MATH36001 Generalized Inverses and the SVD 2015

1 Generalized Inverses of Matrices

A matrix has an inverse only if it is square and nonsingular. However there are theoretical and practical applications for which some kind of partial inverse of a matrix that is singular or even rectangular is needed. A **generalized inverse** of a matrix A is any matrix X satisfying

$$AXA = A.$$
 (1)

Note that a generalized inverse X must be the usual inverse when A is nonsingular since multiplication by A^{-1} on both sides of (1) gives $X = A^{-1}$.

1.1 Illustration: Solvability of Linear Systems

Consider the linear system Ax = b, where the matrix $A \in \mathbb{C}^{n \times n}$ and the vector $b \in \mathbb{C}^n$ are given and x is an unknown vector. If A is nonsingular there is a unique solution for x given by $x = A^{-1}b$. When A is singular, there may be no solution or infinitely many.

Theorem 1 Let $A \in \mathbb{C}^{m \times n}$. If X is any matrix satisfying AXA = A then Ax = b has a solution if and only if AXb = b, in which case the general solution is

$$x = Xb + (I - XA)y,\tag{2}$$

where $y \in \mathbb{C}^n$ is an arbitrary vector.

Proof. <u>Existence</u> Let X be such that AXA = A. (\Rightarrow) Suppose there exists x such that Ax = b. Then by (1), b = Ax = AXAx = AXb. (\Leftarrow) $AXb = b \Rightarrow x = Xb$ solves the linear system. *Concerd solution* First show that Xb + (I - XA)w is a solution. Indeed, A(Xb + (I - XA)w) = Axb + (I - XA)w

<u>General solution</u> First show that Xb + (I - XA)y is a solution. Indeed, A(Xb + (I - XA)y) = AXb + 0 = b.

Then if x is any solution we can write x = XAx + (I - XA)x, so every solution can be expressed in the form of (2). \Box

1.2 Existence of Generalized Inverses

We now show that for every A there exist one or more generalized inverses. Let $A \in \mathbb{C}^{m \times n}$ and let $E_k, E_{k-1}, \ldots, E_1$ be elementary row operations and P a permutation matrix such that

$$EAP = \begin{bmatrix} I_r & K\\ O & O \end{bmatrix}, \quad r \le \min(n, m),$$

where $E = E_k E_{k-1} \dots E_1$. The matrix $\begin{bmatrix} I_r & K \\ O & O \end{bmatrix}$ is the **reduced row echelon form** of A and rank(A) = r (see first year Linear Algebra course). Note that the two right-hand submatrices are absent when r = n and the two lower submatrices are absent if r = m. It is easy to verify that any X given by

$$X = P \begin{bmatrix} I_r & O \\ O & L \end{bmatrix} E$$

MATH36001: Generalized Inverses and the SVD

for some $L \in \mathbb{C}^{(n-r) \times (m-r)}$ satisfies AXA = A. Indeed,

$$AXA = AP \begin{bmatrix} I_r & O \\ O & L \end{bmatrix} EE^{-1} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix} P^{-1} = AP \begin{bmatrix} I_r & K \\ O & O \end{bmatrix} P^{-1} = E^{-1} \begin{bmatrix} I_r & K \\ O & O \end{bmatrix} P^{-1} = A.$$

Example 1 Determine a generalized inverse for

$$A = \begin{bmatrix} 1 & 2\\ 2 & 0\\ 0 & 2 \end{bmatrix}.$$
 (3)

Let us find the reduced row echelon form of A:

$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -4 \\ 0 & 2 \end{bmatrix}, \quad \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & -1/4 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & -1/4 & 0 \\ -2 & 1 & 2 \end{bmatrix}, P = I_2. \text{ Hence},$$
$$X = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & -1/4 & 0 \\ -2 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 \\ 1/2 & -1/4 & 0 \\ -2 & 1 & 2 \end{bmatrix}$$

is a generalized inverse of A. Check that AXA = A.

