
THEODORE VORONOV Fall 2005. TOPOLOGICAL PROPERTIES

§3 Fundamental topological properties

3.1 Closed sets

Consider a topological space X = (X,OX).

Definition 3.1. A set C ⊂ X is closed if Cc = X \ C is open.

Example 3.1. A point, a plane in Rn (directly from definition: it is easy to
see that every point in the complement can be surrounded by a small open
ball, hence the complement is open); Sn in Rn+1 (to be proved later).

Example 3.2. For discrete topology: all sets are closed.

Example 3.3. For indiscrete topology: the closed sets are X,∅.

Example 3.4. For cofinite topology: the closed sets are the finite sets and
X.

Theorem 3.1. Properties of closed sets (dual to those of opens sets):
(T1◦) ∅ and X are closed;
(T2◦) if Ci are closed for all i = 1, . . . , N , then C1 ∪ . . . ∪ CN is closed

(“finite unions”);
(T3◦) if Cα are closed for all α ∈ A (arbitrary set of indices), then

⋂
αCα

is closed (“arbitrary intersections”).

Proof. Follows from the properties of open sets and De Morgan’s formulae.

Theorem 3.2. A map is continuous if and only if the preimage of every
closed set is closed.

Proof. Consider topological spaces X and Y , and a map f : X → Y . “ ⇒ ”
Suppose f is continuous. Take a closed set C ⊂ Y and consider f−1(C) ⊂ X.
We have C = Y \ V for some V ∈ OY . Hence f−1(C) = f−1(Y \ V ) = {x ∈
X | f(x) /∈ C} = X \ f−1(V ). By the continuity of f , the set f−1(V )
is open, hence the set X \ f−1(V ) is closed. “ ⇐ ” Conversely, suppose
that f−1(C) ⊂ X is closed for every closed C ⊂ Y . Take an arbitrary
V ∈ OY . We have V = Y \C for some closed C, and f−1(V ) = f−1(Y \C) =
X \ f−1(C), similarly to the above. By the assumption f−1(C) is closed,
hence its complement is open, and it is f−1(V ). Hence f is continuous.

Example 3.5. Consider in Rn a set C specified by equations:

f1(x1, . . . , xn) = 0,

...

fp(x1, . . . , xn) = 0.
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Suppose the left-hand sides are continuous functions. Then C is closed.
Indeed, we can consider F : Rn → Rp by setting

F (x1, . . . , xn) =
(
f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)

)
.

It is continuous by properties of product topology. Notice that C = F−1({0}).
Therefore C is closed as the preimage of a closed set under a continuous map.

There are plenty of examples.

Example 3.6. Sn is a closed subset of Rn+1. Matrix groups such as O(n),
SL(n) specified by matrix equations in the space of all matrices are closed
subsets.

There is an interesting operation producing a closed set from an arbitrary
given set A ⊂ X. Consider all closed sets containing A. Define the closure
of A, notation A, as their intersection:

A :=
⋂

C is closed
A⊂C

C .

Clearly, A ⊂ A (because A is contained in all sets of which we take the
intersection), A is closed (as the intersection of a family of closed sets) and
any closed set containing A contains A. Hence A is the smallest closed set
containing A and can be defined as such.

Example 3.7. Consider the set [0, 1) ⊂ R. Clearly, [0, 1) is not closed and
its closure is [0, 1] as the smallest closed set containing [0, 1).

Remark 3.1. If C is closed, obviously C = C. This and other properties of
the “closure operator” A 7→ A made axioms can be used for an alternative
axiomatic approach to topological spaces. Such an approach was suggested
by the Polish topologist Kuratowski in 1920s.

Remark 3.2. There is a notion ‘dual’ to the notion of closure. Namely, one
can consider the largest open subset of a given set. It is called the interior

of a set, notation:
◦
A. Notice that for the closure we take supersets of A

and for the interior, subsets (check that doing it other way round would give
uninteresting answers). In particular examples the closure of a set can be the
whole space (such sets are called dense). Similarly, in particular examples
the interior of a set can be empty.

