MATH36001 Generalized Inverses and the SVD 2015

1 Generalized Inverses of Matrices

A matrix has an inverse only if it is square and nonsingular. However there are theoretical and
practical applications for which some kind of partial inverse of a matrix that is singular or even
rectangular is needed. A generalized inverse of a matrix A is any matrix X satisfying

AXA = A. (1)

Note that a generalized inverse X must be the usual inverse when A is nonsingular since
multiplication by A™! on both sides of (1) gives X = A~

1.1 TIllustration: Solvability of Linear Systems

Consider the linear system Az = b, where the matrix A € C"*" and the vector b € C" are
given and x is an unknown vector. If A is nonsingular there is a unique solution for = given by
x = A7'h. When A is singular, there may be no solution or infinitely many.

Theorem 1 Let A € C™". If X is any matrix satisfying AXA = A then Ax = b has a
solution if and only if AXb =10, in which case the general solution is

r=Xb+ (I — XAy, (2)

where y € C" is an arbitrary vector.

Proof. Ezistence Let X be such that AXA = A.
(=) Suppose there exists x such that Az = b. Then by (1), b = Ax = AX Az = AXD.
(<) AXb=0b = x = Xb solves the linear system.

General solution First show that Xb+ (I —X A)y is a solution. Indeed, A(Xb+(I—XA)y) =
AXb+0=0b.

Then if z is any solution we can write + = XAz + (I — X A)z, so every solution can be
expressed in the form of (2). a0

1.2 Existence of Generalized Inverses

We now show that for every A there exist one or more generalized inverses. Let A € C"™*™ and

let B, Ex_1, ..., E; be elementary row operations and P a permutation matrix such that
I, K .
EAP = {OT O] , 7 <min(n,m),

where F = E.E);_1...E,. The matrix [IOT g ] is the reduced row echelon form of A and
rank(A) = r (see first year Linear Algebra course). Note that the two right-hand submatrices

are absent when r = n and the two lower submatrices are absent if » = m. It is easy to verify
that any X given by
X=P [Ir O} E

O L
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for some L € C7x(m=7) gatisfies AXA = A. Indeed,

_ Ir O -1 [7“ K -1 _ [r K -1 _ -1 Ir K -1 _
AXA—AP[O L]EE [O O]P —AP{O O]P =F 0 O P =A.
Example 1 Determine a generalized inverse for

1 2
A=12 0 (3)
0 2
Let us find the reduced row echelon form of A:

1 0 0 1 2 1 2 1 1/2 0 1 2 1 0

-2 1 0 2 0l=1(0 —4], |0 —=1/4 0 0 —4(=1({0 1],

| 0 0 1 0 2 0 2 0 1 2 0 2 0 0

(1 1/2 0o][1 0 0] 0 1/2 0
soEF=|0 —-1/4 0| |—-2 1 0|=1|1/2 —1/4 0|, P = I,. Hence,

| 0 1 2110 0 1] —2 1 2

- [0 1/2 0
|1 0 0 10 1/2 0
X‘_o 10 1_/22 _11/4 g _{1/2 —-1/4 o}

is a generalized inverse of A. Check that AXA = A.

1.3 The Moore—Penrose Generalized Inverse

The Moore—Penrose generalized inverse of a matrix A € C™*" is the unique matrix
X € C™™ gsatistying the four Moore-Penrose conditions:

() AXA= 4, (i) XAX = X, \
(i) AX = (AX)",  (iv) XA = (XA) (4)

The Moore-Penrose generalized inverse of A is a generalized inverse since it satisfies (1). It is
commonly called the pseudoinverse of A and is denoted by AT. We show the existence of AT
via the singular value decomposition of A in Section 2.1.

2 Singular Value Decomposition

The spectral theorem says that normal matrices can be unitarily diagonalized using a basis of
eigenvectors. The singular value decomposition can be seen as a generalization of the spectral
theorem to arbitrary, not necessarily square, matrices.