1.3 The Moore–Penrose Generalized Inverse

The Moore–Penrose generalized inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is the unique matrix $X \in \mathbb{C}^{n \times m}$ satisfying the four Moore–Penrose conditions:

(i)
$$AXA = A$$
, (ii) $XAX = X$,
(iii) $AX = (AX)^*$, (iv) $XA = (XA)^*$. (4)

The Moore–Penrose generalized inverse of A is a generalized inverse since it satisfies (1). It is commonly called the **pseudoinverse** of A and is denoted by A^+ . We show the existence of A^+ via the singular value decomposition of A in Section 2.1.

2 Singular Value Decomposition

The spectral theorem says that normal matrices can be unitarily diagonalized using a basis of eigenvectors. The singular value decomposition can be seen as a generalization of the spectral theorem to arbitrary, not necessarily square, matrices.

Theorem 2 (Singular value decomposition (SVD)) A matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition (SVD)

$$A = U\Sigma V^*,$$

where $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p) \in \mathbb{R}^{m \times n}$, $p = \min(m, n)$, where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_p \ge 0$. If A is real, U and V can be taken real orthogonal.

Proof. (*Not examinable*.)

Let $x \in \mathbb{C}^n$ and $y \in \mathbb{C}^m$ be unit 2-norm vectors $(||x||_2 = ||y||_2 = 1)$ such that

 $Ax = \sigma y,$

where $\sigma = ||A||_2$. Since any orthonormal set can be extended to form an orthonormal basis for the whole space, we can define $V_1 \in \mathbb{C}^{n \times (n-1)}$ and $U_1 \in \mathbb{C}^{m \times (m-1)}$ such that $V = [x, V_1]$ and $U = [y, U_1]$ are unitary. Then

$$U^*AV = \begin{bmatrix} y^* \\ U_1^* \end{bmatrix} A \begin{bmatrix} x & V_1 \end{bmatrix} = \begin{bmatrix} y^*Ax & y^*AV_1 \\ U_1^*Ax & U_1^*AV_1 \end{bmatrix} = \begin{bmatrix} \sigma & w^* \\ 0 & B \end{bmatrix} = A_1,$$

where $w^* = y^* A V_1$ and $B = U_1^* A V_1$. We now show that w = 0. We have

$$A_1 \begin{bmatrix} \sigma \\ w \end{bmatrix} = \begin{bmatrix} \sigma & w^* \\ 0 & B \end{bmatrix} \begin{bmatrix} \sigma \\ w \end{bmatrix} = \begin{bmatrix} \sigma^2 + w^* w \\ B w \end{bmatrix}$$

 \mathbf{SO}

$$\sigma^{2} + w^{*}w = \left\| \begin{bmatrix} \sigma^{2} + w^{*}w \\ 0 \end{bmatrix} \right\|_{2} \le \left\| \begin{bmatrix} \sigma^{2} + w^{*}w \\ Bw \end{bmatrix} \right\|_{2} = \left\| A_{1} \begin{bmatrix} \sigma \\ w \end{bmatrix} \right\|_{2} \le \|A_{1}\|_{2}(\sigma^{2} + w^{*}w)^{1/2}.$$

Hence,

$$||A_1||_2 \ge (\sigma^2 + w^* w)^{1/2}.$$

But, $||A_1||_2 = ||U^*AV||_2 = ||A||_2 = \sigma$ since U and V are unitary. This implies that w = 0 and $U^*AV = \begin{bmatrix} \sigma & 0 \\ 0 & B \end{bmatrix}$. The proof is completed by the obvious induction. \Box

The σ_i are called the **singular values** of A. The nonzero singular values of A are the positive square roots of the nonzero eigenvalues of AA^* or A^*A .

The columns of $U = [u_1, \ldots, u_m]$ and $V = [v_1, \ldots, v_n]$ are **left and right singular vectors** of A, respectively. The left singular vectors u_i are eigenvectors of AA^* and the right singular vectors v_i are eigenvectors of A^*A .

