MATH36001 Mid-Term Test: Information

The mid-term test will take place during the Wednesday lecture on on 11th November. The rooms are Stopford Lecture Theatre 2 and 6. (Refer to the course webpage for info!)
The rubric is to answer all the questions, which are worth a total of 20 marks.
The test is on all the material discussed in the lectures and tutorials up to date.
Below is a sample test.
Total 20 marks. Answer all 8 questions.

1. True or false: $p(A) A=A p(A)$ for any $A \in \mathbb{C}^{n \times n}$ and any polynomial p ? Justify your answer with a proof or a counterexample.
[3 marks]
2. For $A \in \mathbb{C}^{n \times n}$, give two conditions equivalent to A being singular.
[2 marks]
3. For nonzero $u, v \in \mathbb{C}^{n}$ let $A=I-u v^{*}$. Show that $\mu=1-v^{*} u$ is an eigenvalue of A with associated eigenvector u. What are the other eigenvalues of A ? For which value of μ is A is idempotent (i.e., $A^{2}=A$)?
[4 marks]
4. State the spectral theorem.
[2 marks]
5. True or false: An $n \times n$ matrix has a set of n linearly independent eigenvectors. Justify your answer with a proof or a counterexample.
[1 marks]
6. Ascertain if the following matrices are unitarily similar to a diagonal matrix:

- A such that $A^{*} A=A A^{*}$.
- B has n orthogonal eigenvectors.
- C has n distinct eigenvalues.

7. Suppose the Jordan form of A is

$$
J=\operatorname{diag}\left(\left[\begin{array}{lll}
4 & 1 & \\
& 4 & 1 \\
& & 4
\end{array}\right],\left[\begin{array}{ll}
4 & 1 \\
& 4
\end{array}\right],\left[\begin{array}{ll}
3 & 1 \\
& 3
\end{array}\right],[2],[2]\right) .
$$

(a) Determine the algebraic and geometric multiplicity of each distinct eigenvalue of A.
(b) Give the linearly independent eigenvectors of the Jordan matrix J.
(c) Determine the minimal polynomial of A.
8. Define the vector p-norm and state the Hölder inequality.

