Programming with Python

Contents:

1. Modules in Python
2. Making your own modules
3. Some modules that come with Python

Modules

General purpose programming languages like Python have a very wide area of applications and
building all the required functionality into any of them would be almost impossible, and certainly
cumbersome at best. The main reasons for this are:

1. Such language would grow huge, in terms of disk requirements and in the syntax it would
have to support. Consequentially, it would also grow very slow and become very memory
greedy.

2. All new features and upgrades would require reinstall of the whole language (compiler or
interpreter).

3. Only the developers of the language itself would be able to implement the features, which
would require a huge effort and a wide area of expertise from a relatively small group of
people.

For this reason, programming languages are made extensible. In Python (and PERL, for example),
these extensions are called modules. In other languages they may be called libraries (C, PHP,...) or
packages (MATLAB, Mathematica, LAI'EX...), but they all work on a fairly similar concept: inclusion
of some code written in that or even another language.

Modules contain functions and other objects. We can include or, equvalently, import them, making
some or all of these objects available in our program.

Modules in Python

There are several ways to import a module in Python, each of them making for a slightly different use
of the objects (usually functions) that they provide.

http://guettel.com/

Among many modules that usually come with Python (https://docs.python.org/3/py-modindex.html)
and many more that can be obtained separately (for example, over 50000 of them on PyPI
(https://pypi.python.org/) alone), we demonstrate how to use them on the example of itertools
(https://docs.python.org/3/library/itertools.html) and its function permutations
(https://docs.python.org/3/library/itertools.htmli#itertools.permutations).

Here is that function's description:

permutations(iterable, r=None)
Return successive r length permutations of elements in the iterable.

If r is not specified or is None, then r defaults to the length of the iterable and all
possible full-length permutations are generated.
In other words,

permutations("abc")

will produce a generator that gives us all six full-length permutations of the string "abc". However,
permutations returns a generator of tuples, i.e., 1ist(permutations("abc")) returns a list of
tuples, each representing one permutation of "abc":

[('a') 'b') 'C')J (|a|J lclJ |b|)J (Ibl) lal) 'C')) ('b') 'C'J 'a|)J (lclJ
'a’, 'b"), ("c’, 'b', 'a’)]

To make the output easier to read, we join those tuples into strings, using the following list
comprehension:

["".join(x) for x in permutations("abc")]
thus obtaining the list of strings:

["abc', 'acb', 'bac', 'bca', 'cab', 'cba']

We do not go further into analysing how premutations works. We simply use it to show how to use
modules and their functions.

Importing functions and other objects

Whenever we want to use something from a module, we have to announce it (so that Python knows
what to look for, among many modules that are usually available to it). The process of doing so is
called importing a module or a function, and it is conveniently done with the import keyword.

https://docs.python.org/3/py-modindex.html
https://pypi.python.org/
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html#itertools.permutations

import modulename
The shortest way to import a module (and everything it contains) is to call

import modulename

where modulename is the name of the module. After that, all its objects can be used by calling
modulename.object, but not just object (without modulename.).

For examnle:
In [1]:
import itertools

print(["".join(x) for x in itertools.permutations("abc")])

["abc', ‘'acb', 'bac', 'bca', ' '

cab', 'cba']
import modulename as abbr

Sometimes, the name of the module is too long to be used as often as we want to. In this case, we
can do

import modulename as abbrev

where modulename is the name of the module. After that, all its objects can be used by calling
abbr.object, but still not just object (without abbr.). Also, modulename.object will not work.

For example:

In [2]:
import itertools as it

print(["".join(x) for x in it.permutations("abc")])

["abc', 'acb', 'bac', 'bca', 'cab', 'cba']

This form is especially convenient when using modules that have several different implementations
with exactly the same objects that they provide (among those we want to use).

Let us suppose that we need a function some_function, that is provided by the modules:

e free_and_slow, which is free, but some_function implemented in it is slow; and
» expensive_and_fast, which costs money, but some_function implemented in it is fast (yet
it still does the same job as the "free and slow" one).

Some users of our program might have the module expensive_and_fast and we want to use
some_function that is defined in it. However, other users might not have that module, but they could
still have the module free_and_slow, which we want to utilize, as it is better that a program runs
slowly than not at all.

Instead of doing checks which of the modules is available whenever we want to call the function
some_function, we can import the module like this:

try:

import expensive_and_fast as abbr
except ImportError:

import free_and_slow as abbr

after which we can use abbr.some_function (and everything else these two modules might have in
common). without worrvina which of the modules was actuallv imnorted.

from modulename import objl, obj2,...

