
SECTION 5: Finite Difference Methods MATH20411

Finite difference methods are schemes for approximating the solution to an ODE or PDE, at a
discrete set of grid points. We begin by studying schemes for the reaction-diffusion equation and the
convection-diffusion equation in one dimension (both ODEs) and then discuss finite differences for the
one-dimensional heat equation (a PDE).

5.1. The Reaction-Diffusion Equation

Consider the following problem. Find u(x) satisfying

−d
2u(x)

dx2
+ r(x)u(x) = f(x), 0 < x < 1,

together with the boundary conditions

u(0) = 0, u(1) = 0.

The coefficient r(x) is called the reaction coefficient. It controls the strength of the reaction and hence,
the size of the reaction term compared to the diffusion term. We will assume that r(x) and f(x) are
real-valued functions and a unique solution exists. When working with approximation schemes, it is
useful to find examples with exact solutions, to investigate the accuracy of the approximation.
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Figure 1: The exact solution to the reaction-diffusion equation when r = 1, 2, 3 and f = 1.

Example. Suppose r(x) = 0 and f(x) = 1. Clearly, the exact solution is u(x) = 1
2(x− x2).

Example. Suppose r(x) = ω2 and f(x) = 1. The exact solution (see Figure 1) is

u(x) =
1

ω2
− eωx + eω(1−x)

ω2(1 + eω)
.
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To approximate u(x) we apply the following steps.

1. Set up a grid of uniformly spaced points on the interval [0, 1] (the interval on the x-axis on which
we want to solve the ODE). If we divide [0, 1] into N sub-intervals of width h = 1/N , there are
N + 1 grids points xj with

x0 = 0, x1 = h, x2 = 2h, . . . , xN = Nh = 1.

2. Write down the differential equation at each grid point. We have

−d
2u(xj)

dx2
+ r(xj)u(xj) = f(xj), j = 1, 2, . . . , N − 1,

and the boundary conditions give

u(x0) = 0, u(xN ) = 0.

3. Approximate the derivatives by finite difference formulae.

4. Solve the resulting set of N − 1 algebraic equations for approximate values Uj ≈ u(xj).

There are lots of possibilities in step 3. We will consider only a ‘centered’ finite difference scheme.

Definition: Centered Difference. The centered difference δu of u(x) at x = xj is defined as

δu(xj) = u

(
xj +

h

2

)
− u

(
xj −

h

2

)
.

Applying the above definition twice (exercise) gives the second centered difference

δ2u(xj) = δ (δu(xj)) = u(xj+1)− 2u(xj) + u(xj−1).

Notice that if we divide by the distance between the x-values where u is evaluated, then we can use the
centered difference δu(xj) to approximate the first derivative. That is

1

h
δu(xj) =

u
(
xj + h

2

)
− u

(
xj − h

2

)
h

≈ du(xj)

dx
.

Since the second derivative is the first derivative of the first derivative, we also have

1

h2
δ2u(xj) ≈

d2u(xj)

dx2
.

If we make this approximation in the equations written in step 2, then the solution is no longer u(xj)
but an approximate value Uj ≈ u(xj). We have

−Uj+1 − 2Uj + Uj−1
h2

+ rj Uj = fj , j = 1, 2, . . . N − 1,

where we have also used the short-hand notation rj = r(xj), fj = f(xj). At the boundaries, there is no
need to make an approximation, because we already know the solution there so

U0 = u(x0) = 0, UN = u(xN ) = 0.
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Rearranging the finite difference equations gives

− 1

h2
Uj−1 +

(
2

h2
+ rj

)
Uj −

1

h2
Uj+1 = fj , j = 1, 2, . . . , N − 1.

This is the centered finite difference scheme for the reaction-diffusion equation. We can write the N −1
equations for the approximations Uj as a matrix problem

b1 c
a b2 c

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . c
a bN−1





U1

U2
...
...
...

UN−1


=



f1
f2
...
...
...

fN−1


,

where

a = − 1

h2
, bj =

2

h2
+ rj , c = − 1

h2
.

So, we have to solve a tridiagonal system of equations to obtain approximate values U1, . . . , UN−1.
See the handout on centered finite differences for the reaction-diffusion equation for some
examples and details about how to solve this system in MATLAB.

The above centered finite difference equations were derived from the approximation for the second
derivative

1

h2
δ2u(xj) ≈

d2u(xj)

dx2
.