Suppose that the singular values satisfy

$$\sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_r > \sigma_{r+1} = \dots = \sigma_p = 0, \quad p = \min(m, n).$$
(5)

Then (see exercise 2)

$$\operatorname{rank}(A) = r,$$

$$\operatorname{null}(A) = \operatorname{span}\{v_{r+1}, \dots, v_n\},\tag{6}$$

$$\operatorname{range}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\},\tag{7}$$

$$A = \sum_{i=1}^{n} \sigma_i u_i v_i^*,$$

$$Av_i = \sigma_i u_i, \quad A^* u_i = \sigma_i v_i, \quad i = 1, \dots, r.$$
(8)

A geometric interpretation of the SVD: we can think of $A \in \mathbb{C}^{m \times n}$ as mapping $x \in \mathbb{C}^n$ to $y = Ax \in \mathbb{C}^m$. Then we can choose one orthogonal coordinate system for \mathbb{C}^n (where the unit axes are the columns of V) and another orthogonal coordinate system for \mathbb{C}^m (where the unit axes are the columns of U) such that A is diagonal (Σ), that is, maps a vector $x = \sum_{i=1}^n \beta_i v_i$ to $y = Ax = \sum_{i=1}^n \sigma_i \beta_i u_i$. In other words, "any matrix is diagonal," provided we pick up appropriate orthogonal systems for its domain and range!

r

Page 3

Example 2 Compute the singular value decomposition of A in (3).

- The eigenvalues of $A^T A = \begin{bmatrix} 5 & 2 \\ 2 & 8 \end{bmatrix}$ are 9 and 4 so the singular values of A are 3 and 2.
- Normalized eigenvectors of $A^T A$ are $v_1 = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \frac{1}{\sqrt{5}} \begin{bmatrix} 2 \\ -1 \end{bmatrix}.$

•
$$u_1 = \frac{1}{3}Av_1 = \frac{1}{3\sqrt{5}}\begin{bmatrix} 5\\2\\4 \end{bmatrix}$$
, $u_2 = \frac{1}{2}Av_2 = \frac{1}{\sqrt{5}}\begin{bmatrix} 0\\2\\-1 \end{bmatrix}$. Application of the Gram–Schmidt

process to u_1, u_2 and e_1 produces $u_3 = \frac{e_1 - (\sum_{i=1}^2 e_1^T u_i)u_i}{\|e_1 - (\sum_{i=1}^2 e_1^T u_i)u_i\|_2} = \begin{bmatrix} 2/3 \\ -1/3 \\ -2/3 \end{bmatrix}$.

• A has the SVD $A = U\Sigma V^T$ where

$$U = \frac{1}{3\sqrt{5}} \begin{bmatrix} 5 & 0 & 2\sqrt{5} \\ 2 & 6 & -\sqrt{5} \\ 4 & -3 & -2\sqrt{5} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}, \quad V = \frac{1}{\sqrt{5}} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}.$$

What is the singular value decomposition of $x \in \mathbb{C}^n$?

Let $A = U\Sigma V^*$ be a singular value decomposition of $A \equiv x$ with $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{1 \times 1}$ unitary and $\Sigma = \begin{bmatrix} \sigma_1 \\ 0_{(n-1)\times 1} \end{bmatrix} \in \mathbb{R}^{n \times 1}$. Note that x^*x is a positive scalar so $\sigma_1 = (x^*x)^{1/2} = ||x||_2$ and we can take $V = [v_1] = 1$. We have from (8) that $u_1 = \frac{1}{\sigma_1}Av_1 = \frac{1}{||x||_2}x$. Let \widetilde{U} be any $n \times (n-1)$ matrix with orthonormal columns satisfying $u_1^*\widetilde{U} = 0$. Then $U = [u_1 \quad \widetilde{U}]$ is unitary and

$$U\Sigma V^* = \begin{bmatrix} \frac{x}{\|x\|_2} & \widetilde{U} \end{bmatrix} \begin{bmatrix} \|x\|_2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = x.$$

2.1 Existence of the Moore–Penrose Inverse

Recall that the pseudoinverse $X \in \mathbb{C}^{n \times m}$ of $A \in \mathbb{C}^{m \times n}$ is the unique matrix satisfying the four Moore–Penrose conditions (4) and is denoted by A^+ . The next theorem shows that any matrix A has a pseudoinverse.