Often, modules will provide a plethora of objects, among which we only want a few. In this case, we
can do

from modulename import objl, obj2,...

where modulename is the name of the module and obj1, obj2, etc. are names of the objects in that
module that we wish to import. After that, all of these objects can be used by calling obj1, obj2, etc.,
but not just modulename.obj1 and likes. Other objects from that module will not be available, unless
imported separately.

For example:

In [3]:
from itertools import permutations

print(["".join(x) for x in permutations("abc")])

["abc', 'acb', 'bac', 'bca', 'cab', 'cba']

Possible to do, but avoid it: from modulename import *
Looking at other people's codes, you might stumble upon the following statement:
from modulename import *
This is equivalent to
from modulename import objl, obj2,...
with all the objects from the module modulename being listed behind the import keyword.

This is almost never a good idea, as it will usually import far too many objects, with some potentially
clashing with other objects of the same name from other modules.

Packages

Python also has packages which are, technically, collections of modules. One can use them just as if
they were modules. For example, here we import scipy.linalg and display the docstring of the
function implementing the Cholesky factorization

http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.cholesky.html

In [4]:

import scipy.linalg

help(scipy.linalg.cholesky)

Help on function cholesky in module scipy.linalg.decomp_cholesky:

cholesky(a, lower=False, overwrite a=False, check finite=True)
Compute the Cholesky decomposition of a matrix.

Returns the Cholesky decomposition, :math: A = L L**" or
:math: A = U U of a Hermitian positive-definite matrix A.

Parameters
a : (M, M) array_like
Matrix to be decomposed
lower : bool
Whether to compute the upper or lower triangular Cholesky
factorization. Default is upper-triangular.
overwrite a : bool
Whether to overwrite data in “a° (may improve performance).
check_finite : boolean, optional
Whether to check the input matrixes contain only finite numb
ers.
Disabling may give a performance gain, but may result to pro
blems
(crashes, non-termination) if the inputs do contain infiniti
es or NaNs.

Returns
c : (M, M) ndarray
Upper- or lower-triangular Cholesky factor of “a’.

LinAlgError : if decomposition fails.

Examples

>>> from scipy import array, linalg, dot
>>> a = array([[1,-27],[2],5]])
>>> L = linalg.cholesky(a, lower=True)
>>> L
array([[1.+0.j, ©.+0.j],
[0.42.7, 1.40.3]])
>>> dot(L, L.T.conj())
array([[1.+0.j, ©.-2.j],
[0.42.7, 5.40.3]11])

Q: How do we find these functions?! There must be thousands of them.

A: Tens of even hundreds of thousands is probably a better estimate. Still, it's simple: by searching
on the internet. For example, looking for the Cholesky factorization, we can simply search for python3
Cholesky factorization (https://www.google.co.uk/search?q=python3+Cholesky+factorization) and the
first link will be the one we used above.

Making your own module

At first sight, this might seem like an advanced topic, but it really isn't. Any Python program can be
imported as a module. When that happens, its functions, global variables, etc. are created and any
code outside of the functions is executed.

This makes for a great way to reuse the functions we wrote, without copying them in each program.

Let us make a program to find all the prime factors of an integer:

In [5]:
def is prime(n):

Return True if "n° 1s a prime; False otherwise.

if n < 2: return False

for d in range(2, n):
ifn%d-==20:
return False

return True

def prime factors(n):
"""Returns the generator that makes an iterator for
the prime factoris of "n>."""
p =2
n = abs(n)
for p in range(2, n):
if n % p == @ and is_prime(p):
yield p

n = int(input("n = "))
print("Prime factors of {}: {}".format(n,
(n))))

n = 12345
Prime factors of 12345: 3, 5, 823

, ".join(str(x) for x in prime_factors

Note: This is not an efficient algorithm for finding the prime factors of a number.

https://www.google.co.uk/search?q=python3+Cholesky+factorization

Save the above program into a file "prim_factors.py" and make the following new program in the
same directory:

In [6]:

import prime_factors as pf

print("Prime factors of 1719:", tuple(pf.prime_factors(1719)))

n = 12345
Prime factors of 12345: 3, 5, 823
Prime factors of 1719: (3, 191)

Notice how we had to input n, even though our code here has no calls to the input function. This is
because import prime_factors executes "prim_factors.py" as if it was run as a program.