In analysis they give an alternative description of a closed set in a metric
space: a set is closed if it contains all limits of convergent sequences (that
is, if a sequence of elements of A ⊂ X converges, then its limit a∗ ∈ X has
to be in A). Accordingly, the operation of taking closure in this language
becomes transparent: in addition to the points of A, the set A contains all
lacking limits of sequences.
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3.2 Hausdorff property

Definition 3.2. A topological space X = (X,OX) is Hausdorff (or possesses
the Hausdorff property) if for every two points a, b ∈ X such that a 6= b
there are open neighborhoods Ua and Ub of a and b respectively such that
Ua ∩ Ub = ∅.

Shortly, we say that in a Hausdorff space distinct points can be ‘separated’
by disjoint neighborhoods.

Remark 3.3. There are several “separation properties” considered in general
topology. The Hausdorff property is the strongest and the most important
of them.

Example 3.8. The real line R is Hausdorff. Indeed, for real numbers a 6= b
we can take ε-neighborhoods (a− ε, a+ ε) and (b− ε, b+ ε) with ε < 1

2
|a− b|

and they will not intersect.

This immediately generalizes to arbitrary metric spaces.

Theorem 3.3. Every metric space is Hausdorff.

Proof. Suppose we are given a 6= b in a metric space X. Set ε = 1
3
d(a, b)

and consider the open balls Bε(a) and Bε(b). Claim: they do not intersect.
Indeed, suppose there is a point c ∈ Bε(a) ∩ Bε(b). Then, by the triangle
inequality

d(a, b) 6 d(a, c) + d(c, b) < ε+ ε =
2

3
d(a, b),

which is a contradiction! Hence no such c can exist.

In particular, Rn is Hausdorff.
Let us give examples of non-Hausdorff spaces.

Example 3.9. An indiscrete space X,OX = {X,∅} is non-Hausdorff. In-
deed, there is only one nonempty open set, therefore it is not possible to
separate two points by disjoint open neighborhoods.

Example 3.10. R with the cofinite topology is non-Hausdorff. Indeed, one
can notice that any two open sets have nonempty intersection (suppose there
are two disjoint open sets, then the union of their complements, which are
finite, should be R — a contradiction!).

Typical “well-behaved” topological spaces are Hausdorff. Exceptions
from this rule are topological spaces arising in algebraic geometry. Closed
sets there is given by systems of algebraic equations. For example, on a line
there is only one equation, which can have only a finite number of roots, so
it is the case of the cofinite topology. In general, the topology will not be
cofinite, but will still be non-Hausdorff. Another source of non-Hausdorff
spaces, as we shall see later, are certain ‘spaces of orbits’.
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Proposition 3.1. Every point in a Hausdorff space is closed (more precisely,
all one-point sets are closed).

Proof. Indeed, by the Hausdorff property, in the complement X \ {a} of an
arbitrary point a ∈ X every point b ∈ X \ {a} has a neighborhood not
containing a (this follows from the Hausdorff property and is itself a weaker
“separation condition”). Hence X \ {a} is open and {a} is closed.

(We have implicitly used this when speaking about closed sets in Rn in
the previous subsection.)

Theorem 3.4. A subspace of a Hausdorff space is Hausdorff.

Proof. Suppose A ⊂ X is a subspace of a Hausdorff space. Consider a, b ∈ A
such that a 6= b. Since X is Hausdorff, there are U, V ∈ OX s.t. a ∈ U , b ∈ V
and U ∩ V = ∅. Consider U ∩ A ∈ OA, V ∩ A ∈ OA. We have a ∈ U ∩ A,
b ∈ V ∩ A, and (U ∩ A) ∩ (V ∩ A) = ∅ (sketch a picture!). Hence A is
Hausdorff.