Theorem 3 If $A = U\Sigma V^* \in \mathbb{C}^{m \times n}$ is an SVD then

 $A^+ = V \Sigma^+ U^*,$

where $\Sigma^+ = \operatorname{diag}(\sigma_1^{-1}, \ldots, \sigma_r^{-1}, 0, \ldots, 0)$ is $n \times m$ and $r = \operatorname{rank}(A)$.

Proof. One easily checks that Σ^+ and A^+ satisfy the four Moore–Penrose conditions (4) so that they are pseudoinverses of Σ and A, respectively. \Box

Example 3 From the SVD of A in (3) obtained in Example 2 we have that $A^+ = \frac{1}{18} \begin{bmatrix} 2 & 8 & -2 \\ 4 & -2 & 5 \end{bmatrix}$.

In general it is *not* the case that $(AB)^+ = B^+A^+$ for $A \in \mathbb{C}^{m \times n}$, $B \in \mathbb{C}^{n \times p}$. For example, let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Then $(AB)^+ = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}^+ = \frac{1}{2} \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ and $B^+A^+ = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

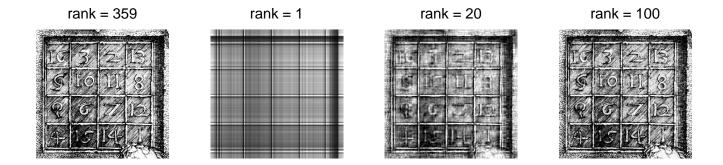


Figure 1: Low-rank approximation of Dürer's magic square.

2.2 Low-Rank Approximation

The singular values indicate how "near" a given matrix is to a matrix of low rank.

Theorem 4 Let the SVD of $A \in \mathbb{C}^{m \times n}$ be given by Theorem 2. Write $U = [u_1, \ldots, u_m]$ and $V = [v_1, \ldots, v_n]$. If $k < r = \operatorname{rank}(A)$ and $A_k = \sum_{i=1}^k \sigma_i u_i v_i^*$ then

$$\min_{\operatorname{rank}(B)=k} \|A - B\|_2 = \|A - A_k\|_2 = \sigma_{k+1}.$$

Proof. Since $U^*A_kV = \text{diag}(\sigma_1, \ldots, \sigma_k, 0, \ldots, 0)$, it follows that $\text{rank}(A_k) = k$ and that $U^*(A - A_k)V = \text{diag}(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_p)$ and so $||A - A_k||_2 = \sigma_{k+1}$.

The theorem is proved if we can show that $||A - B||_2 \ge \sigma_{k+1}$ for all matrices B of rank k.

Let *B* be any matrix of rank *k*, so its null space is of dimension n - k. Let $\mathcal{V}_{k+1} = \operatorname{span}(v_1, \ldots, v_{k+1})$. Then dim $\mathcal{V}_{k+1} = k + 1$ and null(*B*) $\cap \mathcal{V}_{k+1} \neq \emptyset$ since the sum of their dimensions is (n - k) + (k + 1) > n. Let $z \in \operatorname{null}(B) \cap \mathcal{V}_{k+1}$ be of unit 2-norm (i.e., $||z||_2 = 1$) so that Bz = 0 and $z = \sum_{i=1}^{k+1} \zeta_i v_i$ with $\sum_{i=1}^{k+1} |\zeta_i|^2 = 1$ since *z* is of unit norm. Then

$$\|A - B\|_{2}^{2} \ge \|(A - B)z\|_{2}^{2} = \|Az\|_{2}^{2} = \|U\Sigma V^{*}z\|_{2}^{2} = \|\Sigma V^{*}z\|_{2}^{2} = \sum_{i=1}^{k+1} \sigma_{i}^{2}|\zeta_{i}|^{2} \ge \sigma_{k+1}^{2} \sum_{i=1}^{k+1} |\zeta_{i}|^{2} = \sigma_{k+1}^{2}.$$