To avoid this, edit "prim_factors.py" by wrapping all the code that should not be executed when
importing in

if _name__ == "_main__ ":

Notice that name and main are both prefixed and suffixed by two underscores.

In [7]:

def is prime(n):

Return True i1f "n° 1s a prime; False otherwise.

if n < 2: return False

for d in range(2, n):
ifn%d==20:
return False

return True

def prime_factors(n):
"""Returns the generator that makes an iterator for
the prime factoris of “n™."""
p =2
n = abs(n)
for p in range(2, n):
if n % p == @ and is_prime(p):
yield p

if name_ == "_ main__ ":
n = int(input("n = "))
print("Prime factors of {}: {}".format(n,
tors(n))))

n = 12345
Prime factors of 12345: 3, 5, 823

, ".join(str(x) for x in prime_fac

So, it still runs as it did before. However, when we import it, its input and print will not run.
We named this file "prime_factors_wrap", so we can test this separately:

In [8]:

import prime_factors_wrap as pf

print("Prime factorization summands for 1719:", tuple(pf.prime_factors(1719)))

Prime factorization summands for 1719: (3, 191)

The variable __name___is a special one (as are all that begin with"__"). It contains:

o the string"__main__" when used in a file that was run as a program, or
» the name of the module when used in a file that was imported as a module.

Of course, sometimes it makes sense to run some code as soon as the module is imported. This is
usually some kind of initialization (maybe establishing a database connection or creating a directory
or something similar), or a check that the module can be used properly (maybe checking if it has all
the data it needs, if all the external programs it needs to run are installed, etc).

For example, some internet services require the user to have some kind of code, used to identify
them as valid users. A module using such service would have to obtain that code and, in case it fails,
it would have to interrupt the execution of the program with the appropriate message. Such a module
could look like this:

mmn

The module's docstring.

mmn

from sys import exit
user_code = ... # A built-in value or a function call to obtain the code

Other module definitions (functions, variables,...)
if user_code == "":
print("The program was not set up properly.")
print("You need to provide your code <explain where and how>.")
exit(1l) # Stop the program

Anything else the module has to run, inside and/or outside “if __na

me__ == "_main__":"

Some modules that come with Python

Let us take a look at some modules (and packages) that usually come with Python.

Sys

The sys module (https://docs.python.org/3.0/library/sys.html) provides system-specific constants and
functions in the most generic way possible. These help you write programs that rely on the operating
system specifics as little as possible. Here are some of the things it provides:

» argyv -- the list of the command-line arguments (the zeroth one being the command by which
the program itself was invoked, exactly as the way it was called),

» exit -- a function to stop the program's execution; it takes a single integer argument which
should be zero if the stop is due to work being done, and a unique non-zero value for each
error that stops the program's execution,

» modules -- a dictionary of all the loaded modules,

» path -- list of directories where Python will look for modules when a program tries to import
them,

» platform -- a string describing the platform (usually the OS) on which the program is
currently running,

e stdin, stdout, stderr, __stdin__, stdout__, stderr__ -- standard streams
(http://en.wikipedia.org/wiki/Standard_streams) (standard input/output/error) and their
original values when the program was started,

» maxsize -- the biggest integer that the processor supports (for bigger integers, Python
simulates all the needed operations, but this is somewhat slower than for those smaller than

maxsize).

For example:

In [9]:

from sys import stdout, stderr
import sys

stdout.write("This is same as print.\n")
stderr.write("This is a wee bit different.\n")
print("We can import modules from these directories:\n", sys.path)

This is same as print.
We can import modules from these directories:

['", "/usr/lib64/python33.zip', '/usr/lib64/python3.3', '/usr/libé6
4/python3.3/plat-1inux"', '/usr/lib64/python3.3/1lib-dynload', '/usr/1l
ib64/python3.3/site-packages', '/usr/lib/python3.3/site-packages’,
"/usr/lib/python3.3/site-packages/IPython/extensions’]

This is a wee bit different.

https://docs.python.org/3.0/library/sys.html
http://en.wikipedia.org/wiki/Standard_streams

0s

Not surprisingly, the os package (https://docs.python.org/3/library/os.html) is a home to many OS-
related functions.

If you're doing anything with files or directories, read more about os.path module
(https://docs.python.org/3/library/os.path.html). Many of its functions seem easy enough to be
done through simple string manipulation, but that would be wrong (due to security and portability
reasons).

