§4 Manifolds and surfaces

Problem 1. Consider the unit circle with center at the origin in \mathbb{R}^{2}. Introduce two charts covering the circle using angles as coordinates (for one chart you may take the circle without the point $(1,0)$ and count angles from the positive direction of the x-axis; for another chart you may take the circle without the point $(-1,0)$ and count angles from the negative direction of the x-axis). Find the transition functions between these two charts.

Problem 2. Introduce two charts on S^{1} using stereographic projections and calculate the transition functions for them.

Problem 3. Find the transition functions for S^{n} for the charts obtained from stereographic projections with centers at the north pole and the south pole.

Problem 4. Find the transition functions for $\mathbb{R} P^{1}$ for the "canonical" charts: $\left(x^{1}: x^{2}\right)=(y: 1)$ where $x^{2} \neq 0$, and $\left(x^{1}: x^{2}\right)=\left(1: y^{\prime}\right)$ where $x^{1} \neq 0$.

Problem 5. Do the same for $\mathbb{C} P^{1}$. Write the answer in the complex and the real forms.

Problem 6. Do the same for $\mathbb{R} P^{n}$ and $\mathbb{C} P^{n}$. (You have to introduce a notation for charts and coordinates. It is suggested that the coordinates in the j-th chart will be denoted $y_{(j)}^{i}$, with $i=1, \ldots, j-1, j+1, \ldots, n+1$, and with a "fake coordinate" $y_{(j)}^{j}=1$ (constant).)

Problem 7. Use coordinates to establish homeomorphisms between S^{1} and $\mathbb{R} P^{1}$, and between S^{2} and $\mathbb{C} P^{1}$.

