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§5 The Euler Characteristic

§5.1 Triangulated Spaces

We are going to consider topological spaces built of blocks of a simple structure, called
“simplices”.
What is a simplex?

Consider RY with some sufficiently large N. Let po, - -- ,p, be some points in RY.
Definition
Do, -+ Pk are independent (or in gemeral position) <= the vectors popi,--- ,Dopr ar

linearly independent.

Examples:

1. k£ =0: no condition °p,

2. k= 1: po,p; independent <= pg # p1 °p, P, P,

PN

3. k =2: pg, p1,p2 independent <= non-collinear (not on the same line) : 7, P,
Definition:
A simpler in RY with vertices po, - -, pr (assumed to be independent) is the subspace:

k k
P, o) = {peRYp= Ztipi,ti > szti =1}
i=0 i=0
Examples:

p
L. [pop1] = {topo + tiprlto +t1 = 1,t0,t1 > 0} = {(1 — t)po + tpa|t € [0, 1]} ¥ " p,

Py

2. [pop1p2] is a triangle : b,

3. [pop1peps) is a tetrahedron (3-dimensional simplex):

P 5

"’

P, (Warning: this is a solid body, not just the surface!)
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Definition:

k is called the dimension of [po,- -, pg|.
Notation for simplices: o, 7,7, p (Greek letters).

Definition:

Let K be a finite collection of simplices of various dimensions in some RY. K is a simplicial
complexr <=

1. If p € K, then all faces of p also belong to K,

2. If pe K, 7 € K, then either pN7 = © or pN 7 is a common face.

What is a “face”? A face is obtained from a simplex [po, - -, px] by setting some of the
parameters tg, -+ ,t; to 0. (Maybe none - then we get the whole [po,--- ,pg] as its own
face).

Examples:

1. For a 0-simplex py we have just one O-face: pq itself. °p,

2. For a 1-simplex [pop1]: ®p, b,

O-faces: °p, , °p,

1-face: ®p,  °p,

3. For a 2-simplex [pop1pa]: ¥, b,

o o o
O-faces: °p, , °p, , °p,
o0—o o0—o o0—o
1-faces: P, P, s P, P, N P, P,
P,
2—face: P, P,
p 3
‘*4}" 2
p 0 )
4. For a tetrahedron: P,

0-faces: po, p1, P2, P3

1-faces: [pop1], [pop2], [Pops), [p1p2], [p1ps], [p2ps]
2-faces: [popip2], [pop1ps], [Pop2ps), [P1p2ps]
3-face: [pop1paps]
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For a simplicial complex K in RY, the union of all its simplices is a topological space
(subspace of RY) called the body of K. Notation:

Kl=Jo

ceK

Remark

K is a collection of simplices (a set of simplices); |K| is a topological space (a union of
simplices).

Examples

1. o - This is a simplicial complex (in R?).

2. \ / 7 % - These are NOT simplicial complexes (bad intersections)

(The pictures show some simplices in the plane; would-to-be simplicial complexes are their
collections; the condition (1) is assumed to hold.)

Definition
Let X be a topological space. A triangulation of X is a homeomorphism ¢ : X = | K|, for
some simplicial complex K.

Remark

If a space X admits a triangulation, then X is compact. Indeed, for every simplicial
complex K, if there is a finite number of simplices then the body |K| is a bounded and
closed (each simplex is closed) subspace of RY.

(To accomodate noncompact spaces, one should consider “infinite simplicial complexes”
and “infinite triangulations”. We won’t do this.)

§5.2 Euler Characteristic

Suppose K is a simplicial complex. Notation:
cx(K) = #{simplices 0 € K|dimo = k}

(the number of simplices of dimension k.)
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Definition

The alternating sum

X(K) =Y an(K)(—1)F = co(K) — ey (K) + -+

is called the Euler characteristic of K. (Sum is finite).

Definition

If X is a triangulated space, i.e. there is a triangulation X = |K| for some K, we set
X(X) == x(K)
and call x(X) the Euler characteristic of the topological space X.
What if different triangulations are taken?
Theorem

If for simplicial complexes K and L their bodies |K| and |L| are homeomorphic, then

X(K) = x(L).
(Topological invariance of the Euler characteristic.)
(Proof omitted!) O

Examples
1. X = {x0} (one-point space). Then K = {[p0]}, co(K) =1, x(X) = 1.