In [10]:

import os

Change the active directory to the directory "python" in the user's home direct

ory (~)

os.chdir(os.path.expanduser("~/python"))

print("Working directory:\n ", os.getcwd())

print("Absoulte path from a relative one:\n

y"))

print("Extract the directory name:\n

tory/and/file.txt"))

print("Extract the file name:\n

y/and/file.txt"))

print("Properly set path for a subdirectory of the current directory:\n ",
os.path.join(os.getcwd(), "some", "path"))

, os.path.abspath("../../example.p

, os.path.dirname("/home/vsego/test/direc

, 0s.path.basename("/home/vsego/test/director

Working directory:
/home/vsego/python
Absoulte path from a relative one:
/home/example.py
Extract the directory name:
/home/vsego/test/directory/and
Extract the file name:
file.txt
Properly set path for a subdirectory of the current directory:
/home/vsego/python/some/path

time

Quite obviously, the time module (https://docs.python.org/3/library/time.html) provides various
functions related with time and timezones. To obtain current time as the float number of seconds
since the epoch (00:00 1.1.1970. UTC)_(http://en.wikipedia.org/wiki/Unix_time), we use the function
time.time (https://docs.python.org/3/library/time.htmli#time.time). This can be used to measure the
time that was spent on a certain part of the code:

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.path.html
https://docs.python.org/3/library/time.html
http://en.wikipedia.org/wiki/Unix_time
https://docs.python.org/3/library/time.html#time.time

In [11]:

from time import time
from math import floor, sqgrt

n = int(input("n = "))

st = time() # staring time
pfs of n = list(prime_factors(n))
dt = time() - st # time difference

print("Prime factors of {}: {}".format(n, ", ".join(str(x) for x in pfs_of _n)))
print("Total time: {:.3f} seconds".format(dt))

n = 123456789
Prime factors of 123456789: 3, 3607, 3803
Total time: 23.785 seconds

This module also contains functions to convert date to string and vice versa (strftime, strptime), a
function to delay the execution of some part of the code (sleep), etc.

random

The random module (https://docs.python.org/3/library/random.html) contains many functions working
with pseudo-random numbers (ordinary computers cannot generate truly random numbers, but they
can simulate them well enough for many purposes).

Among these are randrange (returns a pseudo-random element from a "list" that the range call
would produce if called with the same arguments as randrange), randint (pseudo-random integer
between and including the arguments), choice (a pseudo-random element form a given sequence),
random(apseudowandon1floatin[0,1»,uniform(apseudowandon1floatbehNeenand(usudhﬁ
including the arguments), etc.

For example:

In [12]:

from random import uniform

print("Five pseudo-random numbers in [17,19]:\n", list(uniform(17,19) for _ in ra
nge(5)))

Five pseudo-random numbers in [17,19]:
[18.3034216222976, 18.43811970165947, 17.6760784585337, 17.02150383
97719, 18.17486819105332]

Pseudo-random generators have a seed: a value that determines how the pseudo-random numbers
are to be generated. The seed can be set using the function seed
(https://docs.python.org/3/library/random.html#random.seed), which makes it easy to regenerate
exactly the same sequence of numbers. For example:

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html#random.seed

In [13]:

import random
seed = int(input("Seed:"))

random.seed(seed)
print("Five pseudo-random numbers in [17,19]:\n", list(random.uniform(17,19) for
_ in range(5)))

random.seed(seed)
print("Five pseudo-random numbers in [17,19]:\n", list(random.uniform(17,19) for
_ in range(5)))

Seed:17
Five pseudo-random numbers in [17,19]:

[18.043967819424985, 18.613381554237357, 18.920989548647754, 17.579
250755528932, 18.532214875595905]
Five pseudo-random numbers in [17,19]:

[18.043967819424985, 18.613381554237357, 18.920989548647754, 17.579
250755528932, 18.532214875595905]

This can be useful for performing pseudo-random numerical tests that we might wish to repeat.

For example:

In [14]:

import random
import sys

This _Rinda_ resets to seed to something "random"
(a current time or something else, depending on the 0S and installed Libraries)
random.seed()

We generate the numbers for our testing

seed = random.randint(@, sys.maxsize)

print("Seed:", seed)

random.seed(seed)

print("Five pseudo-random numbers in [17,19]:\n", list(random.uniform(17,19) for
_ in range(5)))

Later, or even 1in a different program, we regenerate them,

using the same seed and the same generating algorithm as we did before
print("Seed:", seed)

random.seed(seed)

print("Five pseudo-random numbers in [17,19]:\n", list(random.uniform(17,19) for
_in range(5)))

Seed: 2838660839172700364
Five pseudo-random numbers in [17,19]:

[17.05218659923978, 18.374632899412074, 18.285158590224523, 17.3456
11750752898, 17.534021038256437]
Seed: 2838660839172700364
Five pseudo-random numbers in [17,19]:

[17.05218659923978, 18.374632899412074, 18.285158590224523, 17.3456
11750752898, 17.534021038256437]

math and cmath

The math module (https://docs.python.org/3/library/math.html) provides various functions that work

with real numbers:

» logarithms (log, loglp, log2, logl®) and exponents (exp, expml),

» square root (sqrt) and power (pow),

» rounding functions (ceil, floor, trunc; round
(https://docs.python.org/3/library/functions.html#round), however, is a built-in function),

« trigonometric functions (sin, cos, tan, atan and -- usually more advisable to use --
atan2,...),

and many more.

Many of these functions also have their complex counterparts, provided by cmath
(https://docs.python.org/3/library/cmath.html) (along with some other complex number functions).

Both of the modules provide constants pi and e.

https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/cmath.html

In [15]:

import math
import cmath

try:

print("A real square root of -1:", math.sqrt(-1))
except ValueError:

print("Number -1 doesn't have a real square root!")

try:

print("A complex square root of -1:", cmath.sqrt(-1))
except ValueError:

print("Number -1 doesn't have a complex square root!")

Number -1 doesn't have a real square root!
A complex square root of -1: 1j

One thing has to be said about the sign function: it doesn't exist, for certain technical reasons.

instead.

In [16]:

import math

print("Sign of -17.19:", int(math.copysign(1, -17.19)))

Sign of -17.19: -1

SciPy

To quote from the SciPy website (http://www.scipy.org/):

SciPy (pronounced “Sigh Pie”) is a Python-based ecosystem of open-source software
for mathematics, science, and engineering.

The packages provided in this exhaustive collection are:

» Matplotlib (http://matplotlib.org/) -- graph plotting,
o Simpy_(http://sympy.org/) -- symbolic mathematics,
» SciPy library (http://www.scipy.org/scipylib/index.html) -- scientific computing,

subsystem called IPython Notebook),
» pandas (http://pandas.pydata.org/) -- data structures and analysis.

Technically, SciPy doesn't "come with Python", but it is widely distributed and easily available to all
major Python implementations (currently, it is not completely implemented for QPython on Android).

https://docs.python.org/3/library/math.html#math.copysign
http://www.scipy.org/
http://numpy.scipy.org/
http://matplotlib.org/
http://sympy.org/
http://www.scipy.org/scipylib/index.html
http://ipython.org/
http://pandas.pydata.org/

Matplotlib

Matplotlib (http://matplotlib.org/) is a very powerfull and feature-rich graph plotting library for Python.
It's capabilities alone would be enough to fill a whole course, so we provide a simple example of its
basic usage:

In [17]:

The following Lline causes the graph to be displayed inside

this presentation. It should not be used in regular programs,
as the regular Python won't recognize 1it.

%matplotlib inline

import matplotlib.pyplot as plt
import pylab
from math import pi, sin

domain = [2*pi * t / 100 for t in range(-500, 501)]
image = [abs(x)**1.5 * sin(x) for x in domain]

pylab.figure()

plt.plot(domain, image, 'purple’)
pylab.xlabel('x")
pylab.ylabel('y")
pylab.title('title")

pylab.show()

200 T T T

150 | f !

100

T
—
i

0r L[] | A |I |]

- I '| | | || I|I I| |{\‘.. "\/\ II II|I l I| | | 1
—50 - | | | | II..-'II I'._.'I || | | | |
~100 | 1 \

- I
150 | \ |

=200

Hint: You don't always have to display the plot. Instead, you can also save it as an image file
(http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig).

http://matplotlib.org/
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.savefig

NumPy

matrices, along with high-level mathematical functions to operate on them.

The basic object is ndarray that incorporates these arrays and it is created by NumPy functions
array, arange, and many more (http://docs.scipy.org/doc/numpy/reference/routines.array-
creation.html). These objects are quite different from Python lists:

« all the elements of ndarray must be of the same type,

« all the elements of ndarray must occupy a contiguous block of memory,

» (obviously) more than one dimension can be used, so there is no need for "array of arrays"
to simulate more than one dimension,

» very advanced (MATLAB-like) indexing.

While some of these features may seem limiting, they actually improve performance and make the
code compatible with the code written in faster languages like C and FORTRAN (an old language
which is still the backbone of the fastest numerical libraries; the name comes from "FORmula
TRANSslation").