Corollary 3.1. If a topological space X can be embedded into RN as a sub-
space, X must be Hausdorff.

Theorem 3.5. The product of Hausdorff spaces is Hausdorff.

Proof. Let X and Y be Hausdorff. Consider X×Y . Suppose (x, y) 6= (x′, y′)
in X × Y . Then either x 6= x′ or y 6= y′. Assume the former. Then by the
Hausdorff property of X, there are disjoint open neighborhoods Ux and Ux′
of the respective points. Take Ux × Y and Ux′ × Y . They are disjoint open
neighborhoods for (x, y) and (x′, y′). If x = x′, but y 6= y′, then we can apply
the same argument using the Hausdorff property of Y .

What happens with Hausdorff spaces under identification?

Example 3.11. Consider the following equivalence relation on R2 \{0}: two
vectors v,u are equivalent if u = λv where λ > 0. Clearly, (R2 \ {0})/ ∼∼=
S1 (sketch a picture). We see that here the identification space is Hausdorff.

This is not always the case, as shown by a slight modification of the same
example.

Example 3.12. Consider the same equivalence relation as above on the
whole R2 (including the zero vector). Clearly, the equivalence classes of
nonzero vectors will be as above, and the equivalence class of 0 will contain
only 0. Hence, R2/ ∼ can be identified with S1 ∪ {0} as a set. What about
topology? Suppose an open set V in the identification topology contains 0.
That means that p−1(V ) is open and contains 0, hence it contains an open
disk with center at the origin. Hence p(p−1(V )) = V is the whole S1 ∪ {0}
(as the classes of non-zero vectors of length < ε will give the whole circle
S1). It follows that 0 in our identification space cannot be separated from
any point of the circle, thus this space is non-Hausdorff.
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So we have to be cautious with identification spaces. They can be non-
Hausdorff even if the initial space is Hausdorff.

In good cases we can still get Hausdorff spaces after an identification.
One more example:

Example 3.13. The Klein bottle K2 is Hausdorff. Indeed, consider two dis-
tinct points of K2. If they are represented by points inside the square, they
clearly can be separated by small open disks. If a point of K2 is represented
by a point on the boundary of the square, as the corresponding neighbor-
hood one can take the image of two “symmetric” small half-disks (consider a
picture!), which in K2 will be glued to a give a disk (more precisely, an open
set homeomorphic to an open disk).

Conclusion: “good” spaces are Hausdorff; such are all subspaces of Rn

and all metric spaces; subspaces and products of Hausdorff spaces are Haus-
dorff. Identification spaces of a Hausdorff space are not necessarily Hausdorff
(though might be).

We should also add that, as one will clearly expect, being Hausdorff is a
‘topological’ property, holding (or otherwise) for all homeomorphic spaces:

Theorem 3.6. If X is Hausdorff and X ∼= Y , then Y is Hausdorff.

Proof. Indeed, let f : X → Y and g : Y → X be mutually inverse homeo-
morphisms. Suppose y1 6= y2. Consider x1 = g(y1) and x2 = g(y2). Clearly,
x1 6= x2 (our maps are invertible!). Since X is Hausdorff, there are open
neighborhoods U1 3 x1 and U2 3 x2 such that U1 ∩ U2 = ∅. Take open
neighborhoods V1 = f(U1) = g−1(U1) and V2 = f(U2) = g−1(U2) of y1 and
y2, respectively. They are as desired (check that the intersection V1 ∩ V2 is
empty!).

3.3 Compactness

3.3.1 General theory

Recall that a cover of a topological space X is a family of subsets A = (Aα)
such that X =

⋃
Aα. The cover A is open if all sets Aα are open.

Definition 3.3. A topological space X is compact if every open cover of X
contains a finite subcover.

