
Generalized Inverses

X ∈ Cn×m is a generalized inverse of A ∈ Cm×n if it satisfies

AXA = A.

Theorem (Thm.1)
Let X ∈ Cn×m be a generalized inverse of A ∈ Cm×n.
Then Ax = b has a solution iff AXb = b, in which case the
general solution is

x = Xb + (I − XA)y ,

where y ∈ Cn is an arbitrary vector.
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Existence of Generalized Inverses

Let
EAP =

[
Ir K
O O

]
, r = rank(A) ≤ min(n,m),

be the reduced row echelon form of A ∈ Cm×n (see first year
Linear Algebra course).

Any X given by

X = P
[

Ir O
O L

]
E

for some L ∈ C(n−r)×(m−r) satisfies AXA = A.

I For every A there exist one or more generalized inverses.
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Example 1: Determine a generalized inverse for

A =

1 2
2 0
0 2

 .
Let us find the reduced row echelon form of A:

 1 0 0
−2 1 0
0 0 1

1 2
2 0
0 2

 =

1 2
0 −4
0 2

 ,

1 1/2 0
0 −1/4 0
0 1 2

1 2
0 −4
0 2

 =

1 0
0 1
0 0

 ,

so E =

1 1/2 0
0 −1/4 0
0 1 2

 1 0 0
−2 1 0
0 0 1

 =

 0 1/2 0
1/2 −1/4 0
−2 1 2

,

and P = I2.
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Hence,

X =

[
1 0 0
0 1 0

] 0 1/2 0
1/2 −1/4 0
−2 1 2

 =

[
0 1/2 0

1/2 −1/4 0

]

is a generalized inverse of A. Check that AXA = A.
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The Moore–Penrose Generalized Inverse

Moore–Penrose generalized inverse of A ∈ Cm×n: unique
X ∈ Cn×m satisfying the four Moore–Penrose conditions

(i) AXA = A, (ii) XAX = X ,
(iii) AX = (AX )∗, (iv) XA = (XA)∗.
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It is
I a generalized inverse by (i),

I commonly called the pseudoinverse of A,

I denoted by A+.

Show existence of A+ via singular value decomposition of A.
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The Moore–Penrose Generalized Inverse

Moore–Penrose generalized inverse of A ∈ Cm×n: unique
X ∈ Cn×m satisfying the four Moore–Penrose conditions

(i) AXA = A, (ii) XAX = X ,
(iii) AX = (AX )∗, (iv) XA = (XA)∗.

It is
I a generalized inverse by (i),

I commonly called the pseudoinverse of A,

I denoted by A+.

Show existence of A+ via singular value decomposition of A.

Does A+ always exist?
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Singular Value Decomposition

Theorem (Singular value decomposition, Thm. 2)
A ∈ Cm×n has a singular value decomposition (SVD)

A = UΣV ∗,

where U ∈ Cm×m, V ∈ Cn×n are unitary and

Σ = diag(σ1, . . . , σp) ∈ Rm×n,

p = min(m,n), where

σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

If A is real, U and V can be taken real orthogonal.
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Proof
Let x ∈ Cn, y ∈ Cm s.t. ‖x‖2 = ‖y‖2 = 1 & Ax = ‖A‖2y = σy .
Let V = [x ,V1] ∈ Cn×n and U = [y ,U1] ∈ Cm×m be unitary.
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Let V = [x ,V1] ∈ Cn×n and U = [y ,U1] ∈ Cm×m be unitary.

U∗AV =

[
y∗

U∗1

]
A [ x V1 ] =

[
y∗Ax y∗AV1

U∗1Ax U∗1AV1

]
=:

[
σ w∗

0 B

]
= A1,
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U∗1Ax U∗1AV1

]
=:

[
σ w∗

0 B

]
= A1,

A1

[
σ
w

]
=

[
σ w∗

0 B

] [
σ
w

]
=

[
σ2 + w∗w

Bw

]
so

σ2+w∗w ≤
∥∥∥∥[σ2 + w∗w

Bw

]∥∥∥∥
2

=

∥∥∥∥A1

[
σ
w

]∥∥∥∥
2
≤ ‖A1‖2(σ

2+w∗w)1/2.