While NumPy can be imported as any other module (i.e., with import numpy), it is customary to
import it with an alias np:
import numpy as np

Functions in NumPy go from "ordinary" mathematical ones

distributions, statistics (http://docs.scipy.org/doc/numpy/reference/routines.statistics.html), etc.

The detailed NumPy reference can be found here (http://docs.scipy.org/doc/numpy/reference/).

Problem: Solve the following system of linear equations:

2 + y 4+ 3z =1
20 + 6y + 8z =
6z + 8y + 18z = 5.

If the solution doesn't exist, recognize that case. If there are infinitely many solutions, produce one of
them.

http://numpy.scipy.org/
http://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
http://docs.scipy.org/doc/numpy/reference/routines.math.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html
http://docs.scipy.org/doc/numpy/reference/routines.fft.html
http://docs.scipy.org/doc/numpy/reference/routines.financial.html
http://docs.scipy.org/doc/numpy/reference/routines.linalg.html
http://docs.scipy.org/doc/numpy/reference/routines.random.html
http://docs.scipy.org/doc/numpy/reference/routines.statistics.html
http://docs.scipy.org/doc/numpy/reference/

In [18]:

import numpy as np

A = np.array([

[2) 1) 3].’
[ZJ 6J 8]J
[6, 8, 18]

D
b = np.array([1, 3, 5])
x = np.linalg.solve(A, b)
print("Solution:\n", x)

Solution:
[3.00000000e-01 4.00000000e-01 -5.55111512e-17]

Let us verify the solution:

In [19]:
print(np.allclose(np.dot(A, x), b))

True

However, numpy.linalg.solve doesn't work if the coefficient matrix A is singular. For example,

2 + y + 3z =1
2 + 6y + 8z =
6z + 3y + 9z = 5.

In [20]:

import numpy as np

A = np.array([
[2) 1) 3].’
[ZJ 6J 8]J
[6, 3, 9]

D

b = np.array([1, 3, 5])

x = np.linalg.solve(A, b)

print("Solution:\n", x)

LinAlgError Traceback (most recent cal
1 last)
<ipython-input-20-c7b6201d97c6> in <module>()

71

8 b = np.array([1, 3, 5])
----> 9 x = np.linalg.solve(A, b)
10 print("Solution:\n", x)

/usr/1ib64/python3.3/site-packages/numpy/linalg/linalg.py in solve
(a, b)

379 signature = 'DD->D"' if isComplexType(t) else 'dd->d'

380 extobj = get _linalg error_extobj(_raise_linalgerror_sing
ular)
--> 381 r = gufunc(a, b, signature=signature, extobj=extobj)

382

383 return wrap(r.astype(result_t))

/usr/1ib64/python3.3/site-packages/numpy/linalg/linalg.py in _raise_
linalgerror_singular(err, flag)

88

89 def _raise_linalgerror_singular(err, flag):
---> 90 raise LinAlgError("Singular matrix")

91

92 def _raise_linalgerror_nonposdef(err, flag):

LinAlgError: Singular matrix

Luckily, we can always look for the least-squares best "solution". The function numpy.linalg.lstsq
returns the vector x of a minimum norm such that || Az — b|| is also minimum. Such x may or may
not be a solution of the equation Az = b, but it is certainly the closest one in 2-norm.

Let us find one such x for the above problem:

In [21]:

import numpy as np

A = np.array([
[2) 1) 3])
[2J 6J 8]J
[6, 3, 9]

D

b = np.array([1, 3, 5])

X, residuals, rank, s = np.linalg.lstsq(A, b)

print("Solution:\n", x)

Solution:
[©.34666667 -0.03333333 ©0.31333333]

Let us verify the solution:

In [22]:
print(np.allclose(np.dot(A, x), b))
print(np.dot(A, x) - b)

False

[6.00000000e-01 4.44089210e-16 -2.00000000e-01]

So, the obtained x is not a solution of our system, but it is as close to being one as possible (in terms
of the 2-norm). Hence, we conclude that our system has no solutions (and provide the x that is, in a
way, the best one to take the role).

Now, let us now try a singular but consistent system:

2¢ + y + 3z = 1
2 + 6y + 8z = 3
6br + 3y + 9z = F3.