Example 3.14. A discrete space is compact if and only if it is finite. Indeed,
consider an open cover consisting of single-point sets: X =

⋃
x∈X{x}. (They

are open because X is discrete.) The possibility to extract a finite subcover,
X = {x1} ∪ . . . ∪ {xN}, is clearly the condition cardX <∞.

Example 3.15. Every indiscrete space is compact (indeed, what is an open
cover in this case?).
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Theorem 3.7. A continuous image of a compact space is compact.

Proof. Consider a continuous map f : X → Y . Let Y =
⋃
Vα be an open

cover of Y . Take the preimages: f−1(Vα). They are open, because f is
continuous. We obviously have X =

⋃
f−1(Vα), because each point of X is

mapped to some point of Y , which belongs to one of the sets Vα. That means
that each point of X is in some f−1(Vα). So we have an open cover. Since X
is compact, we can extract a finite subcover: X = f−1(Vα1)∪ . . .∪ f−1(VαN

).
Applying f to this equality and recalling that the image of the union is the
union of the images and f(f−1(Vα)) ⊂ Vα, we obtain Y = Vα1∪ . . .∪VαN

.

Corollary 3.2. If X is compact and X ∼= Y , then Y is compact.

Proof. Indeed, Y = f(X) where f : X → Y is a homeomorphism.

In other words, compactness is a ‘topological property’, simultaneously
holding, or not, for all topologically equivalent spaces.

Corollary 3.3. All identification spaces of a compact space are compact.

Proof. Indeed, an identification space is the image of the canonical projec-
tion, which is continuous.

What is the relation of compactness with subspaces? A subspace of a
compact space is not necessarily compact. We shall see examples of this
later. However, the situation is different for closed subspaces.

Theorem 3.8. A closed subspace of a compact space is compact.

Remark 3.4. The notion of compactness for subspaces can be reformulated
in the following convenient form. Suppose A ⊂ X is a subspace of a topo-
logical space X; an open cover of A in X is a collection U = (Uα) where all
sets Ua ⊂ X are open in X and A ⊂

⋃
Uα. Clearly, open covers of A in X

are in one-one correspondence with open covers of A as a topological space
(with the subspace topology): one can take A ∩ Uα. Hence compactness for
subspaces of X can be formulated in terms of open covers in X: a subspace
A ⊂ X is compact if and only if every open cover of A in X, A ⊂

⋃
Uα,

contains a finite subcover: A ⊂ Uα1 ∪ . . . ∪ UαN
.

Proof of Theorem 3.8. Let C ⊂ X be a closed subspace. Consider an open
cover of C in X: A ⊂

⋃
Uα. Since C is closed, V = X \ C is open, and

V together with all Uα will give an open cover of X. By the compactness
of X, we can extract a finite subcover: X = Uα1 ∪ . . . ∪ UαN

∪V or X =
Uα1 ∪ . . . ∪ UαN

. Throwing away V if present, we obtain a finite cover of C
in X, which is a subcover of (Uα). Hence C is compact.

There is a useful technical lemma.
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Lemma 3.1. Checking compactness of a topological space X, it is possible to
consider only the covers consisting of elements of a fixed base of the topology
of X.

Proof. Left as an exercise.

Theorem 3.9. A product of compact spaces is compact.

Proof. 1 We shall prove this for the product of two compact space. Suppose
X, Y are compact. To prove that the product space X × Y is compact,
consider an arbitrary cover of X×Y by open sets of the form Uα×Vα, where
Uα ∈ OX , Vα ∈ OY . By Lemma 3.1 it is sufficient to consider only such
open covers. Let x ∈ X be an arbitrary point of X. Consider the subspace
{x} × Y ⊂ X × Y . It is compact (as homeomorphic to Y ), hence

{x} × Y ⊂ Uα1(x) × Vα1(x) ∪ . . . ∪ UαN (x) × VαN (x).

Consider the intersection Ux := Uα1(x) ∩ . . . ∩ UαN (x). Notice that it is an
open subset of X. We have, clearly,

Ux × Y ⊂ Uα1(x) × Vα1(x) ∪ . . . ∪ UαN (x) × VαN (x).