Hence, ‖A1‖2 ≥ (σ2 + w∗w)1/2.
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Proof
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Bw

]∥∥∥∥
2

=

∥∥∥∥A1

[
σ
w

]∥∥∥∥
2
≤ ‖A1‖2(σ

2+w∗w)1/2.

Hence, ‖A1‖2 ≥ (σ2 + w∗w)1/2. But,
‖A1‖2 = ‖U∗AV‖2 = ‖A‖2 = σ. This implies that w = 0.
The proof is completed by the obvious induction.
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A = UΣV ∗ ∈ Cm×n, with U ∈ Cm×m, V ∈ Cn×n unitary and
Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min(m,n),

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0.

I σi , i = 1, . . . ,p are singular values of A.
I The ui and vi are left and right singular vectors of A,

respectively.
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A = UΣV ∗ ∈ Cm×n, with U ∈ Cm×m, V ∈ Cn×n unitary and
Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min(m,n),

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0.

I σi , i = 1, . . . ,p are singular values of A.
I The ui and vi are left and right singular vectors of A,

respectively.

The nonzero singular values of A are the positive square roots
of the nonzero e’vals of AA∗ or A∗A.

The left singular vectors ui are e’vecs of AA∗ and the right
singular vectors vi are e’vecs of A∗A.
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A = UΣV ∗ ∈ Cm×n, with U ∈ Cm×m, V ∈ Cn×n unitary and
Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min(m,n),

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0.

I σi , i = 1, . . . ,p are singular values of A.
I The ui and vi are left and right singular vectors of A,

respectively.

rank(A) = r ,
null(A) = span{vr+1, . . . , vn},

range(A) = span{u1,u2, . . . ,ur},

A =
r∑

i=1

σiuiv∗i ,

Avi = σiui , A∗ui = σivi , i = 1, . . . , r .
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Example

Compute the singular value decomposition of

A =

1 2
2 0
0 2

 .
The eigenvalues of AT A =

[
5 2
2 8

]
are 9 and 4 so the

singular values of A are 3 and 2.
Normalized eigenvectors of AT A are v1 = 1√

5

[1
2

]
,

v2 = 1√
5

[ 2
−1

]
.

u1 = 1
3Av1 = 1

3
√

5

5
2
4

, u2 = 1
2Av2 = 1√

5

 0
2
−1

.
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We need a third orthogonal vector u3: Application of the
Gram–Schmidt process to u1,u2 and e1 produces

u3 =
e1 − (

∑2
i=1 eT

1 ui)ui

‖e1 − (
∑2

i=1 eT
1 ui)ui‖2

=

 2/3
−1/3
−2/3

 .
A has the SVD A = UΣV T where

U =
1

3
√

5

5 0 2
√

5
2 6 −

√
5

4 −3 −2
√

5

 , Σ =

3 0
0 2
0 0

 ,
V =

1√
5

[
1 2
2 −1

]
.
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Cornelius Lanczos

Hungarian mathematician and physicist (1893–1974)
work in relativity theory, 1928/29 assistent of Einstein
emigrated to the US in 1931, professor at Purdue U
in 1938 published his first Numerical Analysis paper
in 1944 started working for Boeing Aircraft Company
(eigenvalue computations)
in 1949 moved to National Bureau of Standards in LA
in 1952 moved to Dublin Institute for Advance Study
in 1972 gave guest lectures at UMIST, which now is
The University of Manchester!
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Existence of the Moore–Penrose Inverse

Recall that X+ ∈ Cn×m is the pseudoinverse of X ∈ Cm×n if it
satisfies the four Moore–Penrose conditions:

(i) XX+X = X , (ii) X+XX+ = X+,

(iii) XX+ = (XX+)∗, (iv) X+X = (X+X )∗.
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satisfies the four Moore–Penrose conditions:

(i) XX+X = X , (ii) X+XX+ = X+,

(iii) XX+ = (XX+)∗, (iv) X+X = (X+X )∗.

