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§1 Topological spaces and continuous maps

Our main goal in this section is to rigorously define what is meant by a
“topological equivalence” and to specify a natural class of objects to which
such notion will be applicable.

The first step is to say that two objects, say, X and Y are topologically
equivalent if one can be obtained from another “continuously”, “without
ruptures or gluing”. Developing it further, we say that it means that X
can be “continuously mapped” to Y , and vice versa, with the two maps
f : X → Y and g : Y → X being mutually inverse.

It follows then that our task becomes more specific: we have to define con-
tinuous maps and identify objects for which such maps will make sense. To
achieve this, we shall make a digression to familiar notions, partly following
the historical development of the subject.

Recall that for a function f : R→ R (one can consider functions defined
on an interval (α, β) ⊂ R instead, but it is not essential for our purposes), to
be continuous at a point x0 means that for every ε > 0 there is δ > 0 such
that |f(x)− f(x0)| < ε for all x satisfying |x− x0| < δ. In words: the values
f(x) can be made arbitrarily close to the value f(x0) by taking x sufficiently
close to x0.

This can reformulated more geometrically, by using the language of “ε-
neighborhoods”. For an arbitrary number ε > 0 by the ε-neighborhood of a
point x0 ∈ R is meant the set of all x ∈ R such that the distance between
x and x0 is less than ε. Recall that the distance d(a, b) between two points
a, b ∈ R is simply |a − b|, so the ε-neighborhood of a ∈ R is the interval
(a− ε, a+ ε). The continuity of the function f at x0 is the condition that for
any ε-neighborhood Vε(y0) of y0 = f(x0) there exists a δ-neighborhood Uδ(x0)
of x0 such that f(Uδ(x0)) ⊂ Vε(y0).

In this form the notion of continuity immediately carries over to Rn and
to abstract “metric spaces”.

Definition 1.1. A metric space is a set X with a function d : X ×X → R
called the metric or the distance function, whose value d(a, b) for any two
points a, b ∈ X is called the distance between a and b, satisfying the following
properties:

(M1) d(a, b) > 0 and d(a, b) = 0 if and only if a = b
(M2) d(a, b) = d(b, a)
(M3) d(a, b) 6 d(a, c) + d(c, b) (triangle inequality).

For a point a in a metric space X, the ball (or open ball) with center a
and radius R, shortly: the R-ball around a, is defined as the set

BR(a) = {x ∈ X | d(x, a) < R}.

The ε-neighborhood of a point a is the same as the ε-ball around a.

1



THEODORE VORONOV Fall 2005. TOPOLOGICAL SPACES

Definition 1.2. A map of metric spaces f : X → Y is continuous at x0 ∈ X
if for every ε-neighborhood Vε(y0) = Bε(y0) ⊂ Y of y0 = f(x0) ∈ Y there is
a δ-neighborhood Uδ(x0) = Bδ(x0) ⊂ X of x0 such that f(Uδ(x0)) ⊂ Vε(y0).

Example 1.1. For R with the metric d(a, b) = |a−b|, the ‘ball’ Bε(a) is just
the open interval (a− ε, a + ε).

We come back to the usual notion of continuity for functions R→ R.

Example 1.2. There are several natural ways to introduce metric into Rn.
One can check that the following functions all satisfy the above conditions
M1, M2 and M3:

d1(a, b) =
n∑

k=1

|ak − bk|

d2(a, b) =

(
n∑

k=1

(ak − bk)
2

)1/2

d∞(a, b) = max
k=1... n

|ak − bk| .

Exercise: sketch open 1-balls around the origin O ∈ Rn for n = 1, 2, 3. You
will see that d1, d2 and d∞ agree for n = 1 but are different for n > 1.

Claim: for finite dimension n, the different metrics d1, d2 and d∞ lead
to the same notion of continuity for functions Rn → R (the same holds for
maps Rn → Rm for finite n and m).

Indeed, in Rn one can always ‘inscribe’ a ‘ball’ in the sense of one metric
into a ‘ball’ in the sense of another metric, for the metrics d1, d2 and d∞,
and in this way translate the condition of continuity formulates in terms of
one type of ‘balls’ into the same condition in terms of another type of ‘balls’.
(Make a sketch in R2!) Thus the two conditions must be equivalent.

The above example of different metrics giving the same notion of conti-
nuity hints that our journey is not yet over: metric spaces is not the ultimate
sort of objects for which continuous maps are naturally defined. To see what
is, we shall make one more step. We shall get rid of ‘ε-neighborhoods’ and
replace them by more general ‘neighborhoods’.

