument similar to that in Problem 27.

Problem 30. A component (or connected component) of a topological space X is a maximal connected subset, i.e., such a connected subset that there is no "larger" connected subset containing this one.
(a) Show that each component is a closed set.
(b) Show that X is the union of disjoined components.
(c) Suppose X has only a finite number of distinct components. Show that each component is an open set.

Problem 31. Suppose G is a topological group.
(a) Show that the component of identity in G is a normal subgroup.
(a) Show that the path-connected component of identity in G is a normal subgroup.
(Remark. Connected components and path-connected components may not coincide. However, for locally-Euclidean spaces, for which connectedness and path-connectedness are equivalent, components and path-connected components are the same.)