On the other hand, the collection of all Ux (for all x ∈ X) is an open cover
of X. Since X is compact, there is a finite subcover: X = Ux1 ∪ . . . ∪ UxN′ .
It follows that

X × Y = Ux1 × Y ∪ . . . ∪ UxN′ × Y ⊂(
Uα1(x1) × Vα1(x1) ∪ . . . ∪ UαN (x1) × VαN (x1)

)
∪ . . .∪(

Uα1(xN′ ) × Vα1(xN′ ) ∪ . . . ∪ UαN (xN′ ) × VαN (xN′ )

)
.

To conclude our general discussion of compact spaces, let us make a
statement which is almost obvious:

Theorem 3.10. If topological spaces X and Y are homeomorphic, and X is
compact, then Y is also compact.

Proof. Indeed, suppose f : X → Y is a homeomorphism. Then Y = f(X),
and the statement follows from Theorem 3.7.

In other words, compactness is a ‘topological’ property, which holds, or
otherwise, simultaneously for all topologically equivalent spaces.

1Required only for MSc students.
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3.3.2 Compactness for metric spaces and subspaces of Rn

Theorem 3.11. If a metric space is compact, then it is bounded.

Proof. Indeed, choose a point a and consider the cover B = (Bn(a)) by open
balls Bn(a) with center at a and radii n = 1, 2, . . .. We have

B1(a) ⊂ B2(a) ⊂ . . . .

A possibility to extract a finite subcover will mean that the whole space is a
ball BN(a), for some N .

The following properties concerning compactness and metric spaces are an
extra material not included in the course. They give a general criterion of com-
pactness for metric spaces.

Theorem 3.12. If a metric space is compact, then it is complete. (Notice that
completeness is not a topological property!)

Proof. Should be given in the analysis course.

Theorem 3.13 (Hausdorff criterion). A metric space is compact if and only if it
is complete and for any ε > 0 can be covered by a finite number of ε-balls. (This
is stronger than being bounded.)

Proof. Omitted.

Now let us turn from general metric spaces to subspaces of Rn.

Lemma 3.2 (Heine–Borel Lemma). In ⊂ Rn is compact.

Proof. By subdivision. Suppose this is not true, i.e., there exists an open
cover of the cube such that there is no finite subcover. Fix this cover, denote
it U. We shall get a contradiction. The method is subdividing our cube into
increasingly smaller cubes. Divide the side by 2 and consider the resulting 2n

cubes with side 1/2. U is an open cover for each of them. If for every small
cube there is a finite subcover, then together they will give a finite subcover
for the whole cube, which we assume does not exist. Hence, there is no finite
subcover for at least one small cube. Denote it C1. (We denote the original
cube C0.) Divide the side of C1 by 2. We get even smaller cubes (with side
1/4). For the same reason, at least one of them cannot be covered by a finite
number of elements of U. Denote it C2. (We choose one, if there are several.)
Continuing in this way we will obtain a sequence of nested cubes

C0 ⊃ C1 ⊃ C2 ⊃ . . .

with sides 1, 1/2, 1/4, . . . having the property that none of them can be cov-
ered by a finite number of elements of the cover U. On the other hand, from
one of the properties of real numbers (the intersection of a nested sequence of
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closed segments is not empty) follows that
⋂
Ck 6= ∅. Take a point a ∈

⋂
Ck.

Clearly, a ∈ U for some U ∈ U, because U is a cover for [0, 1]n. Since U is
open, it contains an ε-ball with centre a. Obviously, for N large enough,
CN ⊂ Bε(a), because a ∈ CN and the side of the cube can be made as small
as we wish. Hence, CN is covered by a single element U from U, which is a
contradiction to our choice of the cubes C0, C1, C2, . . .. It follows that our
assumption was wrong, and C0 = [0, 1]n can be covered by a finite number
of elements of an arbitrary open cover U, i.e., that [0, 1]n is compact.