Again, numpy.linalg.solve will not work because A is singular:

In [23]:

import numpy as np

A = np.array([
[2) 1) 3])
[ZJ 6J 8]J
[6, 3, 9]

D

b = np.array([1, 3, 3])

x = np.linalg.solve(A, b)

print("Solution:\n", x)

LinAlgError Traceback (most recent cal
1 last)
<ipython-input-23-686522882620> in <module>()

71

8 b = np.array([1, 3, 3])
----> 9 x = np.linalg.solve(A, b)
10 print("Solution:\n", x)

/usr/1ib64/python3.3/site-packages/numpy/linalg/linalg.py in solve
(a, b)

379 signature = 'DD->D"' if isComplexType(t) else 'dd->d’

380 extobj = get _linalg error_extobj(_raise_linalgerror_sing
ular)
--> 381 r = gufunc(a, b, signature=signature, extobj=extobj)

382

383 return wrap(r.astype(result_t))

/usr/1ib64/python3.3/site-packages/numpy/linalg/linalg.py in _raise_
linalgerror_singular(err, flag)

88

89 def _raise_linalgerror_singular(err, flag):
---> 90 raise LinAlgError("Singular matrix")

91

92 def _raise_linalgerror_nonposdef(err, flag):

LinAlgError: Singular matrix

However, using least squares, we can find one x such that || Az — b|| is minimum, as we did before:

In [24]:

import numpy as np

A = np.array([
[2) 1) 3])
[2J 6J 8]J
[6, 3, 9]

D

b = np.array([1, 3, 3])

X, residuals, rank, s = np.linalg.lstsq(A, b)

print("Solution:\n", x)

Solution:
[©.06666667 ©0.16666667 ©.23333333]

Is this o a solution? Let us check:

In [25]:
print(np.allclose(np.dot(A, x), b))
print(np.dot(A, x) - b)

True

[8.88178420e-16 1.33226763e-15 2.66453526e-15]

Yes, it is, so we conclude that this system has infinitely many solutions, with the above x being the
one of the minimum 2-norm.

Matrix product is defined by dot function, but it can be impractical to use it on bigger formulas.
However, the standard product * works as the matrix product between matrices defined by matrix.

For example, let us verify the following well known special case of the Woodbury matrix identity
(http://en.wikipedia.org/wiki/WWoodbury_matrix_identity):

(I+AB) ' =1—- A1+ BA)'B.
More precisely, we shall compute
X:=(1+AB)' - (1I-A(I1+BA)'B)

for random matrices A and B of order n.

http://en.wikipedia.org/wiki/Woodbury_matrix_identity

In [26]:

import numpy as np
from numpy import linalg as la

n=3

|
1}

np.matrix(np.identity(n))

while True:
try:
A

np.matrix(np.random.rand(n, n))
B = np.matrix(np.random.rand(n, n))
X = la.inv(I + A*B) - (I - A * la.inv(I + B*A) * B)
except LinAlgError:
An exception will occur 1if one or both of the inverted matrices
are singular or very near it (very 1ill-conditioned). In this case,
we ignore the error, which will allow the Lloop to retry with
a new pair of random matrices.
pass
else:
print("A =\n", A)
print("B =\n", B)
print("X =\n", X)
print("det X =", la.det(X))
print("|X|_F =", la.norm(X))
print("evals(X) =\n", *[" %s\n" % str(x) for x in la.eigvals(X)], end=

||||)
print("|evals(X)| =", [float("%.3e" % abs(x)) for x in la.eigvals(X)])

print("min |evals(X)| = %.3e" % min(abs(x) for x in la.eigvals(X)))
break

A =
[[©.15542543 ©.23372871 ©.04481062]
[©.12098013 ©.73534217 0.01049894]
[0.88187096 ©.15327166 ©.08771079]]

B =
[[©.73894572 ©.64880631 0.55002045]
[©.39019079 0.2541576 ©.88252675]
[2.0051103 0.38396904 ©.95885618]]
X =
[[1.11022302e-16 -6.93889390e-18 2.77555756e-17]
[2.77555756e-17 ©.00000000e+00 1.11022302e-16]
[5.55111512e-17 1.11022302e-16 -1.11022302e-16]]
det X = -1.34707341389e-48
|X|_F = 2.32323452737e-16
evals(X) =
6.02024694174e-17
1.22482516904e-16
-1.82684986322e-16
levals(X)| = [6.02e-17, 1.225e-16, 1.827e-16]
min |evals(X)| = 6.020e-17

SciPy library

SciPy library (http://docs.scipy.org/doc/scipy/reference/) has some overlap with NumPy, for example
in linear algebra (http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html) and statistics

described by SciPy's FAQ (http://www.scipy.org/scipylib/fag.html#what-is-the-difference-between-
numpy-and-scipy):

What is the difference between NumPy and SciPy?