Definition 1.3. A set U ⊂ X in a metric space X is called open if every
point a ∈ U can be surrounded by an ε-ball in U , i.e., there exists ε such
that Bε(a) ⊂ U .

(An importance of open sets follows, among other things, from the fact
that to develop differential calculus in Rn one has to be able to consider
increments of an argument of a function, thus moving in all possible direction
from a given point, therefore functions under consideration have to be defined
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on open sets in Rn. For us, of course, the importance of open sets consists
in the fact that, as we shall see it shortly, continuity can be defined entirely
in terms of open sets.)

Definition 1.4. A neighborhood (or open neighborhood) of a point a is an
arbitrary open set U containing a, i.e., a ∈ U .

Theorem 1.1. For a map of metric spaces f : X → Y , the continuity of f
at a point x0 ∈ X is equivalent to the following condition: for every neighbor-
hood V of y0 = f(x0) there is a neighborhood U of x0 such that f(U) ⊂ V .

Proof. “ ⇒ ” Suppose f is continuous at x0. Consider an arbitrary neighbor-
hood V of y0, i.e., an open set V such that y0 ∈ V . By the definition of open
sets, there is an ε-neighborhood Bε(y0) such that Bε(y0) ⊂ V . By the con-
dition of continuity, there is a δ-neighborhood Bδ(x0) such that f(Bδ(x0)) ⊂
Bε(y0). In particular, f(Bδ(x0)) ⊂ V and we can set U = Bδ(x0). U is a de-
sired neighborhood of x0. “ ⇐ ” Conversely, suppose for every neighborhood
V of y0 = f(x0) there is a neighborhood U of x0 such that f(U) ⊂ V . To
check the continuity, consider an ε-neighborhood Bε(y0). By the assumption,
there is a neighborhood U of x0 such that f(U) ⊂ Bε(y0). By the definition
of open sets, inside U there is a δ-neighborhood Bδ(x0) ⊂ U . Therefore,
f(Bδ(x0)) ⊂ f(U) ⊂ Bε(y0). Hence, f is continuous at x0.

Conclusion: to speak about continuity we do not need distances. All
what we need, is the notion of open sets. They can be introduced by axioms.

Let X be an abstract set. We will consider collections of subsets of X
denoting them by script letters.

Definition 1.5. A collection O of subsets of a set X is called a topology on
X if it satisfies the following axioms:

(T1) ∅ ∈ O and X ∈ O;
(T2) if Ui ∈ O for all i = 1, . . . , N , then U1 ∩ . . . ∩ UN ∈ O;
(T3) if Uα ∈ O for all α ∈ A (arbitrary set of indices), then

⋃
α Uα ∈ O.

The elements of O are called open sets (w.r.t. the topology O).

Example 1.3. Opens sets in any metric space X satisfy the properties T1,
T2, T3. Thus every metric gives rise to a topology.

Example 1.4. One can check that all three metrics d1, d2 and d∞ on Rn

define the same topology, i.e., the same collection of open sets. This topology
will be called the “natural topology” of Rn or the Euclidean topology (having
in mind that the metric d2 comes from the Euclidean structure, i.e., the scalar
product of vectors in Rn).

Remark 1.1. In infinite dimension, for the space of infinite sequences R∞
(here for each given sequence a = (a1, a2, . . .) only finitely many terms are
allowed to be nonzero), the metrics d1, d2 and d∞ define different topologies.
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The analogs of d1, d2 and d∞ for functions also define different topologies
(for example, on the space of continuous functions on a segment; summation
in the definition of d1 and d2 is replaced by integration).

Definition 1.6. A topological space is a set together with some topology on
it: (X,O).

Notation: If necessary we use letters other than O for topologies, e.g.,
F or E , or use O with subscripts, like OX ,OY . (Another commonly used
notation for a topology is Greek letters such as τ or σ.) Often we denote a
topological space by a single letter, like X = (X,OX).

Example 1.5. As follows from the above, Rn has a natural structure of a
topological space.

Example 1.6. Any metric space can be considered as a topological space.

Example 1.7. Consider the unit circle with center at the origin in R2. De-
note it by S1. It can be made a topological space by introducing a metric
structure. One way of defining a distance between points a, b ∈ S1 is to set
d(a, b) to the Euclidean distance d2 between a and b in the ambient space R2.
Alternatively, by a distance between a and b one can take the length of the
shortest circular arc joining a and b. Exercise: check that both definitions
of distance give the same open sets. Taking them as a topology for S1, we
make it a topological space.

