MATH36001 Mid-Term Test: Information

The mid-term test will take place during the Wednesday lecture on on 11th November. The rooms are Stopford Lecture Theatre 2 and 6. (Refer to the course webpage for info!) The rubric is to answer all the questions, which are worth a total of 20 marks.
The test is on all the material discussed in the lectures and tutorials up to date.
Below is a sample test.
Total 20 marks. Answer all 8 questions.

1. True or false: $p(A) A=A p(A)$ for any $A \in \mathbb{C}^{n \times n}$ and any polynomial p ? Justify your answer with a proof or a counterexample.
[3 marks]
๑ True - if $p(z)=c_{0}+c_{1} z+\cdots+c_{k} z^{k}$, then $p(A)=c_{0} I+c_{1} A+\cdots+c_{k} A^{k}$. Now, $A^{j}=A^{j-1} A=$ $A A^{j-1}$ so that $A p(A)=c_{0} A I+c_{1} A A+\cdots+c_{k} A A^{k}=c_{0} I A+c_{1} A A+\cdots+c_{k} A^{k} A=p(A) A$.
2. For $A \in \mathbb{C}^{n \times n}$, give two conditions equivalent to A being singular.
[2 marks]
A See Theorem 1 in the Basic material handout.
3. For nonzero $u, v \in \mathbb{C}^{n}$ let $A=I-u v^{*}$. Show that $\mu=1-v^{*} u$ is an eigenvalue of A with associated eigenvector u. What are the other eigenvalues of A ? For which value of μ is A is idempotent (i.e., $A^{2}=A$)?
[4 marks]
© Note that $\left(I-u v^{*}\right) u=\left(1-v^{*} u\right) u$ so $\mu=1-v^{*} u$ is an eigenvalue of A. Let v_{2}, \ldots, v_{n} be $n-1$ linearly independent vectors such that $v^{*} v_{i}=0$ for $i=2, \ldots, n$. Then $\left(I-u v^{*}\right) v_{i}=v_{i}$ so $\lambda=1$ is an eigenvalue of multiplicity $n-1$.

Since $A^{2}=\left(I-u v^{*}\right)\left(I-u v^{*}\right)=I-\left(2-v^{*} u\right) u v^{*}$ and u, v are nonzero, $A^{2}=A$ if and only $2-v^{*} u=1$, that is, $\mu=0$.
4. State the spectral theorem.
5. True or false: An $n \times n$ matrix has a set of n linearly independent eigenvectors. Justify your answer with a proof or a counterexample.
[1 marks]
© False - for example the 2×2 Jordan block $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ has only one eigenvector.
6. Ascertain if the following matrices are unitarily similar to a diagonal matrix:

- A such that $A^{*} A=A A^{*}$.
- B has n orthogonal eigenvectors.
- C has n distinct eigenvalues.
- A and B are both normal so they are unitarily similar to a diagonal matrix. The matrix C is diagonalizable but not necessarily by a unitary transformation.

MATH36001: Mid-Term Test: Information
7. Suppose the Jordan form of A is

$$
J=\operatorname{diag}\left(\left[\begin{array}{lll}
4 & 1 & \\
& 4 & 1 \\
& & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 1 \\
& 4
\end{array}\right],\left[\begin{array}{ll}
3 & 1 \\
& 3
\end{array}\right],[2],[2]\right) .
$$

(a) Determine the algebraic and geometric multiplicity of each distinct eigenvalue of A.
(b) Give the linearly independent eigenvectors of the Jordan matrix J.
(c) Determine the minimal polynomial of A.
(1) Incomplete solution: the eigenvalue $\lambda=4$ has algebraic multiplicity 5 and geometric multiplicity 2. It has two linearly independent eigenvectors, for example e_{1} and e_{4}. Here e_{i} is the i th column of the 9×9 identity matrix.

The minimal polynomial is $q(x)=(x-4)^{3}(x-3)^{2}(x-2)$.
8. Define the vector p-norm and state the Hölder inequality.
© See handout on Norms, page 1.

