§5 The Euler Characteristic

§5.1 Triangulated Spaces

We are going to consider topological spaces built of blocks of a simple structure, called "simplices".

What is a simplex? Consider \mathbb{R}^N with some sufficiently large N. Let p_0, \dots, p_k be some points in \mathbb{R}^N .

Definition

 p_0, \dots, p_k are *independent* (or *in general position*) \iff the vectors $\overrightarrow{p_0p_1}, \dots, \overrightarrow{p_0p_k}$ ar linearly independent.

Examples:

1. k = 0: no condition \circ_{P_0}

2. k = 1: p_0, p_1 independent $\iff p_0 \neq p_1 \quad {}^{\bullet}_{\mathsf{P}_0} = {}^{\bullet}_{\mathsf{P}_1}$

3. k = 2: p_0, p_1, p_2 independent \iff non-collinear (not on the same line) :

P₀ P₂

Definition:

A simplex in \mathbb{R}^N with vertices p_0, \dots, p_k (assumed to be independent) is the subspace:

$$[p_0, \cdots, p_k] := \{ p \in \mathbb{R}^N | p = \sum_{i=0}^k t_i p_i, t_i \ge 0, \sum_{i=0}^k t_i = 1 \}$$

Examples:

1.
$$[p_0p_1] = \{t_0p_0 + t_1p_1 | t_0 + t_1 = 1, t_0, t_1 \ge 0\} = \{(1-t)p_0 + tp_1 | t \in [0,1]\}$$

2. $[p_0p_1p_2]$ is a triangle : p_0

3. $[p_0p_1p_2p_3]$ is a *tetrahedron* (3-dimensional simplex):

Definition:

k is called the *dimension* of $[p_0, \cdots, p_k]$. Notation for simplices: σ, τ, π, ρ (Greek letters).

Definition:

Let K be a finite collection of simplices of various dimensions in some \mathbb{R}^N . K is a simplicial $complex \iff$

- 1. If $\rho \in K$, then all faces of ρ also belong to K,
- 2. If $\rho \in K, \tau \in K$, then either $\rho \cap \tau = \emptyset$ or $\rho \cap \tau$ is a common face.

What is a "face"? A face is obtained from a simplex $[p_0, \dots, p_k]$ by setting some of the parameters t_0, \dots, t_k to 0. (Maybe none - then we get the whole $[p_0, \dots, p_k]$ as its own face).

٥ ٥ ٥

ρ,

Examples:

1. For a 0-simplex p_0 we have just one 0-face: p_0 itself. $^{\circ}P_0$

۹[₽] 1

p₂

2. For a 1-simplex $[p_0p_1]$: $\overset{\bullet}{\mathsf{P}_0}$

0-faces: $^{\circ}P_{0}$, $^{\circ}P_{1}$

1-face: **p**₀ **p**₁

3. For a 2-simplex
$$[p_0p_1p_2]$$
: $\stackrel{\frown}{p_0} p_2$
0-faces: $\stackrel{\circ}{p_0}$, $\stackrel{\circ}{p_1}$, $\stackrel{\circ}{p_2}$

1-faces:
$$\mathbf{p}_{0}$$
 \mathbf{p}_{1} , \mathbf{p}_{1} \mathbf{p}_{2} ,

$$p_{0}^{p_{3}}$$

4. For a tetrahedron:

0-faces: p_0, p_1, p_2, p_3

1-faces: $[p_0p_1], [p_0p_2], [p_0p_3], [p_1p_2], [p_1p_3], [p_2p_3]$

- 2-faces: $[p_0p_1p_2], [p_0p_1p_3], [p_0p_2p_3], [p_1p_2p_3]$
- 3-face: $[p_0p_1p_2p_3]$

For a simplicial complex K in \mathbb{R}^N , the union of all its simplices is a topological space (subspace of \mathbb{R}^N) called the *body* of K. Notation:

$$|K| = \bigcup_{\sigma \in K} \sigma$$

Remark

K is a collection of simplices (a set of simplices); |K| is a topological space (a union of simplices).