Theorem 2 (Singular value decomposition (SVD)) A matric A € C™*" has a singular
value decomposition (SVD)
A=UXV",

where U € C™™ 'V € C™™ are unitary and X = diag(oy,...,0,) € R™" p = min(m,n),
where oy > 09 > -+ >0, > 0. If A is real, U and V' can be taken real orthogonal.
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Proof. (Not ezaminable.)
Let x € C" and y € C™ be unit 2-norm vectors (||z[|2 = ||y|l2 = 1) such that

Ax = oy,

where 0 = ||A||2. Since any orthonormal set can be extended to form an orthonormal basis for the
whole space, we can define V; € C"*(»=1 and U; € C™* (™1 guch that V = [z, V4] and U = [y, U;]
are unitary. Then

i |V _ | ytAr yrAVI | o wt|
UAV_[U;}A[‘” Vl]_[Ufo UfAVl]_[O B]_Al’

where w* = y*AV; and B = U{AV;. We now show that w = 0. We have
A o| |o w* ol o2 + wrw
Ywl " lo Bl|lw]| Bw

] I []

| A1ll2 > (02 + w*w)'/2.
But, [|Aill2 = |[U*AV]|2 = ||Al|]2 = o since U and V are unitary. This implies that w = 0 and
U*AV = [” 0

SO

< [[A]l2(0 + w*w) 2
2

[02 +w*w]

2
Hence,

0 Bl The proof is completed by the obvious induction. d

The o; are called the singular values of A. The nonzero singular values of A are the
positive square roots of the nonzero eigenvalues of AA* or A*A.

The columns of U = [uy,...,uy,] and V = [vy, ..., v,] are left and right singular vectors
of A, respectively. The left singular vectors u; are eigenvectors of AA* and the right singular
vectors v; are eigenvectors of A*A.

Suppose that the singular values satisfy

01>09> >0, > 0,41 =---=0,=0, p=min(m,n). (5)

Then (see exercise 2)

rank(A) =r,
null(A) = span{v,41,...,0,}, (6)
range(A) = span{uy, uy, ..., ur}, (7)
A = Z O'Z'UZ"U;,
i=1
Av; = oyuy, A'u;=ow;,  i=1,...,r (8)

A geometric interpretation of the SVD: we can think of A € C™*™ as mapping z € C" to
y = Az € C™. Then we can choose one orthogonal coordinate system for C" (where the unit
axes are the columns of V') and another orthogonal coordinate system for C™ (where the unit
axes are the columns of U) such that A is diagonal (X), that is, maps a vector xz = Y\ | f;v;
toy = Ar = Y 0;fu;. In other words, “any matrix is diagonal,” provided we pick up
appropriate orthogonal systems for its domain and range!
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Example 2 Compute the singular value decomposition of A in (3).

e The cigenvalues of ATA = {g 8} are 9 and 4 so the singular values of A are 3 and 2.
e Normalized eigenvectors of AT A are v; = \/Lg [ﬂ, vy = \/ig [_ZJ.
5 0
o up = 3Av = ﬁg 2|, up = 1Avy = \/Lg 2 |. Application of the Gram-Schmidt
4 -1
(2 T 2/3
process to uq, us and e; produces uz = a (22":1 ej{ i) =|-1/3
ler — (D2imy e1 wi)uil2 —2/3

e A has the SVD A = UXVT where

5 0 2v5 30
_ b 2 6 —5 Y=10 2 V—i[l 2}
3Vh |4 _3 _av5 0 0 V52 -l

What is the singular value decomposition of x € C"?
Let A = UXV* be a singular value decomposition of A = 2 with U € C**" and V € C**!

unitary and X' = [ o1

U

} € R™!'. Note that 2™ is a positive scalar so o1 = (z*2)"/? = ||z

On—1)x1
and we can take V = [v;] = 1. We have from (8) that u; = %Avl = mx Let U be any

n x (n—1) matrix with orthonormal columns satisfying u;U = 0. Then U = [u; U] is unitary
and

UV =2 U] [”x”Q] (1] ==

llzll2 0

2.1 Existence of the Moore—Penrose Inverse

Recall that the pseudoinverse X € C"*™ of A € C"™*" is the unique matrix satisfying the four
Moore-Penrose conditions (4) and is denoted by A*. The next theorem shows that any matrix
A has a pseudoinverse.

Theorem 3 If A=UXV* € C™" is an SVD then
AT =VIXTU*,

where X+ = diag(o;,...,0,1,0,...,0) isn x m and r = rank(A).

