§5 The Euler Characteristic

§5.1 Triangulated Spaces

We are going to consider topological spaces built of blocks of a simple structure, called "simplices".

What is a simplex?
Consider \mathbb{R}^{N} with some sufficiently large N. Let p_{0}, \cdots, p_{k} be some points in \mathbb{R}^{N}.

Definition

p_{0}, \cdots, p_{k} are independent (or in general position) \Longleftrightarrow the vectors $\overrightarrow{p_{0} p_{1}}, \cdots, \overrightarrow{p_{0} p_{k}}$ ar linearly independent.

Examples:

1. $k=0$: no condition ${ }^{\circ}{ }^{\rho}{ }_{0}$
2. $k=1: p_{0}, p_{1}$ independent $\Longleftrightarrow p_{0} \neq p_{1}{\stackrel{{ }^{\circ}}{p_{0}}}^{p_{1}}$
3. $k=2: p_{0}, p_{1}, p_{2}$ independent \Longleftrightarrow non-collinear (not on the same line) :

Definition:

A simplex in \mathbb{R}^{N} with vertices p_{0}, \cdots, p_{k} (assumed to be independent) is the subspace:

$$
\left[p_{0}, \cdots, p_{k}\right]:=\left\{p \in \mathbb{R}^{N} \mid p=\sum_{i=0}^{k} t_{i} p_{i}, t_{i} \geq 0, \sum_{i=0}^{k} t_{i}=1\right\}
$$

Examples:

1. $\left[p_{0} p_{1}\right]=\left\{t_{0} p_{0}+t_{1} p_{1} \mid t_{0}+t_{1}=1, t_{0}, t_{1} \geq 0\right\}=\left\{(1-t) p_{0}+t p_{1} \mid t \in[0,1]\right\} \underset{\rho_{0}}{\rho_{0}} \stackrel{p}{\circ} p_{1}$
2. $\left[p_{0} p_{1} p_{2}\right]$ is a triangle : $\overbrace{p_{0}} p_{p_{2}}$
3. $\left[p_{0} p_{1} p_{2} p_{3}\right]$ is a tetrahedron (3-dimensional simplex):

Definition:

k is called the dimension of $\left[p_{0}, \cdots, p_{k}\right]$.
Notation for simplices: σ, τ, π, ρ (Greek letters).

Definition:

Let K be a finite collection of simplices of various dimensions in some $\mathbb{R}^{N} . K$ is a simplicial complex \Longleftrightarrow

1. If $\rho \in K$, then all faces of ρ also belong to K,
2. If $\rho \in K, \tau \in K$, then either $\rho \cap \tau=\oslash$ or $\rho \cap \tau$ is a common face.

What is a "face"? A face is obtained from a simplex $\left[p_{0}, \cdots, p_{k}\right]$ by setting some of the parameters t_{0}, \cdots, t_{k} to 0 . (Maybe none - then we get the whole $\left[p_{0}, \cdots, p_{k}\right]$ as its own face).

Examples:

1. For a 0 -simplex p_{0} we have just one 0 -face: p_{0} itself. ${ }^{\circ}{ }^{\mathrm{p}}$ 。
2. For a 1-simplex $\left[p_{0} p_{1}\right]:{ }_{{ }^{\boldsymbol{p}_{0}}{ }_{p}}^{p_{1}}$

0 -faces: ${ }^{\circ}{ }_{\mathrm{p}_{0}} \quad, \quad{ }^{\circ} \mathrm{p}_{1}$
1-face: ${ }^{{ }^{p_{0}}}{ }^{p_{1}}$
3. For a 2-simplex $\left[p_{0} p_{1} p_{2}\right]:{ }_{p_{0}} p_{p_{2}}$

0-faces: ${ }^{\circ}{ }_{p_{0}} \quad, \quad{ }^{\circ}{ }_{p_{1}} \quad,{ }^{\circ}{ }_{p_{2}}$

2-face:

4. For a tetrahedron:

0 -faces: $p_{0}, p_{1}, p_{2}, p_{3}$
1-faces: $\left[p_{0} p_{1}\right],\left[p_{0} p_{2}\right],\left[p_{0} p_{3}\right],\left[p_{1} p_{2}\right],\left[p_{1} p_{3}\right],\left[p_{2} p_{3}\right]$
2 -faces: $\left[p_{0} p_{1} p_{2}\right],\left[p_{0} p_{1} p_{3}\right],\left[p_{0} p_{2} p_{3}\right],\left[p_{1} p_{2} p_{3}\right]$
3 -face: $\left[p_{0} p_{1} p_{2} p_{3}\right]$

For a simplicial complex K in \mathbb{R}^{N}, the union of all its simplices is a topological space (subspace of \mathbb{R}^{N}) called the body of K. Notation:

$$
|K|=\bigcup_{\sigma \in K} \sigma
$$

Remark

K is a collection of simplices (a set of simplices); $|K|$ is a topological space (a union of simplices).