Corollary 3.4. Any closed cube in Rn is compact.

Theorem 3.14 (Heine–Borel Theorem). Every closed and bounded subspace
in Rn is compact. Conversely, every compact subspace in Rn is closed and
bounded.

Proof. Suppose a subspace A ⊂ Rn is a closed and bounded subset. Since
A is bounded, there is a cube C = [−R,R]n such that A ⊂ C. The subset
A ⊂ C is closed. As follows from the Heine–Borel Lemma, the cube C
is compact. Hence, A is compact as a closed subspace of a compact space.
Conversely, assume that a subspace A ⊂ Rn is compact. A must be bounded,
as a compact metric space. It remains to prove that A is a closed subset of
Rn. This will be done later (see below after Theorem 3.15).

There are plenty of examples of compact and non-compact spaces, which
can obtained using the Heine–Borel Theorem.

Example 3.16. Rn itself is non-compact (unbounded).

Example 3.17. Sn, which we consider as the unit sphere with center at the
origin in Rn+1, is compact. Indeed, it is bounded (easy to show: all distances
are bounded by 2) and it is closed in Rn+1 as a set specified by an equation
with continuous left-hand side (see Example 3.6).

Example 3.18. Among matrix groups compact are, for example, O(n),
SO(n), U(n) and SU(n). All of them are closed (as sets specified by con-
tinuous equations in the spaces of all matrices) and bounded, which can be
shown directly. At the same time, non-compact are, for example, GL(n),
SL(n), because they are unbounded.

Example 3.19. An open interval (0, 1) is non-compact. Though it is bounded,
it is not closed as a subset of R.

3.3.3 Compactness and Hausdorff spaces

Lemma 3.3 (“Separation of a point from a compact subspace”). Suppose
X is Hausdorff. Let K ⊂ X be compact, a /∈ K. Then there are open sets
UK ⊃ K and Ua 3 a such that UK ∩ Ua = ∅.
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Proof. Since X is Hausdorff, for all points b ∈ K we can find open sets Ub 3 b
and Vb 3 a such that Ub∩Vb = ∅. We get an open cover of K by all such Ub.
Since K is compact, there is an open subcover: K ⊂ Ub1 ∪ . . . ∪ UbN where
Ubi ∩ Vbi = ∅. Denote UK := Ub1 ∪ . . . ∪ UbN . Take Vb1 ∩ . . . ∪ VbN =: Ua. Ua
contains a and is open. Moreover, Ua∩Ubi = ∅ for all i, hence Ua∩UK = ∅,
as required.

Theorem 3.15. Every compact subspace of a Hausdorff space is closed.

Proof. Take K ⊂ X. Consider X \K. A point from X \K can be separated
from K by an open set. Hence every point of X\K has an open neighborhood
contained in X \K. Hence X \K is open, i.e., K is closed.

As a corollary, we see that every compact subspace of Rn is a closed subset,
which completes the above proof of the Heine–Borel theorem.

Theorem 3.16 (Homeomorphism theorem). If a continuous map from a
compact space to a Hausdorff space is invertible, then it is a homeomorphism.

Proof. Consider f : X → Y so that X is compact, Y Hausdorff, f continuous
and invertible. Consider the map f−1 : Y → X. We have to check that it
is continuous. For this sake, we shall check that for any closed set C ⊂ X,
its preimage under f−1, that is (f−1)−1(C), is closed in Y . Notice that
(f−1)−1(C) = f(C). Now, C ⊂ X is compact as a closed subset of a compact
space; therefore f(C) ⊂ Y is compact as a continuous image of a compact
space. Since Y is Hausdorff, it follows that f(C) is closed, as claimed. Hence
f−1 is continuous.

Corollary 3.5. Given a continuous map f : X → Y , where X is compact, Y
Hausdorff, so that f is one-to-one (injective). Then f is a homeomorphism
onto f(X).