In an ideal world, NumPy would contain nothing but the array data type and the most
basic operations: indexing, sorting, reshaping, basic elementwise functions, et cetera.
All numerical code would reside in SciPy. However, one of NumPy’s important goals
is compatibility, so NumPYy tries to retain all features supported by either of its
predecessors. Thus NumPy contains some linear algebra functions, even though
these more properly belong in SciPy. In any case, SciPy contains more fully-featured
versions of the linear algebra modules, as well as many other numerical algorithms. If
you are doing scientific computing with python, you should probably install both
NumPy and SciPy. Most new features belong in SciPy rather than NumPy.

Let us repeat the previous example using the functions from SciPy library:

http://docs.scipy.org/doc/scipy/reference/
http://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html
http://docs.scipy.org/doc/scipy/reference/tutorial/stats.html
http://www.scipy.org/scipylib/faq.html#what-is-the-difference-between-numpy-and-scipy

In [27]:

import numpy as np
from scipy import linalg as la

n=3

|
1}

np.matrix(np.identity(n))

while True:
try:
A

np.matrix(np.random.rand(n, n))
B = np.matrix(np.random.rand(n, n))
X = la.inv(I + A*B) - (I - A * la.inv(I + B*A) * B)
except LinAlgError:
An exception will occur 1if one or both of the inverted matrices
are singular or very near it (very 1ill-conditioned). In this case,
we ignore the error, which will allow the Lloop to retry with
a new pair of random matrices.
pass
else:
print("A =\n", A)
print("B =\n", B)
print("X =\n", X)
print("det X =", la.det(X))
print("|X|_F =", la.norm(X))
print("evals(X) =\n", *[" %s\n" % str(x) for x in la.eigvals(X)], end=

||||)
print("|evals(X)| =", [float("%.3e" % abs(x)) for x in la.eigvals(X)])

print("min |evals(X)| = %.3e" % min(abs(x) for x in la.eigvals(X)))
break

A =
[[©.57035626 ©.39711871 ©0.91761278]
[©.00964693 ©0.98443981 0.61974803]
[©.69922559 ©.87881829 0.35047373]]

B =
[[©.24316298 ©0.7116132 0.89053149]
[©.35254371 0.65245094 0.21809409]
[©.80378795 ©0.03935574 0.8740063]]

X =

[[©.00000000e+00 -4.51028104e-17 -5.55111512e-17]

[©.00000000e+00 0.00000000e+00 -2.77555756e-17]

[©.00000000e+00 -1.11022302e-16 0.00000000e+00]]

det X = 0.0

IX| F = 1.34952121275e-16

evals(X) =

0]
(-5.55111512313e-17+07)
(5.55111512313e-17+07)

|evals(X)| = [@0.0, 5.551e-17, 5.55le-17]

min |evals(X)| = ©.000e+00

It is always better to go with the SciPy library functions than their NumPy equivalents, unless the
deployment systems are not expected to have the SciPy library installed.

Probability distributions

Do not hesitate to look on the internet how to solve a problem. However, do remember to properly
attribute the code you borrow.

Here, we plot the normal distribution on the sets of 102, 10%, 10%, and 10° randomly chosen points
grouped in 100 "buckets" and normalized to achieve the same scale, based on this example
(http://stackoverflow.com/a/15415632/1667018).

http://stackoverflow.com/a/15415632/1667018

In [28]:

%matplotlib inline

import numpy as np
from scipy.interpolate import UnivariateSpline
from matplotlib import pyplot as plt

colors = ('#a00000', '#ffa0oo', '#404020', '#008000')
n = 100
plt.figure(figsize=(12,6), dpi=100)

for k in range(2,6):
The following is a slight modification of askewchan's code from
http://stackoverflow.com/a/15415632/1667018
N = 10**k
s = np.random.normal(size=N) # generate your data sample with N elements
p, X = np.histogram(s, bins=n) # bin it into n = N/10 bins
x = x[:-1] + (x[1] - x[@])/2 # convert bin edges to centers
f = UnivariateSpline(x, p, s=n)
plt.plot(
x, f(x) / 10**(k-2),
label="N = 10**%d" % k,
color=colors[k-2],
linewidth=(k-1)**1.7/2
)

plt.legend()
plt.show()

40

35

30

25

20

15|

— N = 10%2

N = 10#**3
—_— N = 104
mmm N = 10%*5