Is this a good approximation? First, we consider the following Taylor series expansions about xj

u(xj+1) = u(xj + h) = u(xj) + hu′(xj) +
h2

2
u′′(xj) +

h3

6
u′′′(xj) +

h4

24
u(4)(xj) + . . .

and

u(xj−1) = u(xj − h) = u(xj)− hu′(xj) +
h2

2
u′′(xj)−

h3

6
u′′′(xj) +

h4

24
u(4)(xj)− . . . .

Substituting these into the approximation for the second derivative gives

1

h2
δ2u(xj) =

u(xj + h)− 2u(xj) + u(xj − h)

h2

=
d2u(xj)

dx2
+
h2

12

d4u(xj)

dx4
+ terms with higher powers of h.

Hence, the error in approximating the true second derivative at xj is

1

h2
δ2u(xj)−

d2u(xj)

dx2
=

h2

12

d4u(xj)

dx4
+ terms with higher powers of h.

What about the error in approximating the solution u(xj) by Uj?

Definition: Global error. The global error in u(xj) at x = xj is

ej = u(xj)− Uj .
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Definition: Convergence. A finite difference scheme converges if

max
0≤j≤N

| ej |→ 0 as N →∞.

The experiments on the handout on centered finite differences for the reaction-diffusion
equation show that the centered scheme does converge for the test problems considered. In general, if
we do not know the exact solution, then we can’t study the global error. We need a way to the quantify
error in our approximation that does not require the exact solution.

Definition: Truncation error. The truncation error Tj at xj is the remainder when the exact
solution u(xj) is substituted into the finite difference scheme.

The centered finite difference scheme applied to the reaction-diffusion equation gives

−Uj+1 − 2Uj + Uj−1
h2

+ rj Uj = fj , j = 1, 2, . . . N − 1,

so substituting u(xj) for the approximate value Uj and finding the remainder (when we subtract the
right-hand side from the left-hand side) gives

Tj = −
(
u(xj+1)− 2u(xj) + u(xj−1)

h2

)
+ rju(xj)− fj , j = 1, 2, . . . N − 1.

Now, we also know that u(xj) satisfies the differential equation so

0 = −d
2u(xj)

dx2
+ rju(xj)− fj , j = 1, 2, . . . N − 1.

Subtracting these gives

Tj =
d2u(xj)

dx2
− 1

h2
(u(xi+1)− 2u(xj) + u(xj−1)) .

Hence, the truncation error Tj is the error in approximating the second derivative by the centered finite
difference. Using the Taylor series calculation above, we have

Tj = −h
2

12

d4u(xj)

dx4
+ terms with higher powers of h.

Definition: Order. The order of a finite difference method is the lowest power of h occurring in Tj .

The centered scheme for the reaction-diffusion equation is second-order.

5.2. The Convection-Diffusion Equation

Consider the following problem. Find u(x) satisfying

−d
2u(x)

dx2
+ w

du(x)

dx
= f(x), 0 < x < 1,

together with the boundary conditions

u(0) = α, u(1) = β.
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Figure 2: The exact solution to the convection-diffusion equation when f = 1 and we have zero boundary
conditions.

The coefficient w is called the convection coefficient and we will assume this is a constant. The exact
solution in the case of zero boundary conditions is shown in Figure 2.

Notice that there are two derivatives in this equation. We need finite difference approximations for
both the second derivative and the first derivative. On Exercise Sheet 7, you are asked to investigate two
different schemes. Details of numerical experiments performed in MATLAB are given on the handout
on finite differences for the convection-diffusion problem.

Centered Finite Differences

The centered method uses the same centered approximation to the second derivative that we used for
the reaction-diffusion equation. That is,

d2u(xj)

dx2
≈ 1

h2
δ2u(xj), j = 1, 2, . . . , N − 1.

In addition, we use a centered approximation for the first derivative given by

du(xj)

dx
≈ u(xj + h)− u(xj − h)

2h
=
u(xj+1)− u(xj−1)

2h
.

Combining these approximations, the resulting finite difference equations are

−
(
Uj+1 − 2Uj + Uj−1

h2

)
+ w

(
Uj+1 − Uj−1

2h

)
= fj , j = 1, 2, . . . , N − 1,

and, using the boundary conditions, we have U0 = α, UN = β. Again, we have to solve a system of N−1
algebraic equations to find U1, . . . , UN−1. The numerical experiments performed on the handout reveal
that there is a problem with this scheme. There are non-physical oscillations in the approximation.
The scheme is unstable. The scheme is stable only when

|w|h
2
≤ 1.
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(You can test this out yourself by doing the numerical experiments on the handout and varying w
and h.) This means that when w is large, h has to be very small to get a stable solution. The smaller
h is, the more equations we have to solve and the more expensive the method becomes.