Y T o

Proof. One easily checks that X1 and AT satisfy the four Moore—Penrose conditions (4)
so that they are pseudoinverses of X' and A, respectively. 0

Example 3 From the SVD of A in (3) obtained in Example 2 we have that AT = %8 [i _82 _52] .
In general it is not the case that (AB)" = BTAT for A € C™*", B € C"*P. For example,

1 0], 11 PR U S R b B 10
letA—[O O},B—{O O}Then(AB) _{O O} —2{1 01 and BTAT = 0 ol
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rank = 359 rank = 20 rank = 100

Figure 1: Low-rank approximation of Diirer’s magic square.

2.2 Low-Rank Approximation

The singular values indicate how “near” a given matrix is to a matrix of low rank.

Theorem 4 Let the SVD of A € C™*" be given by Theorem 2. Write U = [uy, ..., uy| and
V=[v1,...,0,]. If k <7 =rank(A) and Ay = Zle ouv} then
i A—Bls=||A- A2 = :
i 2= | ellz = o1
Proof. Since U*A,V = diag(oy,...,04,0...,0), it follows that rank(A;) = k and that
U*(A — Ag)V = diag(0,...,0,0k41,...,0p,) and so [|[A — Akl = ok41-
The theorem is proved if we can show that ||A — B||s > ox1 for all matrices B of rank k.
Let B be any matrix of rank k, so its null space is of dimension n — k. Let Vi1 =
span(vy, ..., Vk+1). Then dim Vi = k + 1 and null(B) N Vi1 # 0 since the sum of their
dimensions is (n — k) + (k4 1) > n. Let z € null(B) N Vi41 be of unit 2-norm (i.e., ||z]|2 = 1)

so that Bz = 0 and z = S5 Gy with S5 |¢;]> = 1 since 2 is of unit norm. Then

k+1 k+1
IA=BJ3 = (A=B)2ll3 = [[Az]l; = [UZV*2|5 = |EV 2l = D ofIGI® 2 07y D 1GIP = o7

i=1 i=1

Example 4 (Image Compression) An m x n grayscale image is just an m X n matrix where
entry (7,7) is interpreted as the brightness of pixel (7,7) ranging, say, from 0 (=black) to 1
(=white). Entries between 0 and 1 correspond to various shades of grey.

Now, let A be the matrix representing a detail from Albrecht Diirer’s engraving “Melanco-
lia I” from 1514 showing a 4 x 4 magic square (see first plot in Figure 1). The matrix A is of
size 359 x 371 and of full rank. Its singular values decrease rapidly (only one > 10* and only six
> 10%). The three other plots in Figure 1 show the low rank approximations Ay = Zle O UF
for £ = 1,20, and 100. The checker board-like structure of A; is typical of very low-rank ap-
proximation. The individual numerals are recognizable in the » = 20 approximation. There is
hardly any difference between the r = 100 approximation and the full rank image.

Although low-rank matrix approximation to images do require less computer storage and
transmission time than the full image, there are more effective data compression techniques.
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The primary uses of low-rank approximations in image processing involve feature recognition
such as in handwritten digits, faces, and finger prints.

3 Projectors
Let S be a subspace of C™ and let Ps € C™*™,

e Ds is the projector onto S if range(Ps) = S and P2 = Ps. The projector is not unique.

e Ps is the orthogonal projector onto S if range(Ps) = S, P2 = Ps, and P§ = Ps. The
orthogonal projector is unique (see Exercise 6). Also, Ps1 = I — Ps is the orthogonal
projector onto the orthogonal complement of S in C™ denoted by S+.

(Solution to Exercise 6): Let Py and P be orthogonal projectors onto S. Since range(P;) =
range(P,), P, = P, X for some X. Then PP, = P?X = P X = P,. Likewise, PP, = P\.

Hence, for any z,

(P = Po)zll3 = 2" (Py = Po)(Pr — Py)z
:Z*(P12+P22—P1P2—P2P1)Z
Z*(P1+P2—P2—P1)Z:0

Therefore P, — P, = O.

