§2 Topological constructions

Problem 1. Define \mathbb{R}_{+}as a subspace of \mathbb{R} consisting of all positive numbers. Show that \mathbb{R} and \mathbb{R}_{+}are homeomorphic. Hint: use the exponential.

Problem 2. Prove that the subspace of \mathbb{R}^{3} specified by the conditions $x^{2}+$ $y^{2}-z^{2}=-1, z>0$, is homeomorphic to \mathbb{R}^{2}. Hint: make a sketch; you might use a projection to establish a required homeomorphism.

Problem 3. Prove that the space $S U(2)$ consisting of unitary 2×2-matrices satisfying $\operatorname{det} A=1$ is homeomorphic to S^{3}. Hint: write down the equations specifying $S U(2)$ as a subspace of all complex 2×2-matrices explicitly.

Problem 4. Prove that for an identification space X / R, a map $f: X / R \rightarrow Y$ is continuous if and only if $f \circ p: X \rightarrow Y$ is continuous.

Problem 5. Let R be the following relation on \mathbb{R} : $x R y$ if and only if $x-y \in$ \mathbb{Z}. Check that it is an equivalence relation.

Problem 6. The identification space of \mathbb{R} w.r.t. the equivalence relation defined in the previous problem is denoted \mathbb{R} / \mathbb{Z}. Let $p: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ be the canonical projection. Show that p is an open map (i.e., the image of every open set is open). Hint: consider a base of topology on \mathbb{R} consisting of intervals of length $<1 / 2$ and show that $p^{-1}(p(U))$ is open for any such interval U.

Problem 7. Check that the sets of the form $p((a, b))$ where $|a-b|<1 / 2$ make a base of the identification topology for \mathbb{R} / \mathbb{Z}.

Problem 8. Consider a map $f: \mathbb{R} / \mathbb{Z} \rightarrow S^{1}$, where $f:[x] \mapsto e^{2 \pi i x}$. (The circle is considered as a subspace of $\mathbb{C}: S^{1}=\{z \in \mathbb{C}| | z \mid=1\}$.)
(a) Check that f is well defined.
(b) Prove that f is continuous. Hint: use Problem 4.
(c) Check that $g: S^{1} \rightarrow \mathbb{R} / \mathbb{Z}, g: z \mapsto\left[\frac{\arg z}{2 \pi}\right]$ is the inverse map for f.
(d) Show that g is continuous (hence f and g establish a homeomorphism $\mathbb{R} / \mathbb{Z} \cong S^{1}$). Hint: use the base constructed in Problem 7 .

Problem 9. Prove that a map $f: Z \rightarrow X \times Y$ is continuous if and only if the maps $f_{1}=p_{1} \circ f: Z \rightarrow X$ and $f_{2}=p_{2} \circ f: Z \rightarrow Y$ are continuous.

Problem 10. The real projective space $\mathbb{R} P^{n}$ is defined as the identification space of $\mathbb{R}^{n+1} \backslash\{0\}$ w.r.t. the following equivalence relation: $\boldsymbol{v} \sim \boldsymbol{u}$ if and only if $\boldsymbol{v}=a \boldsymbol{u}, a \neq 0$ (a nonzero real number). Check that $\mathbb{R} P^{n}$ is homeomorphic to an identification space of S^{n}. What is the corresponding equivalence relation on the sphere? Hint: use unit vectors.

Problem 11. The complex projective space $\mathbb{C} P^{n}$ is defined similarly as the identification space of $\mathbb{C}^{n+1} \backslash\{0\}$ w.r.t. the equivalence relation $\boldsymbol{v} \sim \boldsymbol{u}$ if and only if $\boldsymbol{v}=a \boldsymbol{u}, a \neq 0$ (a nonzero complex number). Check that $\mathbb{C} P^{n}$ is homeomorphic to an identification space of $S^{2 n+1}$. What is the corresponding equivalence relation on the sphere? Hint: use unit vectors w.r.t. the Hermitian scalar product $(\boldsymbol{u}, \boldsymbol{v})=\sum u^{k} \bar{v}^{k}$.

Problem 12. Show that $\mathbb{R} P^{1} \cong S^{1}$.
Problem 13. Show that $\mathbb{C} P^{1} \cong S^{2}$.
Problem 14. Show that $\mathbb{R} P^{n}=\mathbb{R}^{n} \cup \mathbb{R} P^{n-1}$. More precisely, show that in $\mathbb{R} P^{n}$ there are subspaces homeomorphic to \mathbb{R}^{n} and to $\mathbb{R} P^{n-1}$, and that the whole space is their union. (This gives an inductive description of the structure of the projective space.) Hint: use coordinates in \mathbb{R}^{n+1} to specify subspaces in $\mathbb{R} P^{n}$.

Problem 15. Formulate and prove a similar statement for $\mathbb{C} P^{n}$.
Problem 16. Show that $\mathbb{R}^{2} \backslash\{(0,0)\}$ is homeomorphic to the product space $\mathbb{R} \times S^{1}$ (infinite cylinder). Hint: use polar coordinates.

Problem 17. Show that the 2-torus defined as a surface of revolution in \mathbb{R}^{3} (i.e., as a subspace of \mathbb{R}^{3}) is homeomorphic to each of the following spaces:
(a) the identification space of \mathbb{R}^{2} w.r.t. the equivalence relation: $(x, y) \sim$ $(x+1, y)$ and $(x, y) \sim(x, y+1)$;
(b) the identification space of I^{2} (the unit square) w.r.t. the equivalence relation: $(0, y) \sim(1, y),(x, 0) \sim(x, 1)$, and the points inside the square are equivalent only to themselves;
(c) the product space $S^{1} \times S^{1}$.

Problem 18. Show that the topological group $U(n)$ is homeomorphic to the product space $S^{1} \times S U(n)$, where $S U(n)$ is defined as the subspace of $U(n)$ consisting of all matrices with unit determinant.

