§4 Tangent vectors and related objects. (Solutions.)

Problem 4.1 Consider the bases \(\{e_\theta\} \) and \(\{e_u\} \) for the tangent spaces to the circle \(S^1 \) corresponding to the polar angle \(\theta \) and the “stereographic coordinate” \(u \) respectively.

(a) Consider \(x = (x, y) \in S^1 \subset \mathbb{R}^2 \). For the angular coordinate \(\theta \), we have \(x = \cos \theta, y = \sin \theta \). Therefore

\[
e_\theta = \frac{dx}{d\theta} = (-\sin \theta, \cos \theta) = (-y, x).
\]

This is a vector in \(T_xS^1 \). It is a unit vector in the ambient Euclidean space \(\mathbb{R}^2 \) that can be obtained by rotating the radius-vector of \(x \) counterclockwise through 90°. For the stereographic coordinate \(u \) (where the north pole is chosen as the center) we have

\[
x = \frac{2u}{u^2 + 1}, \quad y = \frac{u^2 - 1}{u^2 + 1}.
\]

By differentiating we obtain

\[
e_u = \frac{dx}{du} = (\frac{-2u^2 + 2}{(u^2 + 1)^2}, \frac{4u}{(u^2 + 1)^2}) = \frac{2}{u^2 + 1} \left(\frac{1 - u^2}{u^2 + 1} \right) \left(1 - y \right) \cdot (-y, x) = (1 - y) e_\theta.
\]

Hence the transformation law is: \(e_u = (1 - y) e_\theta \).

(b) Directly:

\[
e_\theta = \frac{du}{d\theta} e_u = \frac{d}{d\theta} \left(\frac{\cos \theta}{1 - \sin \theta} \right) e_u = \frac{-(1 - \sin \theta) \cos \theta - \cos \theta(- \cos \theta)}{(1 - \sin \theta)^2} e_u = \frac{1 - \sin \theta}{(1 - \sin \theta)^2} e_u = \frac{1}{1 - \sin \theta} e_u,
\]

or \(e_u = (1 - \sin \theta) e_\theta = (1 - y) e_\theta \) as obtained above. Here \(x = (x, y) = (\cos \theta, \sin \theta) \in S^1 \).

(c) The vector \(e_\theta \in T_xS^1 \) is well-defined and not vanishes at all points \(x \in S^1 \); hence it can be taken as a basis vector of the tangent space \(T_xS^1 \) for all \(x \in S^1 \). Though the vector \(e_u \in T_xS^1 \) makes sense for all points \(x \in S^1 \) as well, it vanishes at \(y = 1 \), i.e., at the point \(N = (0, 1) \in S^1 \); hence it can be taken as a basis of \(T_xS^1 \) for all \(x \in S^1 \setminus \{N\} \).

Problem 4.2 Directly: \(e_x = \frac{\partial}{\partial x} = \frac{\partial}{\partial y} (x, y, z) = \frac{\partial}{\partial y} (x, y, f(x, y)) = (1, 0, f_x) \) and similarly \(e_y = \frac{\partial}{\partial y} = \frac{\partial}{\partial y} (x, y, z) = \frac{\partial}{\partial y} (x, y, f(x, y)) = (0, 1, f_y) \). (Here \(f_x \) and \(f_y \) denote the partial derivatives of \(f \) w.r.t. \(x \) and \(y \).)

Problem 4.3 From the formulas for \(x = (x, y, z) \in S^2 \subset \mathbb{R}^3 \),

\[
x = \cos \varphi \sin \theta, \quad y = \sin \varphi \sin \theta, \quad z = \cos \theta,
\]

we obtain the vectors \(e_\theta, e_\varphi \),

\[
e_\theta = \frac{dx}{d\theta} = (\cos \varphi \cos \theta, \sin \varphi \cos \theta, - \sin \theta),
\]

\[
e_\varphi = \frac{dx}{d\varphi} = (- \sin \varphi \sin \theta, \cos \varphi \sin \theta, 0)
\]

as elements of \(\mathbb{R}^3 \). We may note that at each point \(x \in S^2 \) different from the north pole \(N = (0, 0, 1) \), \(e_\theta \) is tangent to the meridian passing through this point (a meridian is a curve
Therefore \(\sin \theta \).

Problem 4.8

\(v \in \mathbb{R} \) or \(x = S = (0,0,-1) \). The vector \(e_\theta \) is not defined. (At \(N \) or \(S \), a meridian is not defined; there are many meridians starting from each of the poles.) At the same time, the vector \(e_\varphi \) is tangent to the parallel (the curve with \(\theta = \text{const} \)) through \(x \). Note that \(e_\varphi \) is zero at \(x = N \) or \(x = S \).

To summarize, the vectors \(e_\theta, e_\varphi \) are defined and make a basis of \(T_x S^2 \) for all points \(x \) of the sphere except for \(N \) and \(S \).