Examples

(The pictures show some simplices in the plane; would-to-be simplicial complexes are their collections; the condition (1) is assumed to hold.)

Definition

Let X be a topological space. A triangulation of X is a homeomorphism $\phi: X \xrightarrow{\cong} |K|$, for some simplicial complex K.

Remark

If a space X admits a triangulation, then X is compact. Indeed, for every simplicial complex K, if there is a *finite* number of simplices then the body |K| is a bounded and closed (each simplex is closed) subspace of \mathbb{R}^N .

(To accomodate noncompact spaces, one should consider "infinite simplicial complexes" and "infinite triangulations". We won't do this.)

§5.2 Euler Characteristic

Suppose K is a simplicial complex. Notation:

 $c_k(K) = \#\{\text{simplices } \sigma \in K | \dim \sigma = k\}$

(the number of simplices of dimension k.)

Definition

The alternating sum

$$\chi(K) = \sum c_k(K)(-1)^k = c_0(K) - c_1(K) + \cdots$$

is called the *Euler characteristic* of K. (Sum is finite).

Definition

If X is a triangulated space, i.e. there is a triangulation $X \cong |K|$ for some K, we set

$$\chi(X) := \chi(K)$$

and call $\chi(X)$ the *Euler characteristic* of the topological space X.

What if different triangulations are taken?

Theorem

If for simplicial complexes K and L their bodies |K| and |L| are homeomorphic, then $\chi(K) = \chi(L)$.

(Topological invariance of the Euler characteristic.) (Proof omitted!) \Box

Examples

1. $X = \{x_0\}$ (one-point space). Then $K = \{[p_0]\}, c_0(K) = 1, \chi(X) = 1$.

2. A segment (closed):

4. A closed disk $\overline{D^2} \cong I^2$ (a square)

$$c_0 = 4, c_1 = 5, c_2 = 2 \Rightarrow \chi = 4 - 5 + 2 = 1$$

or

$$c_0 = 5, c_1 = 8, c_2 = 4 \Rightarrow \chi = 5 - 8 + 4 = 1.$$

 $\overline{\chi(\overline{D^2}) = 1}$

5. A Sphere S²:

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array} \\$$
} \\
\end{array} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

} \\

}

or
$$\simeq$$
 \simeq \sim $c_0 = c$
 $c_1 = 18$
 $c_2 = 12$ $\Rightarrow \chi = 8 - 18 + 12 = 2$
 $\chi(S^2) = 2$

6. *A Cylinder* $S^1 \times [0, 1]$:

$$\begin{array}{c}
c_0 = 8\\
c_1 = 16\\
c_2 = 8
\end{array} \Rightarrow \chi = 8 - 16 + 8 = 0$$

 $\chi(\mathrm{Cyl}) = 0$

7. A Möbius strip

$$\begin{array}{c}
c_0 = 6\\
c_1 = 12\\
\lor c_2 = 6\end{array} \Rightarrow \chi = 6 - 12 + 6 = 0$$

$$\overrightarrow{\chi(\text{M\"ob})} = 0$$

Remark

It is not a coincidence that $\chi(\text{cyl}) = \chi(\text{M\"ob}) = 0$. First, $\text{Cyl} = S^1 \times [0, 1]$. There is a theorem that $\chi(X \times Y) = \chi(X) \cdot \chi(Y)$. Hence $\chi(S^1 \times [0, 1]) = 0$ because $\chi(S^1) = 0$. Next, although a Möbius strip is *not* a product (like $S^1 \times [0, 1]$), it is a "twisted product" of S^1 and [0, 1] in a certain precise sense. There is a map Möb $- > S^1$ (projection onto the central circle), and locally the part that projects onto a small arc looks like a Cartesian

product with [0, 1]. It turns out that the Euler characteristic is multiplicative with respect to such "twisted products" as well. \Box .