Examples

1 ρQ_{0}^{Q} - These are NOT simplicial complexes (bad intersections)
(The pictures show some simplices in the plane; would-to-be simplicial complexes are their collections; the condition (1) is assumed to hold.)

Definition

Let X be a topological space. A triangulation of X is a homeomorphism $\phi: X \xlongequal{\cong}|K|$, for some simplicial complex K.

Remark

If a space X admits a triangulation, then X is compact. Indeed, for every simplicial complex K, if there is a finite number of simplices then the body $|K|$ is a bounded and closed (each simplex is closed) subspace of \mathbb{R}^{N}.
(To accomodate noncompact spaces, one should consider "infinite simplicial complexes" and "infinite triangulations". We won't do this.)

§5.2 Euler Characteristic

Suppose K is a simplicial complex. Notation:

$$
c_{k}(K)=\#\{\text { simplices } \sigma \in K \mid \operatorname{dim} \sigma=k\}
$$

(the number of simplices of dimension k.)

Definition

The alternating sum

$$
\chi(K)=\sum c_{k}(K)(-1)^{k}=c_{0}(K)-c_{1}(K)+\cdots
$$

is called the Euler characteristic of K. (Sum is finite).

Definition

If X is a triangulated space, i.e. there is a triangulation $X \cong|K|$ for some K, we set

$$
\chi(X):=\chi(K)
$$

and call $\chi(X)$ the Euler characteristic of the topological space X.
What if different triangulations are taken?

Theorem

If for simplicial complexes K and L their bodies $|K|$ and $|L|$ are homeomorphic, then $\chi(K)=\chi(L)$.
(Topological invariance of the Euler characteristic.)
(Proof omitted!)

Examples

1. $X=\left\{x_{0}\right\}$ (one-point space). Then $K=\{[p 0]\}, c_{0}(K)=1, \chi(X)=1$.
2. A segment (closed):

$$
\stackrel{{ }_{\mathfrak{p}_{0}}}{\mathrm{p}_{1}} \quad c_{0}=2, c_{1}=1 \Rightarrow \chi=2-1=1
$$

or

$$
\ldots c_{0}=7, c_{1}=6 \Rightarrow \chi=7-6=1 .
$$

$$
\chi([a, b])=1
$$

3. A circle: $c_{0}=3, c_{1}=3 \Rightarrow \chi=3-3=0$.
or

$$
c_{0}=8, c_{1}=8 \Rightarrow \chi=8-8=0
$$

$$
\chi\left(S^{1}\right)=0
$$

4. A closed disk $\overline{D^{2}} \cong I^{2}$ (a square)

$$
c_{0}=4, c_{1}=5, c_{2}=2 \Rightarrow \chi=4-5+2=1
$$

or

$$
\begin{aligned}
& c_{0}=5, c_{1}=8, c_{2}=4 \Rightarrow \chi=5-8+4=1 \text {. } \\
& \chi\left(\overline{D^{2}}\right)=1
\end{aligned}
$$

5. A Sphere S^{2} :

$$
\left.\cong \underset{\substack{\mathbf{p}_{1} \\
\mathbf{p}_{0} \\
\text { (surface of } 3-\\
\text { simplex) }}}{\mathrm{p}_{2}=4} \begin{array}{l}
c_{0}=4 \\
\mathbf{p}_{2}=6
\end{array}\right\} \Rightarrow \chi=4-6+6=2
$$

6. A Cylinder $S^{1} \times[0,1]$:

$$
\chi(\mathrm{Cyl})=0
$$

7. A Möbius strip

$$
\chi(\mathrm{Möb})=0
$$

Remark

It is not a coincidence that $\chi($ cyl $)=\chi$ (Möb) $=0$. First, $\mathrm{Cyl}=S^{1} \times[0,1]$. There is a theorem that $\chi(X \times Y)=\chi(X) \cdot \chi(Y)$. Hence $\chi\left(S^{1} \times[0,1]\right)=0$ because $\chi\left(S^{1}\right)=0$. Next, although a Möbius strip is not a product (like $S^{1} \times[0,1]$), it is a "twisted product" of S^{1} and $[0,1]$ in a certain precise sense. There is a map Möb $->S^{1}$ (projection onto the central circle), and locally the part that projects onto a small arc looks like a Cartesian
product with $[0,1]$. It turns out that the Euler characteristic is multiplicative with respect to such "twisted products" as well.