Consider now the point \(P = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \in \mathbb{R}^3 \). It belongs to \(S^2 \), so it makes sense to consider \(T_P S^2 \). Because the vector \(v = (0,1,-1) \in \mathbb{R}^3 \) is orthogonal to the radius-vector \(OP \in \mathbb{R}^3 \), we see that \(v \in T_P S^2 \) and can be expanded over the basis \(e_\theta, e_\varphi \). Practically we need to specify first the expressions for \(e_\theta, e_\varphi \) for the point \(P = (-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}) \). We have \(\cos \theta = \frac{1}{\sqrt{3}} \), therefore \(\sin \theta = \frac{\sqrt{2}}{\sqrt{3}} \). Hence \(\cos \varphi = -\frac{1}{\sqrt{2}} \), \(\sin \varphi = \frac{1}{\sqrt{2}} \). This gives explicit expressions

\[
e_\theta = (\cos \varphi \cos \theta, \sin \varphi \cos \theta, -\sin \theta) = \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{\sqrt{2}}{\sqrt{3}} \right),
\]

\[
e_\varphi = (-\sin \varphi \sin \theta, \cos \varphi \sin \theta, 0) = \left(-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, 0 \right)
\]
at \(P \in S^2 \). To obtain the coefficients of the expansion of \(v \) we write \(v = ae_\theta + be_\varphi \) where \(a, b \in \mathbb{R} \), and arrive at a system of three simultaneous equations for the two unknowns \(a \) and \(b \):

\[
\begin{cases}
-\frac{1}{\sqrt{6}} a - \frac{1}{\sqrt{3}} b = 0 \\
\frac{1}{\sqrt{6}} a - \frac{1}{\sqrt{3}} b = 1 \\
\frac{\sqrt{2}}{\sqrt{3}} a + 0 b = 0
\end{cases}
\]

This system is consistent precisely because \(v \in T_P S^2 \). By solving it, we find the (unique) numerical coefficients \(a = \frac{\sqrt{3}}{\sqrt{2}} \) and \(b = -\frac{\sqrt{3}}{2} \). The numbers \(\frac{\sqrt{3}}{\sqrt{2}}, -\frac{\sqrt{3}}{2} \) are the components of the tangent vector \(v \) at the point \(P \in S^2 \) relative to the coordinate system \(\theta, \varphi \) on \(S^2 \).

Problem 4.7

The tangent map \(dF \) is defined by its matrix in some bases. Relative to the bases associated with standard coordinates on \(\mathbb{R}^2 \) and \(\mathbb{R}^3 \), which we denote \(u, v \) and \(x, y, z \) respectively, the matrix is

\[
\frac{\partial x/\partial u}{\partial y/\partial u} \quad \frac{\partial x/\partial v}{\partial y/\partial v} \quad \frac{\partial z/\partial u}{\partial z/\partial v} = \begin{pmatrix} \cos v & -u \sin v & \\
\sin v & u \cos v & \\
0 & 1 &
\end{pmatrix}.
\]

The images of the basis vectors \(e_1 = (1,0) \) and \(e_2 = (0,1) \) are precisely the columns of this matrix. Hence \(dF(u,v)(e_1) = \cos v e_1 + \sin v e_2 \) and \(dF(u,v)(e_2) = -u \sin v e_1 + u \cos v e_2 + e_3 \).

Problem 4.8

If we consider the real part \(x \) and the imaginary part \(y \) of a point \(z = x + iy \in \mathbb{C} \) as coordinates on \(\mathbb{C} \), then the matrix of the differential \(df(z) \) can be found as follows. We have \(\frac{\partial z^n}{\partial x} = nz^{n-1} \frac{\partial z}{\partial x} = nz^{n-1} \) and \(\frac{\partial z^n}{\partial y} = nz^{n-1} \frac{\partial z}{\partial y} = i nz^{n-1} \). Using the polar form of a complex number, we get \(nz^{n-1} = nr^{n-1}(\cos(n-1)\theta + i \sin(n-1)\theta) \). Hence

\[
\frac{\partial z^n}{\partial x} = nr^{n-1}(\cos(n-1)\theta + i \sin(n-1)\theta)
\]

\[
\frac{\partial z^n}{\partial y} = nr^{n-1}(-\sin(n-1)\theta + i \cos(n-1)\theta)
\]
so, separating the real and imaginary parts, we have, for the matrix of \(df \):

\[
\begin{pmatrix}
\frac{\partial \Re(z^n)}{\partial x} & \frac{\partial \Re(z^n)}{\partial y} \\
\frac{\partial \Im(z^n)}{\partial x} & \frac{\partial \Im(z^n)}{\partial y}
\end{pmatrix} = \begin{pmatrix}
nr^{n-1} \cos(n-1)\theta & nr^{n-1} \sin(n-1)\theta \\
-nr^{n-1} \sin(n-1)\theta & nr^{n-1} \cos(n-1)\theta
\end{pmatrix} - nr^{n-1} \begin{pmatrix}
\cos(n-1)\theta & \sin(n-1)\theta \\
-\sin(n-1)\theta & \cos(n-1)\theta
\end{pmatrix}.
\]