The following theorem gives a powerful tool for calculating χ :

Theorem

(The Excision Formula)

Suppose a simplicial complex is the union of two "subcomplexes" (subsets each of which is a simplicial complex) $K \cup L$. Then $K \cap L$ is also a simplicial complex, and the following formula holds:

$$\chi(K \cup L) = \chi(K) + \chi(L) - \chi(K \cap L)$$

Proof

Consider $c_k(K), c_k(L), c_k(K \cup L)$. Each k-simplex in $K \cup L$ belongs to K or L or both. Hence $c_k(K \cup L) = c_k(K) + c_k(L) - c_k(K \cap L)$, where we subtract the number of simplices counted twice in both K and L. The formula for χ follows. \Box

§5.3 Application to surfaces

Problem

Find χ for S^2 with *n* holes (i.e. $S^2 \setminus (n \text{ disks})$)

Solution

A "hole" is an open disk taken away (the boundary is left, so S^2 with a hole remains compact).

Since $D^2 \cong$ triangle, we can take a sufficiently fine triangulation of S^2 and making a hole then will mean removing the interior part of some triangle. Obviously, then $c_2 \to c_2 - 1, c_0, c_1$ remain the same. As a result

 $\frac{\chi(S^2 \text{ with one hole}) = c_0 - c_1 + (c_2 - 1) = \chi(S^2) - 1,}{\chi(S^2 \text{ with } n \text{ holes}) = \chi(S^2) - n}$

It immediately follows that:

Indeed, we can apply the Excision Formula:

$$\chi(H(n)) = \chi(S^2 \text{ with } 2n \text{ holes}) + \chi(n \text{ cylinders}) - \chi(2n \text{ circles})$$
$$= 2 - 2n + n \cdot 0 - 2n \cdot 0$$
$$= 2 - 2n$$

(Here $H(n) = (S^2 \text{ with } 2n \text{ holes}) \cup (n \text{ "handles"} = \text{cylinders})$, and the intersection consists of 2n boundary circles:

Similarly, for M(n):

$$\chi(M(n)) = \chi(S^2 \text{ with } n \text{ holes}) + \chi(n \text{ M\"obius bands}) - \chi(n \text{ circles})$$
$$= 2 - n + n \cdot 0 - n \cdot 0$$
$$= 2 - n$$

Corollaries

1. $\chi(T^2) = 0$:

$$\chi \begin{pmatrix} & & \\$$

2.

$$\chi(\mathbb{R}P^2) = \chi(M(1)) = 2 - 1 = 1$$

3.

 χ (Klein bottle) = $\chi(M(2)) = 2 - 2 = 0$

Remark

We see that the number "n" in H(n) or M(n) is encoded in the Euler characteristic of a surface. Hence, with the Classification Theorem at hand), a closed surface is classified completely by

- 1. orientability/non-orientability, and
- 2. Euler characteristic.

Example

A closed surface is obtained by cutting a hole in T^2 and gluing a Möbius strip into it. To which standard surface is this homeomorphic?

Answer

First, because there is a Möbius strip, it is *non-orientable*. Hence we look for some M(n). Now, for our surface M, $\chi(M) = \chi(T^2$ with a hole) + $\chi(M\"{o}b) - \chi(S^1)$. The last two terms are both zero, and so $\chi(M) = \chi(T^2$ with a hole).

Let us now find $\chi(T^2$ with a hole):

Notice that $T^2 = (T^2 \text{with a hole}) \cup (\text{disk}D^2)$, with intersection S^1 . This gives $0 = \chi(T^2) = \chi(T^2 \text{with a hole}) + (\chi(D^2) = 1) - (\chi(S^1) = 0)$ from which we see that $\chi(T^2 \text{with a hole}) = -1$ and finally $\chi(M) = -1$.

If we now compare this with $\chi(M(n)) = 2 - n$, we conclude that n = 3, and that $M \cong M(3)$.

Pictures

(Try to find a homeomorphism directly!)