Upwind Finite Differences

Alternatively, we can keep the centered approximation to the second derivative, as before, but use an
‘improved’ approximation for the first derivative. The so-called upwind approximation is

du(xj)

dx
≈ u(xj)− u(xj − h)

h
=
u(xj)− u(xj−1)

h
.

The resulting finite difference scheme is stable. There are no restrictions no h. However, for the same
value of h, the method is less accurate (see Exercise Sheet 7 and the experiments on the handout on
finite differences for the convection-diffusion problem).

5.3. The One-Dimensional Heat Equation

Consider the following problem. Find u(x, t) satisfying the one-dimensional heat equation,

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, t > 0,

together with the boundary conditions

u(0, t) = 0, u(1, t) = 0,

and the initial condition
u(x, 0) = u0(x).

We already know that the exact solution can be expressed as an infinite series, using the method of
separation of variables. However, an infinite series is not useful for practical purposes. For instance, if
we want to know the value of u at some particular value of x and t, then it is not possible to use the
infinite series. (We can never add up infinitely many quantities). We could truncate the series after a
few terms and use the truncated series as an approximation. Alternatively, we can use finite difference
schemes.

We follow the same steps as for ODEs but to start off, we need a grid in space and time (a space-time
grid). The easiest thing is to think about space in the horizontal direction and time t running in the
vertical direction. Since 0 < x < 1, we may use N intervals of length h = 1/N in the x-direction, and
label the x-values as

x0 = 0, x1 = h, . . . , xj = jh, xN = 1.

In the t-direction, we’ll use intervals of size k, with t-values

t0 = 0, t1 = k, . . . , tm = mk, . . . .

Note that there is no upper limit on the time variable t. We just keep taking steps until we reach the
value of t where we want to approximate the solution. We now have two discretisation parameters: h
(the spacing in the x-direction) and k (the spacing in the t-direction).

Let Um
j denote our approximation to u(xj , tm). Starting from the known initial values

U0
j = u(xj , t0) = u(xj , 0) = u0(xj), j = 0, 1, . . . , N,

we compute approximations sequentially at each time step. We briefly look at two finite difference
schemes: the explicit method and the implicit method.
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Explicit Scheme

The heat equation has two derivatives and we need to approximate both of them, at the grid points
(xj , tm). For the ‘explicit’ scheme, we replace the time derivative with a ‘first forward difference’ and
the space derivative with a ‘second centered difference’. That is

∂2u(xj , tm)

∂x2
≈ u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

h2

and
∂u(xj , tm)

∂t
≈ u(xj , tm+1)− u(xj , tm)

k
.

Notice that to approximate the partial derivative with respect to t, we keep the value of x constant and
only take a difference over distinct t values, and similarly for the partial derivative with respect to x.

If we write down the heat equation at the point (xj , tm) and replace the derivatives with the above
approximations, and then replace the exact values u(xj , tm) with approximate ones, we obtain the finite
difference equations

Um+1
j − Um

j

k
=
Um
j+1 − 2Um

j + Um
j−1

h2
, j = 1, . . . , N − 1, m = 0, 1, . . .

or, writing ν = k
h2 , we can rearrange to give

Um+1
j = Um

j + ν
(
Um
j+1 − 2Um

j + Um
j−1
)
, j = 1, . . . , N − 1, m = 0, 1, . . . ,

with
Um
0 = 0, Um

N = 0, m = 0, 1, 2, . . . ,

(from the boundary conditions) and

U0
j = u0(xj), j = 0, 1, . . . , N,

(from the initial condition).
The above scheme is called ‘explicit’ because new values at time level m+ 1 can be computed from

the old values at time level m directly. We start from the initial values U0
j , j = 0, 1, . . . , N (which are

given) and then compute the values U1
j at time t1 = k, then at t2 = k, etc. In matrix notation, at step

m+ 1, we have to compute

Um+1
1

Um+1
2
...
...
...

Um+1
N−1


=



1− 2ν ν 0 0 . . . 0
ν 1− 2ν ν 0 . . . 0
0 ν 1− 2ν ν . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 0 0 ν 1− 2ν ν
0 0 0 0 ν 1− 2ν





Um
1

Um
2
...
...
...

Um
N−1


, m = 0, 1, 2, . . .

