§3 Fundamental topological properties

Problem 1. Show that the following sets are closed:

(a) $I = [0,1] \subset \mathbb{R}$, (b) $I^n \subset \mathbb{R}^n$, (c) $S^n \subset \mathbb{R}^{n+1}$, (d) the set of all noninvertible matrices in $\operatorname{Mat}(n)$, (e) the set of all orthogonal matrices in $\operatorname{Mat}(n)$, (f) the set of all unitary matrices in $\operatorname{Mat}(n, \mathbb{C})$.

Problem 2. Show that the following spaces are Hausdorff: (a) I^n , (b) S^n , (c) T^2 , (d) T^n .

Problem 3. Show that the Klein bottle is Hausdorff. *Hint:* investigate various "types" of points on I^2 (on the boundary, inside, etc.).

Problem 4. Show that an indiscrete space is non-Hausdorff.

Problem 5. Show that \mathbb{R} with the cofinite topology is non-Hausdorff.

Problem 6. Prove that if both X and Y are Hausdorff then the product space $X \times Y$ is Hausdorff.

Problem 7. Consider a topological space X. Suppose \mathcal{B} is a base of the topology of X. Show that if every cover of X by elements of \mathcal{B} contains a finite subcover then X is compact.

Problem 8. Show that if two spaces X and Y are homeomorphic and X is compact then Y is also compact.

Problem 9. Prove that S^n is compact for all n.

Problem 10. Can S^n and \mathbb{R}^n be homeomorphic? Justify your answer.

Problem 11. Prove that the closed *n*-disk $D^n = \{ \boldsymbol{x} \in \mathbb{R}^n | |\boldsymbol{x}| \leq 1 \}$ is compact for all *n*.

Problem 12. Is \mathbb{Z} compact? Justify your answer.

Problem 13. Show that the following spaces are compact: (a) $S^n \times I$; (b) $S^n \times S^m$; (c) T^n ; (d) $T^n \times I$; (e) $\mathbb{R}P^n$; (f) $\mathbb{C}P^n$.

Problem 14. Prove that the following topological groups are compact: (a) SO(n); (b) O(n); (c) U(n); (d) SU(n).

Problem 15. Show that the topological group GL(n) is non-compact. *Hint:* give an example of a matrix $g \in GL(n)$ which is as far as you wish from the zero matrix (look among the diagonal matrices).

Problem 16. Show that the topological group SL(n) is non-compact. *Hint:* use the example from the previous problem modifying it if necessary.

Problem 17. Consider the straight line in \mathbb{R}^{n+1} (through the origin) spanned by a nonzero vector $\boldsymbol{v} = (x^1, \ldots, x^{n+1})$. Let $R_{\boldsymbol{v}}$ denote the reflection of the space \mathbb{R}^{n+1} in the plane orthogonal to \boldsymbol{v} (i.e., the map which fixes all the vectors in this plane and sends $k\boldsymbol{v}$ to $-k\boldsymbol{v}$).

(a) Write down explicitly $R_{\boldsymbol{v}}(\boldsymbol{y})$ for an arbitrary vector $\boldsymbol{y} \in \mathbb{R}^{n+1}$. *Hint:* decompose \boldsymbol{y} into the sum of a vector proportional to \boldsymbol{x} and a vector in the orthogonal plane.

(b) Write the operator $R_{\boldsymbol{v}}$ as a matrix.

(c) Check that $[\boldsymbol{v}] \mapsto R_{\boldsymbol{v}}$ is a well-defined map $\mathbb{R}P^n \to \operatorname{Mat}(n+1)$. Check that it is injective.

(d) Show that the above map is continuous (use the properties of identification topology).

(e) Using the homeomorphism theorem, show that the map above is a homeomorphism of $\mathbb{R}P^n$ onto a subspace of $\operatorname{Mat}(n+1) \cong \mathbb{R}^{(n+1)^2}$.

Problem 18. Show that $\mathbb{R}P^n$ is Hausdorff.

Problem 19. Construct an embedding of $\mathbb{C}P^n$ into a Euclidean space. Show that $\mathbb{C}P^n$ is Hausdorff.

Problem 20. Suppose that topological spaces X and Y are homeomorphic.(a) Prove that X is connected if and only if Y is connected.

(b) Prove that X is path-connected if and only if Y is path-connected.

Problem 21. Assuming without proof that every finite segment [a, b] is connected, show that \mathbb{R} is connected.

Problem 22. Are the following spaces connected? Path-connected? (a) \mathbb{Z} ; (b) \mathbb{R} ; (c) O(2).

Problem 23. Show that the Klein bottle is connected.

Problem 24. Show that the torus T^n is connected.

Problem 25. Using the notion of connectedness give an argument showing that S^2 and T^2 are not homeomorphic.

Problem 26. Use the fact that for every matrix $U \in U(n)$ there is an invertible matrix g such that $U = gDg^{-1}$ where $D = \text{diag}(e^{ix_1}, \ldots, e^{ix_n})$ (here x_1, \ldots, x_n are real numbers) to show that the topological group U(n) is connected. *Hint:* show that every point of U(n) can be joined by a path with the identity matrix.

Problem 27. Use the fact that every matrix $g \in GL(n, \mathbb{C})$ can be presented as a product g = RU where R is a Hermitian matrix with positive eigenvalues and U is a unitary matrix to show that $GL(n, \mathbb{C})$ is connected. *Hint:* use the results of the previous problem; consider the matrix logarithm to check that the space of Hermitian matrices with positive eigenvalues is path-connected. **Problem 28. (a)** Show that SO(2) is connected.

(b) Show that SO(3) is connected.

(c) Show that SO(n) is connected for all n.

Hint: for $n \ge 3$ use an argument similar to that in Problem 26.

Problem 29. A *path-connected component* of a topological space consists of all points that can be joined by a path (i.e., two points belong to the same component if they can be joined by a path, and to different components otherwise). The path-connected component of a point is the path-connected component containing this point.

(a) Prove that O(n) has exactly two path-connected components.

(a) Prove that GL(n) has exactly two path-connected components. *Hint:* use an argument similar to that in Problem 27.

Problem 30. A component (or connected component) of a topological space X is a maximal connected subset, i.e., such a connected subset that there is no "larger" connected subset containing this one.

(a) Show that each component is a closed set.

(b) Show that X is the union of disjoined components.

(c) Suppose X has only a finite number of distinct components. Show that each component is an open set.

Problem 31. Suppose G is a topological group.

(a) Show that the component of identity in G is a normal subgroup.

(a) Show that the path-connected component of identity in G is a normal subgroup.

(Remark. Connected components and path-connected components may not coincide. However, for locally-Euclidean spaces, for which connectedness and path-connectedness are equivalent, components and path-connected components are the same.)