Example 1.8. The previous example generalizes to the sphere Sn, which as
a set is defined as the unit sphere with center at the origin in Rn+1.

Consider some ‘abstract’ examples.

Example 1.9. A one-point set X = {a} has only one topology. Considered
with it, it is called a singleton or simply a point.

Example 1.10. Any set X can be made a topological space in two ways
(which are the opposite extremes). One can consider all sets in X as open.
Clearly, T1, T2 and T3 will be satisfied. This topology is called the discrete
topology and the set X with it, a discrete topological space. Or one can a
topology on X containing just two elements: ∅ and X. This topology is
called the indiscrete topology.

Topologies of the previous example may look artificial, but they are im-
portant for theoretical purposes.

We are almost there! Now we can define continuous maps between topo-
logical spaces following the reformulation of continuity for maps of metric
spaces given by Theorem 1.1.
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Definition 1.7. A map of topological spaces f : X → Y is continuous at
a point x0 ∈ X if for every neighborhood V of y0 = f(x0) ∈ Y there is a
neighborhood U of x0 such that f(U) ⊂ V .

Unlike analysis where it may be interesting to consider points where func-
tions cease to be continuous (for example, have a jump), in topology we are
interested only in maps continuous everywhere. Such maps can be described
by a remarkably simple condition.

Theorem 1.2. A map of topological spaces f : X → Y is continuous at all
points x ∈ X if and only if for every open set V ⊂ Y its preimage f−1(V ) is
open in X.

Maps continuous at all points will be simply called continuous. The
condition given in Theorem 1.2 can be used as an alternative definition:

Definition 1.8 (Alternative). Given topological spaces X = (X,OX) and
Y = (Y,OY ), a map f : X → Y is continuous if for every V ∈ OY the set
f−1(V ) belongs to OX .

Theorem 1.3 (Properties of continuous maps). Composition of con-
tinuous maps is continuous. For each topological space the identity map is
continuous.

Proof. Suppose there are continuous maps of topological spaces f : X → Y
and g : Y → Z. We shall check that the composite map g ◦ f : X → Z is
continuous. To this end, consider a set W ∈ OZ . We have to check that
(g ◦ f)−1(W ) ∈ OX . Indeed, (g ◦ f)−1(W ) = f−1

(
g−1(W )

)
. Since g is

continuous and W open, the set g−1(W ) is open. Since f is continuous, it
follows that f−1

(
g−1(W )

)
is open. Hence g ◦ f is continuous. Consider now

the identity map 1X : X → X for a given topological space X. It sends each
x ∈ X to itself. In particular, for every U ∈ OX we have 1−1

X (U) = U ∈ OX .
Hence 1X is continuous.

This theorem effectively says that topological spaces and continuous maps
form an algebraic structure called a category. Categories provide a unifying
language for many areas of mathematics and are especially valuable for topol-
ogy, so we shall briefly recall their definition.

Definition 1.9. A category C consists of a collection of objects (of arbitrary
nature; objects can be visualized as points), denoted Ob C, and a collection
of arrows or morphisms (which should be visualized as actual arrows joining
points representing objects), denoted Mor C. More precisely, for each pair of
objects X and Y there is a set of morphisms Mor(X,Y ) (should be visualized
as arrows from X to Y ), and Mor C is the union of disjoint sets Mor(X, Y )
over all X, Y . The algebraic structure is given by the composition law : a
map

Mor(X, Y )×Mor(Y, Z) → Mor(X, Z),
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(f, g) 7→ g ◦ f , for each triple X, Y, Z. It should satisfy two properties:
(C1) Associativity: for any three morphisms f ∈ Mor(X, Y ), g ∈ Mor(Y, Z),

h ∈ Mor(Z,W )
h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

(C2) Identity elements: for each object X ∈ Ob C there is a morphism
1X ∈ Mor(X, X) such that

f ◦ 1X = 1Y ◦ f = f

for all f ∈ Mor(X,Y ).

Example 1.11. A simple example of a category is an arbitrary group G:
as the set of objects one can take the set consisting of a single point x0, so
Ob C = {x0}, and as the set of morphisms, the set of all group elements,
so Mor C = Mor(x0, x0) = G. Since there is only one object, there is one
identity map coinciding with the identity in G: 1x0 = e ∈ G. Clearly, the
associativity holds, by the definition of a group. (Having inverses is not used,
so in fact, any monoid, i.e., semigroup with identity, will give an example of
a category in this way.)