At step m + 1, we know the vector on the right. To compute the vector on the left, all we have to do
is a matrix-vector product. No linear system of equations needs to be solved. More details about this
computation, and how to do experiments in MATLAB are given on the handout on the explicit
finite difference scheme for the heat equation.
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Example. On the handout, results of two experiments are reported. The initial condition is chosen as

u0(x) =

{
2x 0 ≤ x ≤ 1/2

2− 2x 1/2 ≤ x ≤ 1
.

The explicit finite difference scheme is applied in two different ways. First, we set h = 1/20 (so, choose
N = 20 intervals in space) and k = 0.0012. In this case, we have ν = k/h2 = 0.48. The finite difference
approximation seems to be a good one, at each time step (see the pictures on the handout). Now,
if we repeat the experiment but choose k = 0.0013 (and keep h = 1/20) then the approximation has
non-physical oscillations and the approximation is terrible! As time progresses, these oscillations only
get worse. In this second case, we have ν = k/h2 = 0.52.

The message from this experiment is that we need to choose h and k very carefully. These parameters
have to be compatible. It can be shown that the explicit scheme is unstable whenever ν > 1/2. See
Exercise Sheet 8 for a further investigation of this issue. To analyse the explicit method properly, we’ll
need to investigate the error. Again, we must distinguish between global error and truncation error
(which can be analysed, even if we don’t know the exact solution).

Definition: Global error. The global error in u(xj , tm) at the point (xj , tm) is

emj = u(xj , tm)− Um
j .

Definition: Truncation error. The truncation error Tm
j at a point (xj , tm) is the remainder when

the exact solution is substituted into the approximation scheme.

So, for the explicit scheme,

Tm
j =

u(xj , tm+1)− u(xj , tm)

k
−
(
u(xj , tm)− 2u(xj , tm) + u(xj−1, tm)

h2

)
.

If we expand the terms u(xj , tm+1), u(xj+1, tm) and u(xj−1, tm) about (xj , tm) using Taylor series (in 2
variables now), we find that:

Tm
j =

k

2

∂2u(xj , tm)

∂t2
− h2

12

∂4u(xj , tm)

∂x4
+ terms with higher powers of h and k.

So, the scheme is first order in time and second order in space. See Exercise Sheet 8.

Implicit Scheme

The restriction that ν < 1/2 for the explicit scheme means that we need k ≤ 1
2h

2. This poses a
restriction on the time step and the method becomes expensive for small h. We can improve stability,
however, by changing the approximation used for the time derivative.

The ‘implicit’ finite difference scheme for the heat equation uses the same centered approximation
for the space derivative as before

∂2u(xj , tm)

∂x2
≈ u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

h2

and a ‘backward’ difference approximation for the time derivative

∂u(xj , tm)

∂t
≈ u(xj , tm)− u(xj , tm−1)

k
.
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If we write down the heat equation at the point (xj , tm) and replace the derivatives with the above
approximations, and then replace the exact values u(xj , tm) with approximate ones, we obtain the finite
difference equations

Um
j − U

m−1
j

k
=
Um
j+1 − 2Um

j + Um
j−1

h2
, j = 1, . . . , N − 1, m = 1, 2, . . .

or, writing ν = k
h2 , and relabelling m− 1 as m we can rearrange to give

Um
j = −νUm+1

j−1 + (1 + 2ν)Um+1
j − νUm+1

j+1 , j = 1, . . . , N − 1, m = 0, 1, . . . ,

with
Um
0 = 0, Um

N = 0, m = 0, 1, 2, . . . ,

(from the boundary conditions) and

U0
j = u0(xj), j = 0, 1, . . . , N,

(from the initial condition).
This time, we do need to solve a linear system of equations to compute the approximation at the

next time level. At step m+ 1 we have to solve:

1 + 2ν −ν 0 0 . . . 0
−ν 1 + 2ν −ν 0 . . . 0
0 −ν 1 + 2ν −ν . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 0 0 −ν 1 + 2ν −ν
0 0 0 0 −ν 1 + 2ν





Um+1
1

Um+1
2
...
...
...

Um+1
N−1


=



Um
1

Um
2
...
...
...

Um
N−1


, m = 0, 1, 2, . . .

The implicit scheme converges for all values of ν > 0. There is no restriction on how we choose
k and h (for stability). On the handout on the implicit finite difference scheme for the heat
equation, the same experiment that was conducted with the explicit scheme is repeated. No oscillations
are now observed when we choose ν = 0.52.
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