Applications of this theorem (and the corollary) are related with the case
Y = Rn. For many reasons it is desirable to embed an abstract topological
X into some Rn, with a suitable n, as a subspace.

Example 3.20. Consider the projective spaces RP n and CP n. Both are
defined as abstract topological spaces. However, it is not difficult to construct
continuous and injective maps of each of the spaces to RN , for a sufficiently
large N . (One can associate with a line in Rn+1 or Cn+1 a linear operator
on Rn+1 or Cn+1, respectively, in such a way that it will give a continuous
injection of RP n or CP n to Mat(n + 1,R) ∼= R(n+1)2 or Mat(n + 1,C) ∼=
R2(n+1)2 . Since RP n and CP n are compact (as continuous images of spheres),
the corollary from the Homeomorphism Theorem is applicable. Hence RP n

and CP n are homeomorphic to subspaces of a Euclidean space.

In particular, it follows that RP n and CP n are Hausdorff.
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3.4 Connectedness and path-connectedness

[Under construction]

Definition 3.4. A topological space X is called connected if it cannot be
presented as the union of two disjoint non-empty sets. Otherwise, X is
disconnected.

In more detail, X is disconnected if there are U, V ∈ OX such that U 6= ∅,
V 6= ∅, X = U ∪ V and U ∩ V = ∅. It is connected if no such U and V
exist.

Example 3.21. If X is discrete, then X is connected only if X is a singleton.
If cardX > 1, then it is disconnected. Indeed, if there are more than two
points in X, we can write X = {x0} ∪ (X \ {x0}). Otherwise there is only
one non-empty set {x0} = X.

Example 3.22. An indiscrete space X is always connected. (There are not
too many open sets in X!) Indeed, the only nonempty open set is X, hence
its complement is the empty set. It follows that it is not possible to present
X as X = U ∪ V where U, V are open, nonempty, and U ∩ V = ∅.

Theorem 3.17. The continuous image of a connected space is connected.

Proof. Consider a continuous map f : X → Y where X is connected. Sup-
pose f(X) is disconnected (as a subspace of Y ). That means that f(X) =
A ∪ B where A and B are nonempty open sets in f(X) so that A ∩ B = ∅.
Consider X = f−1(f(X)) = f−1(A ∪ B) = f−1(A) ∪ f−1(B). We have:
f−1(A) and f−1(B) are open (since f is continuous) and nonempty (because
A ⊂ f(X), B ⊂ f(X)), and f−1(A) ∩ f−1(B) = f−1(A ∩ B) = ∅. Contra-
diction with the connectedness of X!

Corollary 3.6. If X is connected and X ∼= Y , then Y is connected.

Proof. Indeed, Y = f(X) where f : X → Y is a homeomorphism.

In other words, connectedness is a ‘topological property’.

Corollary 3.7. All identification spaces of a connected space are connected.

Proof. Indeed, an identification space is the image of the canonical projec-
tion, which is continuous.

Theorem 3.18. If X, Y are connected, then X × Y is connected.

(Proof required for MSc only)

Lemma 3.4. Every segment [a, b] is connected.

(Proof required for MSc only)
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Definition 3.5. A path in a topological space X is a continuous map

γ : [0, 1]→ X.

Remarks: paths are also called ‘parametrized curves’. A path is not a
subset of X, but a map. Often instead of [0, 1] an arbitrary segment [a, b] is
considered (this has advantages and disadvantages).

Paths can be composed. Namely, define

(γ1 ∗ γ2)(t) =

{
γ1(2t) for t ∈ [0, 1

2
]

γ2(2t− 1) for t ∈ [1
2
, 1]

for paths γ1 : [0, 1] → X, γ2 : [0, 1] → X, if γ1(1) = γ2(0). Clearly, it is
a well-defined continuous map [0, 1] → X. It is called the composition of
γ1 and γ2. (Do not confuse with composition of maps, i.e., applying maps
successively. For paths it would make no sense, though.)