Theorem (Thm. 3)
If A = UΣV ∗ ∈ Cm×n is an SVD then A+ = VΣ+U∗, where

Σ+ = diag(σ−1
1 , . . . , σ−1

r ,0, . . . ,0) ∈ Rn×m

and r = rank(A).
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Existence of the Moore–Penrose Inverse

Recall that X+ ∈ Cn×m is the pseudoinverse of X ∈ Cm×n if it
satisfies the four Moore–Penrose conditions:

(i) XX+X = X , (ii) X+XX+ = X+,

(iii) XX+ = (XX+)∗, (iv) X+X = (X+X )∗.

Theorem (Thm. 3)
If A = UΣV ∗ ∈ Cm×n is an SVD then A+ = VΣ+U∗, where

Σ+ = diag(σ−1
1 , . . . , σ−1

r ,0, . . . ,0) ∈ Rn×m

and r = rank(A).

In general, (AB)+ 6= B+A+.
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Low Rank Approximation

A = UΣV ∗ ∈ Cm×n, with U = [u1, . . . ,um] ∈ Cm×m,
V = [v1, . . . , vn] ∈ Cn×n are unitary and
Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min(n,m).

Theorem

If rank(A) > k and Ak =
∑k

i=1 σiuiv∗i then

min
rank(B)=k

‖A− B‖2 = ‖A− Ak‖2 = σk+1.

The singular values indicate how near a given matrix is
to a matrix of low rank.
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Projectors

Let S ⊂ Cm and let PS ∈ Cm×m.

I PS is the projector onto S if
range(PS) = S and,
P2
S = PS .

The projector is not unique.
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Projectors

Let S ⊂ Cm and let PS ∈ Cm×m.

I PS is the projector onto S if
range(PS) = S and,
P2
S = PS .

The projector is not unique.

I PS is the orthogonal projector onto S if
range(PS) = S,
P2
S = PS , and

P∗S = PS .
The orthogonal projector is unique (see Exercise 6).

Also, PS⊥ = Im − PS is the orthogonal projector onto the
orthogonal complement of S in Cm denoted by S⊥.
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Projectors onto Fundamental Subspaces

A = UΣV ∗ ∈ Cm×n with U = [u1, . . . ,um] = [ U1︸︷︷︸
m×r

U2],

V = [v1, . . . , vn] = [ V1︸︷︷︸
n×r

V2] unitary, r := rank(A).

Stefan Güttel SVD 15 / 21



Projectors onto Fundamental Subspaces

A = UΣV ∗ ∈ Cm×n with U = [u1, . . . ,um] = [ U1︸︷︷︸
m×r

U2],

V = [v1, . . . , vn] = [ V1︸︷︷︸
n×r

V2] unitary, r := rank(A).

Recall that

Avi =

{
σiui , i = 1, . . . , r
0, i = r + 1, . . . ,n, A∗ui =

{
σivi , i = 1, . . . , r ,
0, i = r + 1, . . . ,n.

Stefan Güttel SVD 15 / 21



Projectors onto Fundamental Subspaces

A = UΣV ∗ ∈ Cm×n with U = [u1, . . . ,um] = [ U1︸︷︷︸
m×r

U2],

V = [v1, . . . , vn] = [ V1︸︷︷︸
n×r

V2] unitary, r := rank(A).

Recall that

Avi =

{
σiui , i = 1, . . . , r
0, i = r + 1, . . . ,n, A∗ui =

{
σivi , i = 1, . . . , r ,
0, i = r + 1, . . . ,n.

range(A), null(A), range(A∗), null(A∗) are the four

fundamental subspaces of A:

Stefan Güttel SVD 15 / 21



Projectors onto Fundamental Subspaces

A = UΣV ∗ ∈ Cm×n with U = [u1, . . . ,um] = [ U1︸︷︷︸
m×r

U2],

V = [v1, . . . , vn] = [ V1︸︷︷︸
n×r

V2] unitary, r := rank(A).