Example 1.12. The notation used in the definition of a category suggests
thinking of objects as of sets, and of morphisms, as of maps of sets. This
is in no way necessary: from the ‘categorical viewpoint’ objects are whole
entities, not consisting of elements; the stress being on the properties that
can be expressed in terms of composition of arrows only. However, many
examples of categories arise exactly in this way, with objects being sets with
some extra structure and morphisms being maps respecting this structure.
The simplest example is the category of sets denoted Sets. ObSets is the
“set” of all sets. (Warning: if you studied set theory, you know that the
notion of the “set of all sets” contains a contradiction; this can be remedied
by only considering sets contained in some huge “universal” set, for which all
sets in question can be considered as subsets. Accordingly, the definition of
the category Sets is modified.) For two sets the set of morphisms Mor(X, Y )
is defined as the set of all maps from X to Y . The composition and the
identities have their natural meaning.

Example 1.13. Topological spaces and continuous maps make a “subcate-
gory” of the category Sets. If we denote the category of topological spaces by
T op, then Ob T op consists of “all” topological spaces (see the remark above
about “all” sets) and for two topological spaces X,Y the set of morphisms
Mor(X, Y ) in T op consists of all continuous maps from X to Y . Theorem 1.3
guarantees the existence of composition and identities. (The associativity of
composition is a general property of the composition of arbitrary maps.)

6



THEODORE VORONOV Fall 2005. TOPOLOGICAL SPACES

Example 1.14. In a similar way one can define other subcategories of the
category of sets, such as the category of groups Groups (objects are “all”
groups, morphisms are group homomorphisms), the category of vector spaces
Vect (objects are finite-dimensional vector spaces over a fixed field, such as R,
morphisms are linear transformations), etc. There are plenty of examples of
such ‘concrete’ categories (a category is called concrete if it is a subcategory
of Sets). The relation between them and ‘abstract’ categories is the same as
the relation between groups of transformations and ‘abstract’ groups.

The usefulness of the category language is not seen immediately. It proves
itself in the course of using it. We shall see patterns of ‘categorical thinking’
later on.

Definition 1.10. In an arbitrary category C, an arrow f ∈ Mor(X,Y ) is
called an isomorphism if it is invertible, i.e., there is an arrow in the opposite
direction g ∈ Mor(Y, X) such that f ◦ g = 1Y and g ◦ f = 1X . Two objects
X and Y are called isomorphic if there is at least one isomorphism f ∈
Mor(X, Y ).

One can see particular cases of this notion in the concepts of a group
isomorphism, an isomorphism of vector spaces, etc. For the category of
topological spaces we arrive to the following particular case of Definition 1.10:

Definition 1.11. A map of topological spaces f : X → Y is a homeomor-
phism if three conditions are satisfied: f is continuous, f is invertible, i.e.,
there is a map g : Y → X such that f ◦ g = 1Y and g ◦ f = 1X , and the
inverse map g = f−1 is also continuous. Topological spaces X and Y are
called homeomorphic if there is at least one homeomorphism f : X → Y .
Notation: X ∼= Y .

Now we can see that the goal set in the beginning is fulfilled: the definition
of homeomorphism of topological spaces is exactly what we were looking for.
We shall use topological equivalence as the synonym for homeomorphism.

Theorem 1.4. Topological equivalence or homeomorphism is indeed an equiv-
alence relation for topological spaces.

Proof. We have to check that reflexivity, symmetry and transitivity hold
for the relation ∼= . Indeed, to show that X ∼= X, for all X, we use the
identity map: 1X : X → X is continuous and invertible, the inverse being
1X itself, so it is also continuous. To show that X ∼= Y implies Y ∼= X,
consider a homeomorphism f : X → Y . Its inverse f−1 : X → Y is also a
homeomorphism, as it is continuous, invertible, the inverse being f therefore
continuous. Finally, if X ∼= Y and Y ∼= Z, there are homeomorphisms
f : X → Y and g : Y → Z. Their composition is a homeomorphism, as
immediately follows from Theorem 1.3. Hence X ∼= Z.
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Remark 1.2. One can see that there was nothing peculiar for topological
spaces and continuous maps in the proof of Theorem 1.4. We only used the
fact that homeomorphisms are isomorphisms in the category T op. In any
category the notion of an isomorphism gives rise to an equivalence relation
on the set of objects. (Examples: isomorphisms of groups, vector spaces,
rings, etc.)

We shall give some simple example of homeomorphism of topological
spaces. More examples will appear later.