*

LY
yrr

with x,y € C" y*xr # 0, a projector? Is it an

xy*) u = y*um €

Example 5 Is the rank-one matrix

orthogonal projector?
* T * * *

is idempotent since ( id ) (MJ ) -

yrr yrr yrx

Yy . .
—— is a projector onto range(z).
Y

For any u € C", <
yrw

yrx
range(z) so Prange(z) 1=

is an orthogonal projector onto range(z) since

If x = ay for some o € R, Prange(a) =

*

Tx

T*r

is Hermitian.

T*x

Let A € C™*" be such that rank(A) = r. In terms of the SVD of A, A = UXV* with
U=[U Uy]andV =[V; V5] unitary and partitioned such that U; € C™*" and V; € C™*",
the orthogonal projectors onto the four fundamental subspaces of A are given by (see Exercise 7)

Prange(A) = U, Uika
Prange(A*) = ‘/1‘/1*7

In terms of the pseudoinverse,

Prange(A) = AA+7
Prange(A*) = A+A7

Pnull(A*) = U2U2*7
Praay = Va2 V5

Pnull(A*) =1- AA+7
Pumay =1 —ATA.
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4 Least Squares Problems

Consider the system of linear equations Ax = b, where A € C™*™ and b € C™ are given and x
is an unknown vector.

Theorem 1 says that Az = b has a solution if and only if AA*h = b or, equivalently,
b € range(A). In this case the general solution is x = AT+ (I — AT A)y for any y € C".

Theorem 5 (Minimum 2-norm solution) For given A € C™" and b € C™ with b €
range(A), the vector x = ATb is the solution of minimum 2-norm amongst all the solutions

to Ax = b.
Proof. We will need the following fact

Fact 1 For u,v € C": u*v =0 = [ju +v||3 = ||u]|2 + ||v]]3.
This follows directly from |Ju + v||2 = (u + v)*(u + v) = ||lul|3 + ||v]|3 + 2 Re(u*v).

Then take u = ATb and v = (I — AT A)y with y € C", arbitrary and using (4) (ii) and (iv),
check that v*u = y*(I — ATA)*ATh = y*(AT — ATAAT)b = y* (AT — AT)b = 0. It follows that
for the general solution x = AT+ (I — AT A)y to Ax = b,

]l = [LATBIS + [(1 — AT A)yl3

and the 2-norm of z is minimal when (I — ATA)y = 0, in which case x = A™b. (Note that
(I —A*A)y =0 & yenull(A)*+ = range(A*), see Exercise 7(i).)
U

Theorem 1 says that there is no solution to Az = b when b ¢ range(A). However for some
purposes we may be satisfied with a least squares solution, which is a vector z € C" such
that ||Az — b||2 is minimized.

Theorem 6 (Least squares solutions) For given A € C™*"™ and b € C™ the vectors
r=A"0+ (I — ATA)y, yeC" arbitrary,
minimize ||Ax — b||a. Moreover x5 = A%b is the least squares solution of minimum 2-norm.
Proof. Let r = rank(A) and A = UXV* be an SVD. For any € C" we have

|Az = b||3 = |U*AV (V*z) — U*b||3
=Dy —cl} (y=V*z, c=U"D)

T m
= Z |oiys — cil” + Z il .
i=1

i=r+1

| Az — b||3 is minimized if and only if y; = ¢;/0; = ujb/o;, i=1,...,7, where y,11,. ..,y are
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arbitrary. Hence

[uib/oq ]
r=Vy=V uzb/o = v + Z yiv;, with y; arbitrary for i =r+1,...,n.
Yr+1 i1 i i=r+1
L Yn

The formula for x in the theorem follows from A*b = VIXTU*h =37 uiby; and Do YiVi =

i=1 o,

(I — AtA)z for some z € C" since (I — ATA) is the orthogonal projector onto null(A4) =

spanf{v, 41, ..., U, }.
Since V' is unitary, ||z||2 = ||yl and we get the minimum norm solution xg by setting
Yrr1 =+ = Yp = 0. Therefore,

T

rrs =Vy= Zywi = Z(Ufb/gi)vz‘ = AD. a

i=1 =1

To summarize we have the following diagram: see Ortega p.169.