The following theorem gives a powerful tool for calculating χ :

Theorem

(The Excision Formula)
Suppose a simplicial complex is the union of two "subcomplexes" (subsets each of which is a simplicial complex) $K \cup L$. Then $K \cap L$ is also a simplicial complex, and the following formula holds:

$$
\chi(K \cup L)=\chi(K)+\chi(L)-\chi(K \cap L)
$$

Proof

Consider $c_{k}(K), c_{k}(L), c_{k}(K \cup L)$. Each k-simplex in $K \cup L$ belongs to K or L or both. Hence $c_{k}(K \cup L)=c_{k}(K)+c_{k}(L)-c_{k}(K \cap L)$, where we subtract the number of simplices counted twice in both K and L. The formula for χ follows.

§5.3 Application to surfaces

Problem

Find χ for S^{2} with n holes (i.e. $S^{2} \backslash(n$ disks))

Solution

A "hole" is an open disk taken away (the boundary is left, so S^{2} with a hole remains compact).

Since $D^{2} \cong$ triangle, we can take a sufficiently fine triangulation of S^{2} and making a hole then will mean removing the interior part of some triangle. Obviously, then $c_{2} \rightarrow c_{2}-1, c_{0}, c_{1}$ remain the same. As a result
$\chi\left(S^{2}\right.$ with one hole $)=c_{0}-c_{1}+\left(c_{2}-1\right)=\chi\left(S^{2}\right)-1$,
$\chi\left(S^{2}\right.$ with n holes $)=\chi\left(S^{2}\right)-n$

It immediately follows that:

Indeed, we can apply the Excision Formula:

$$
\begin{aligned}
\chi(H(n)) & =\chi\left(S^{2} \text { with } 2 n \text { holes }\right)+\chi(n \text { cylinders })-\chi(2 n \text { circles }) \\
& =2-2 n+n \cdot 0-2 n \cdot 0 \\
& =2-2 n
\end{aligned}
$$

(Here $H(n)=\left(S^{2}\right.$ with $2 n$ holes $) \cup(n$ "handles" $=$ cylinders $)$, and the intersection consists of $2 n$ boundary circles:

Similarly, for $M(n)$:

$$
\begin{aligned}
\chi(M(n)) & =\chi\left(S^{2} \text { with } n \text { holes }\right)+\chi(n \text { Möbius bands })-\chi(n \text { circles }) \\
& =2-n+n \cdot 0-n \cdot 0 \\
& =2-n
\end{aligned}
$$

Corollaries

1. $\chi\left(T^{2}\right)=0$:

$$
\chi\left(\begin{array}{c}
T^{2}
\end{array}\right)=\chi(H(1))=2-2 \cdot 1=0
$$

2.

$$
\chi\left(\mathbb{R} P^{2}\right)=\chi(M(1))=2-1=1
$$

3.

$$
\chi(\text { Klein bottle })=\chi(M(2))=2-2=0
$$

Remark

We see that the number " n " in $H(n)$ or $M(n)$ is encoded in the Euler characteristic of a surface. Hence, with the Classification Theorem at hand), a closed surface is classified completely by

1. orientability/non-orientability, and
2. Euler characteristic.

Example

A closed surface is obtained by cutting a hole in T^{2} and gluing a Möbius strip into it. To which standard surface is this homeomorphic?

Answer

First, because there is a Möbius strip, it is non-orientable. Hence we look for some $M(n)$. Now, for our surface $M, \chi(M)=\chi\left(T^{2}\right.$ with a hole $)+\chi(\operatorname{Möb})-\chi\left(S^{1}\right)$. The last two terms are both zero, and so $\chi(M)=\chi\left(T^{2}\right.$ with a hole $)$.

Let us now find $\chi\left(T^{2}\right.$ with a hole):
Notice that $T^{2}=\left(T^{2}\right.$ with a hole $) \cup\left(\operatorname{disk} D^{2}\right)$, with intersection S^{1}. This gives $0=$ $\chi\left(T^{2}\right)=\chi\left(T^{2}\right.$ with a hole $)+\left(\chi\left(D^{2}\right)=1\right)-\left(\chi\left(S^{1}\right)=0\right)$ from which we see that $\chi\left(T^{2}\right.$ with a hole $)=$ -1 and finally $\chi(M)=-1$.

If we now compare this with $\chi(M(n))=2-n$, we conclude that $n=3$, and that $M \cong M(3)$.

Pictures

(Try to find a homeomorphism directly!)