Recall that

Avi =

{
σiui , i = 1, . . . , r
0, i = r + 1, . . . ,n, A∗ui =

{
σivi , i = 1, . . . , r ,
0, i = r + 1, . . . ,n.

range(A), null(A), range(A∗), null(A∗) are the four

fundamental subspaces of A:

Orthogonal projectors onto these subspaces:

Prange(A) = U1U∗1 = AA+, Pnull(A∗) = U2U∗2 = I − AA+,

Prange(A∗) = V1V ∗1 = A+A, Pnull(A) = V2V ∗2 = I − A+A.
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Least Squares Problems

Let Ax = b, where A ∈ Cm×n and b ∈ Cm are given.

I Theorem 1⇒ ∃ solution x iff AA+b = b in this case
general solution is x = A+b + (I − A+A)y for any y ∈ Cn.

Note that AA+b = b ⇔ b ∈ range(A).
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I Theorem 1⇒ ∃ solution x iff AA+b = b in this case
general solution is x = A+b + (I − A+A)y for any y ∈ Cn.

Note that AA+b = b ⇔ b ∈ range(A).

Theorem (Minimum 2-norm solution, Thm. 5)
For given A ∈ Cm×n and b ∈ Cm with b ∈ range(A), the vector
x = A+b is the solution of minimum 2-norm amongst all the
solutions to Ax = b.
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I Theorem 1⇒ ∃ solution x iff AA+b = b in this case
general solution is x = A+b + (I − A+A)y for any y ∈ Cn.

Note that AA+b = b ⇔ b ∈ range(A).

Theorem (Minimum 2-norm solution, Thm. 5)
For given A ∈ Cm×n and b ∈ Cm with b ∈ range(A), the vector
x = A+b is the solution of minimum 2-norm amongst all the
solutions to Ax = b.

Thm 1⇒ no solutions when b /∈ range(A).

Instead consider a least squares solution.
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Least squares solutions

A least squares solution to Ax = b is a vector x ∈ Cn s.t.
‖Ax − b‖2 is minimized.

Theorem (Thm. 6)
For given A ∈ Cm×n and b ∈ Cm the vectors

x = A+b + (I − A+A)y , y ∈ Cn arbitrary,

minimize ‖Ax − b‖2. Moreover

xLS = A+b

is the least squares solution of minimum 2-norm.
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Polar Decomposition

Theorem (Thm. 7)
Any A ∈ Cm×n with m ≥ n can be represented in the form

A = QH,

where Q ∈ Cm×n has orthonormal columns and H ∈ Cn×n is
Hermitian positive semidefinite.
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Polar Decomposition

Theorem (Thm. 7)
Any A ∈ Cm×n with m ≥ n can be represented in the form

A = QH,

where Q ∈ Cm×n has orthonormal columns and H ∈ Cn×n is
Hermitian positive semidefinite.

Proof: (not examinable)

A = UΣV ∗ = U
[

Ir 0
0 Im−r ,n−r

]
V ∗︸ ︷︷ ︸

orthonormal cols

· V
[
Σr 0
0 0n−r

]
V ∗︸ ︷︷ ︸

Hermitian pos. semidef.
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Example 6: Comparing two objects

Molecule A Molecule B

Define A = [ a1 . . . a7 ] ,B = [ b1 . . . b7 ] ∈ R3×7 with
ai ,bi : coordinates of centers of sphere i .

Is molecule A the same as molecule B?
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Orthogonal Procrustes problem

I Is A obtained by “rotating B", i.e., is A = QB for some
orthogonal matrix Q?

I Cannot expect exact equality because collected data are
not exact.

I solve instead

minimize ‖A−QB‖F subject to QT Q = I.
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Procrustes: In the Greek myth, Procrustes was a son of Poseidon.
He had an iron bed, in which he invited every passer-by to spend
the night, and where he set to work on them with his smith’s
hammer, to stretch them to fit.
If the guest proved too tall, Procrustes would amputate the excess
length. Nobody ever fit the bed exactly, because secretly Procrustes
had two beds.

Procrustes continued his reign of terror until he was captured by
Theseus, who “fitted” Procrustes to his own bed.
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