5 Polar Decomposition

The polar decomposition is the generalization to matrices of the familiar polar representation
2z = re of a complex number. It is intimately related to the singular value decomposition
(SVD), as our proof of the decomposition reveals.

Theorem 7 (Polar decomposition) Any A € C™*" with m > n can be represented in the
form

A=QH,

where () € C™* "™ has orthonormal columns and H € C"*" is Hermitian positive semidefinite.
If A is real then @) can be taken real orthogonal and H symmetric positive semidefinite.
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Proof. Let A=U[*] ° ]V* be an SVD, r = rank(A). Then

0 Om—r,n—r

L0 R D 7 N
A_U[O Im_m_r}v.v[o On_JV:QH. (9)

I, 0
0 Imfr,nfr
H is Hermitian since H* = H and positive semidefinite since all its eigenvalues are real and

nonnegative. O

@ has orthonormal columns since U, V' are unitary and [ } has orthonormal columns.

Example 6 (Aligning two objects) Consider the molecule A, which we will specify by the
coordinates aq, ..., a; of the centers of the seven spheres that represent some of its atoms, and
let B be a second molecule. Define the 3x 7 matrices A =[a; ... ar]and B=1[b ... b7].

Molecule A Molecule B

How can we tell whether molecule A and molecule B are the same, that is, if B was obtained by
“rotating A”. In other words, is A = QB for some orthogonal matrix )7 Because life is about
change and imperfection, we do not expect to obtain exact equality, but we want to make the
difference between B and QA as small as possible. So our task is to solve the following problem

minimize |A — QB||p subject to QTQ = 1.

This is called an orthogonal Procrustes problem. It is shown in Exercise 5 that the
transpose of the solution @ is the orthogonal polar factor of BAT.

Exercises

. Let A € C™" m > n. If rank(A) = n, show that A*A is nonsingular and that A%t =
(A*A)~LA*.
. Let A € C™" with m > n be such that rank(A) = r. The matrix A has the singular value
decomposition A = UXV*, where U = [uy,...,up,] € C™" V = [vg,...,v,] € C"" are
unitary, and X = diag(oy,...,0,) € R™" where 0y > 09> -+ >0, > 0,41 =+ =0, = 0.
Show that

null(A) = span{v,;1,...,0,},

range(A) = spanf{uy, ug, ..., u,}.
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. For A € C™™ use the SVD to find expressions for ||A|2 and ||A]|F in terms of the singular
values of A. Hence obtain a bound of the form c¢;||Alls < ||Al|r < ¢2||A|2, where ¢; and ¢, are
constants that depend on n. When is there equality in these two inequalities?

. Show that the pseudoinverse AT of A € C™*" solves the problem

min ||AX — I,||F-

XeCnxm
[Hint: Reduce it to m standard least squares problems.| Is the solution unique?
. Let A, B € R™™. Recall that ||A||% = trace(AT A) and that for any matrix D for which the

product AD is defined, trace(AD) = trace(DA).

(i) Show that the @ that minimizes ||[A — QBJ/r over all choices of orthogonal @ also
maximizes trace(ATQB).

(i) Suppose that the SVD of the m x m matrix BAT is UX VT where U and V are m x m
and orthogonal and X is diagonal with diagonal entries oy > --- > 0,, > 0. Define Z = VIQU.
Use these definitions and (i) to show that

trace(ATQB) = trace(ZX) < Z ;.
i=1

(iii) Identify the choice of @) that gives equality in the bound of (ii).

(iv) Carefully state a theorem summarizing the solution to the minimization of ||A —QB|| .
. Show that the orthogonal projector onto a subspace S is unique.
. Let A e C™*™,

(i) Show that (range(A))L = null(A*) and that (null(A))L = range(A*).
(ii) Show that AA*, ATA, I— AT Aand [ — AA" are the orthogonal projectors onto range(A),
range(A*), null(A) and null(A*), respectively.

(iii) Suppose rank(A) =7 and let A = UXV* with U = [U; U] and V = [V} V3] unitary
and partitioned such that U; € C™*" and V; € C™". Show that U Uf, iV}, VLV
and U,U; are the orthogonal projectors onto range(A), range(A*), null(A) and null(A*),
respectively.

. What is the pseudoinverse of a vector x € C"?

. Is it true that (AT)" = A?