2. A segment (closed):

0. b, c=2c0=1=x=2-1=1.
or
co=7,c0=6=>x=7—06=1.
X([a,b]) =1
3. A circle: co=3,c0=3=x=3-3=0.
or cp=8c=8=x=8—-8=0.
X(81) =0
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4. A closed disk D? = I? (a square)

co=4,c0=5,c0=2=>xy=4—-5+2=1

or
co=95c=8c=4=yxy=5—-8+4=1.
x(D?) =1
2P 5
*4).’ co =4
5. A Sphere S?: ~ P, "o =6 =>xy=4-6+6=2
1
(surface of 3- €2 =4
simplex)
Co =8
or = > L =18 = y =8—18+12 =2
””” cy =12
Xx(8?%) =2
6. A Cylinder S* x [0,1]:
Co = 8
=165 =y=8—16+8 =0
Cy = 8
X(Cyl) =0
7. A Mobius strip
Co = 6
| +— =12, =>x=6—-1246=0
%
Cy = 6
x(Mob) =0
Remark

It is not a coincidence that x(cyl) = x(Mob) = 0. First, Cyl= S* x [0,1]. There is a
theorem that (X xY) = x(X) - x(Y). Hence x(S* x [0,1]) = 0 because x(S') = 0. Next,
although a Mobius strip is not a product (like S' x [0,1]), it is a “twisted product” of
St and [0,1] in a certain precise sense. There is a map Mob— > S! (projection onto the
central circle), and locally the part that projects onto a small arc looks like a Cartesian
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product with [0, 1]. It turns out that the Euler characteristic is multiplicative with respect
to such “twisted products” as well. .
The following theorem gives a powerful tool for calculating x:

Theorem

(The Excision Formula)

Suppose a simplicial complex is the union of two “subcomplexes” (subsets each of which
is a simplicial complex) K U L. Then K N L is also a simplicial complex, and the following
formula holds:

X(KUL) = x(K) +x(L) = x(KNL)

Proof

Consider ¢, (K), cx(L), cx(K U L). Each k—simplex in K U L belongs to K or L or both.
Hence ¢, (KU L) = ¢, (K) + cx(L) — e, (K N L), where we subtract the number of simplices
counted twice in both K and L. The formula for y follows. [J

85.3 Application to surfaces
Problem
Find y for S? with n holes (i.e. S%\(n disks))

Solution

A “hole” is an open disk taken away (the boundary is left, so S? with a hole remains
compact).

Since D? 2 triangle, we can take a sufficiently fine triangulation of S? and making a hole
then will mean removing the interior part of some triangle. Obviously, then ¢y — co—1, ¢, ¢1
remain the same. As a result
x(S? with one hole) = ¢y — ¢ + (ca — 1) = x(S?) — 1,

x(S? with n holes) = x(S?%) —n

It immediately follows that:

A

(>

\(H(n) =2~ 2n
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Indeed, we can apply the Excision Formula:
X(H(n)) = x(S? with 2n holes) + x(n cylinders) — x(2n circles)
=2-2n+n-0—2n-0
=2—-2n

(Here H(n) = (S? with 2n holes) U (n “handles”=cylinders), and the intersection consists
of 2n boundary circles:

0

Similarly, for M(n

x(M(n)) = x(5% with n holes) + x(n Mébius bands) — x(n circles)
=2-n+n-0—-n-0

=2-n
= U
Corollaries
1. x(T?) =0:
T—=>
x( = ) S N(H(1)=2-2-1=0
2.
V(RP?) = (M(1)) =2 -1 =1
3.
x(Klein bottle) = x(M(2)) =2—-2=0
Remark

We see that the number “n” in H(n) or M(n) is encoded in the Euler characteristic of
a surface. Hence, with the Classification Theorem at hand), a closed surface is classified
completely by

1. orientability /non-orientability, and

2. Euler characteristic.
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Example

A closed surface is obtained by cutting a hole in 7% and gluing a Mébius strip into it. To
which standard surface is this homeomorphic?

Answer

First, because there is a Mobius strip, it is non-orientable. Hence we look for some M (n).
Now, for our surface M, x(M) = x(T?with a hole) + x(Mob) — x(S!). The last two terms
are both zero, and so y(M) = x(T*with a hole).

Let us now find x(T?with a hole):

Notice that 7% = (T?with a hole) U (diskD?), with intersection S'. This gives 0 =
X(T?) = x(T*with a hole)+(x(D?) = 1)—(x(S') = 0) from which we see that x(T?with a hole) =
—1 and finally x(M) = —1.

If we now compare this with x(M(n)) = 2 — n, we conclude that n = 3, and that
M = M(3).

Pictures

///—\ ~
De —((

(Try to find a homeomorphism directly!)