We see that if we identify tangent vectors at different points of \(\mathbb{C} \) with elements of the same space \(\mathbb{R}^2 \), the linear transformation \(df(z) \) where \(z = re^{i\theta} \) is the combination of the rotation through the angle \((n-1)\theta\) and dilatation with the coefficient \(nr^{n-1} \). (This is the same as the multiplication of vectors of \(\mathbb{R}^2 \cong \mathbb{C} \) by the complex number \(nz^{n-1} \). The fact that the differential of the map \(z \mapsto z^n \) has the form of the multiplication operator by a complex number is an expression of the holomophicity or complex-differentiability of this map.)

Problem 4.4 We have \(AA^T = E \) as the equation specifying \(O(n) \), hence the equation specifying \(T_AO(n) \) is \(AA^T + AA^T = 0 \). It is equivalent to \(AA^T + (AA^T)^T = 0 \), i.e., to the condition that \(X = AA^T = AA^{-1} \) is antisymmetric. In particular, for \(T_EO(n) \) we have the equation \(\dot{A}^T = -\dot{A} \).

Problem 4.5 (a) Consider \(ad - bc = 1 \) and differentiate. We arrive at \(\dot{a}d + a\dot{d} - bc - \dot{b}c = 0 \) as the equation of \(T_A\text{SL}(2) \). In particular, for \(A = E \) we obtain \(\dot{a} + \dot{d} = 0 \), which is \(\text{tr} X = 0 \) (if \(\dot{A} = X \)).

(b) Consider \(\det(E + \Delta t X) \) and expand it in \(\Delta t \). It is clear that the input into the term linear in \(\Delta t \) is given by the diagonal elements only, and we arrive at \(\det(E + \Delta t X) = 1 + \Delta t \text{ tr} X + \ldots. \) Hence the equation for \(T_E\text{SL}(n) \) is \(\text{tr} X = 0 \) (the same as for \(n = 2 \)).

Problem 4.6 Show that the tangent bundle \(TS^1 \) for the circle is diffeomorphic to \(S^1 \times \mathbb{R} \).

(\textbf{Remark.} For a 2-sphere \(S^2 \), the analog of the above is not true: the tangent bundle \(TS^2 \) is \textit{not} the product of \(S^2 \) and \(\mathbb{R}^2 \).)

Consider the following map \(S^1 \times \mathbb{R} \to TS^1 : \)

\[
(x, t) \mapsto (x, t e_\theta(x))
\]

where \(x \in S^1 \) and \(e_\theta = \frac{\partial x}{\partial \theta} \) (see Problem \textit{??}, part (b)). The inverse map sends \((x, v) \in TS^1 \) to \((x, t) \in S^1 \times \mathbb{R} \), where \(t \in \mathbb{R} \) is obtained from \(v = t \cdot e_\theta(x) \).

Problem 4.9 We know that the tangent space at each \(A \in O(n) \) consists of the matrices \(X \) of the form \(XA^T = B \) where \(B^T = -B \) (we may view \(B \) as a vector in \(T_EO(n) \)). Therefore the map \(TO(n) \to O(n) \times T_EO(n) \) that sends \((A, X) \in TO(n) \) to \((A, B = XA^T) \) is the desired diffeomorphism. Note also that for orthogonal matrices \(A^T = A^{-1} \), so we may re-write this map as \((A, X) \mapsto (A, B) \) where \(B = XA^{-1} \).

Problem 4.10 (a) We have \((e^X)^T = e^{X^T} = e^{-X} = (e^X)^{-1} \), as claimed.

(b) We have \(\det e^X = e^{\text{tr}X} = e^0 = E \), as claimed. (We have used the Liouville formula \(\det e^A = e^{\text{tr} A} \).)
Consider a curve $X(t)$ passing through the zero matrix at $t = 0$ and with the velocity A (some fixed matrix), for example, $X(t) = tA$. Then the differential $d \exp(0)$ maps A to the velocity of the curve $e^{X(t)}$ at $t = 0$. Taking, for example, $X(t) = tA$ (the result, of course, does not depend on a choice of a curve), we obtain

$$d \exp(0)(A) = \left. \frac{d}{dt} e^{tA} \right|_{t=0} = \left. \frac{d}{dt} \right|_{t=0} \left(E + tA + \frac{1}{2} t^2 A^2 + \ldots \right) = A,$$

as claimed.

Last updated: 23 August (5 September) 2018.