Example 1.15. Consider the real line R and an arbitrary segment (α, β).
Both taken with the natural topology coming from the metric d(a, b) = |a−b|.
Claim: R ∼= (α, β). Indeed, without loss of generality we may take (α, β) =
(−1, 1), since any two finite intervals are clearly homeomorphic (check!). As a
desired homeomorphism one can take the map f : (α, β) → R, f(x) = tan πx

2
.

For arbitrary (α, β) the statement follows by transitivity.

Example 1.16. Check that for any n the space Rn is homeomorphic to the
open ball B = B1(O) = {x ∈ Rn | ||x|| < 1}. Here ||x||2 = (x1)

2 + . . . (xn)2

is the Euclidean norm.

Example 1.17. By using the stereographic projection with center at the
‘north pole’ N = (0, . . . , 0, 1) onto the plane xn+1 = 0, one can check that
the sphere without a point, Sn \ {N} is homeomorphic to Rn.

Example 1.18. Later we shall see that Sn and Rn are not homeomorphic.

Example 1.19. The 2-dimensional sphere S2 and the surface of a bagel (the
2-torus) T 2 are not homeomorphic. This can be shown, for example, by
considering closed curves without self-intersections on both surfaces. It is
intuitively clear that any such curve on S2 bounds a piece of surface, while
on T 2 there are closed curves (for example, a circle obtained by cutting the
torus by a plane through its axis of symmetry) not bounding anything. To
make this argument precise one has, however, to develop certain topological
technique.

We shall conclude the section by a discussion of one technical notion that
will be used in the future. Let X be an abstract set. A base on a set X is a
collection of subsets B with the properties:

(B1)
⋃

B∈B B = X;
(B2) if B1 ∈ B and B2 ∈ B, then B1 ∩B2 is a union of elements of B.

Example 1.20. Every topology O on X satisfies the axioms of a base.

However, not every base B is a topology (for example, it is not required
that finite intersections belong to the same family B; they have to be just
the unions of elements of B). We shall use bases for constructing topologies.
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Proposition 1.1. Given a set X, if B is a base, then the collection of all
unions of elements of B is a topology.

Proof. Denote the collection of all unions of elements of B by O. We have
to show that O is a topology. Check T1, T2 and T3. Consider T1. By B1,
X =

⋃
B∈B B, hence X ∈ O. The empty set ∅ is the union of the empty

collection of elements of B. Therefore T1 is satisfied. Consider T2. Suppose
U =

⋃
Bi and V =

⋃
µ Bµ where Bi, Bµ ∈ B. Then

U ∩ V =

(⋃
i

Bi

)
∩

(⋃
µ

Bµ

)
=

⋃
i,µ

Bi ∩Bµ =
⋃
i,µ,α

Biµα

where Biµα ∈ B. We used here the axiom B2 for the base B. Hence U∩V ∈ O,
and T2 is satisfied. Finally, consider T3. For an arbitrary family Uα =⋃

µ Bαµ ∈ O we have ⋃
α

Uα =
⋃
αµ

Bαµ ,

which is an element of O. Therefore T3 is also satisfied, and O is a topology.

We shall sometimes use the notation B for the topology consisting of all
unions of elements of a base B. It is called the topology generated by the
base B. On the other hand, if a topology O is already given, and O = B, we
say that B is a base for the topology O.

Example 1.21. Let X be a metric space. The collection of all open balls is
a base for the topology on X considered as a topological space. (There are
two statements: open balls make a base, and this base generate the topology.
The crucial fact is that every open set U is the union of certain open balls.
This can be seen as follows: take for every point x ∈ U an open ball Bx ⊂ U
containing x; then U =

⋃
x Bx.)

We shall see more examples of bases in the future. The point of introduc-
ing bases is to be able to describe topological properties using a “smaller”
number of open sets compared with the collection of all open sets (i.e., the
topology).

Proposition 1.2. Given topological spaces X = (X,OX) and Y = (Y,OY ).
Suppose BY is a base for the topology OY . A map f : X → Y is continuous
if and only if for every B ∈ BY its preimage f−1(B) belongs to OX .

Proof. Since BY ⊂ OY , if f is continuous, then f−1(B) ∈ OX for every
B ∈ BY . Conversely, suppose this condition holds. Check continuity. For
an arbitrary open set V ∈ OY we have V =

⋃
Bi where Bi ∈ BY , hence

f−1(V ) = f−1
(⋃

Bi

)
=

⋃
f−1(Bi), which is open, since each f−1(Bi) is

open by the assumption. Hence f is continuous.
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