Remark: composition of paths is not associative. However, it will become
associative if paths are considered up to a change of parametrization (paths γ
and γ ◦ϕ where ϕ : [0, 1]→ [0, 1] is a homeomorphism identified). It will also
be associative if arbitrary segments [a, b] ⊂ R will be allowed (in this case, the
composition of paths should be slightly redefined). Associativity (as well as
the existence of ‘unities’, one for each point of X and the inverses, w.r.t. the
composition of paths) will definitely hold if one passes from individual paths
to the so-called homotopy classes of paths, i.e., consider paths with fixed
endpoints up to continuous deformations. This will feature an algebraic
structure associated with the space X called the fundamental groupoid of
X. (A groupoid, by definition, is a category where all arrows are invertible.
Objects for the fundamental groupoid are points of X, arrows, homotopy
classes of paths.)

Definition 3.6. Points x0 and x1 in X can be joined by a path (or simply can
be joined) if there is a path γ : [0, 1]→ X such that γ(0) = x0 and γ1(x1).

One can show that to ‘can be joined by a path’ is an equivalence relation
(to prove reflexivity, use constant paths; for symmetry, consider the ‘inverse’
path γ̄ where γ̄(t) = γ(1− t); for transitivity, apply composition of paths).

Definition 3.7. A topological space X is path-connected if any two points
in X can be joined by a path.

Theorem 3.19. If X is path-connected, then X is connected.

Proof. Let X be a path-connected topological space. Suppose it is discon-
nected, i.e., there are nonempty open sets U, V such that X = U ∪ V and
U ∩ V = ∅. Take a point a ∈ U and a point b ∈ V . Consider γ−1(U)
and γ−1(V ). These are nonempty (since 0 ∈ γ−1(U) and 1 ∈ γ−1(V )), open
(as preimages of open sets under a continuous map) sets in [0, 1]. Moreover,
γ−1(U) ∪ γ−1(V ) = [0, 1] and γ−1(U) ∩ γ−1(V ) = ∅. Contradiction with the
connectedness of [0, 1]. Hence, X is connected.

12
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Remark: the converse is not true in general.

Theorem 3.20. If X, Y are path-connected, then X × Y are connected.

Theorem 3.21. If X is path-connected, f : X → Y is continuous, then X
is path-connected.

Examples of path-connected spaces: Rn; an open ball (convex!). S1, S2,
Sn. Hence RP n, CP n. The square I2, and its identification spaces. U(n),
GL(n,C). SO(n) (by a canonical form of an orthogonal matrix).

Theorem 3.22. If every point of X has a path-connected neighborhood and
X is connected, then X is path-connected.

Proof. Fix a point a ∈ X and define H as the set of all points that can be
joined with a. The aim is to prove that H = X. Consider a point h ∈ H.
There is an open neighborhood Uh of h in X which is path-connected. In
particular, every point of it can be joined with h, hence with a. Hence
Uh ⊂ H for every h ∈ H. It follows that H is open. Consider X \ H.
Suppose it is nonempty. Take k ∈ X \H. There is an open neighborhood Uk
of k in X which is path-connected. In particular, every point x of it can be
joined with k. If x could also be joined with a, then k could be joined with
a, which is a contradiction. Hence no point of Uk can be joined with a, i.e.
Uk ⊂ X \H. That means that X \H is open. This is a contradiction with the
connectedness of X! It follows that X \H must be empty, i.e. X = H.

Example: open sets in Rn.

Theorem 3.23. Every connected open subspace of a Euclidean space U ⊂ Rn

is path-connected.

Proof. Indeed, every point in an open subspace U of a Euclidean space can
be surrounded by an open balled entirely contained in U . It is clearly path-
connected. Then we can repeat the above proof.

Another example: manifolds (see the next section).
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