Example 4 (Image Compression) An $m \times n$ grayscale image is just an $m \times n$ matrix where entry (i, j) is interpreted as the brightness of pixel (i, j) ranging, say, from 0 (=black) to 1 (=white). Entries between 0 and 1 correspond to various shades of grey.

Now, let A be the matrix representing a detail from Albrecht Dürer's engraving "Melancolia I" from 1514 showing a 4×4 magic square (see first plot in Figure 1). The matrix A is of size 359×371 and of full rank. Its singular values decrease rapidly (only one > 10^4 and only six > 10^3). The three other plots in Figure 1 show the low rank approximations $A_k = \sum_{i=1}^k \sigma_i u_i v_i^*$ for k = 1, 20, and 100. The checker board-like structure of A_1 is typical of very low-rank approximation. The individual numerals are recognizable in the r = 20 approximation. There is hardly any difference between the r = 100 approximation and the full rank image.

Although low-rank matrix approximation to images do require less computer storage and transmission time than the full image, there are more effective data compression techniques.

The primary uses of low-rank approximations in image processing involve feature recognition such as in handwritten digits, faces, and finger prints.

3 Projectors

Let \mathcal{S} be a subspace of \mathbb{C}^m and let $P_{\mathcal{S}} \in \mathbb{C}^{m \times m}$.

- $P_{\mathcal{S}}$ is the **projector** onto \mathcal{S} if range $(P_{\mathcal{S}}) = \mathcal{S}$ and $P_{\mathcal{S}}^2 = P_{\mathcal{S}}$. The projector is not unique.
- $P_{\mathcal{S}}$ is the **orthogonal projector** onto \mathcal{S} if range $(P_{\mathcal{S}}) = \mathcal{S}$, $P_{\mathcal{S}}^2 = P_{\mathcal{S}}$, and $P_{\mathcal{S}}^* = P_{\mathcal{S}}$. The orthogonal projector is unique (see Exercise 6). Also, $P_{\mathcal{S}^{\perp}} = I P_{\mathcal{S}}$ is the orthogonal projector onto the orthogonal complement of \mathcal{S} in \mathbb{C}^m denoted by \mathcal{S}^{\perp} .

(Solution to Exercise 6): Let P_1 and P_2 be orthogonal projectors onto S. Since range $(P_1) =$ range (P_2) , $P_2 = P_1 X$ for some X. Then $P_1 P_2 = P_1^2 X = P_1 X = P_2$. Likewise, $P_2 P_1 = P_1$. Hence, for any z,

$$\begin{aligned} \|(P_1 - P_2)z\|_2^2 &= z^*(P_1 - P_2)(P_1 - P_2)z \\ &= z^*(P_1^2 + P_2^2 - P_1P_2 - P_2P_1)z \\ &= z^*(P_1 + P_2 - P_2 - P_1)z = 0. \end{aligned}$$

Therefore $P_1 - P_2 = O$.

Example 5 Is the rank-one matrix $\frac{xy^*}{y^*x}$ with $x, y \in \mathbb{C}^n$, $y^*x \neq 0$, a projector? Is it an orthogonal projector?

$$\frac{xy^*}{y^*x} \text{ is idempotent since } \left(\frac{xy^*}{y^*x}\right) \left(\frac{xy^*}{y^*x}\right) = \frac{xy^*}{y^*x}. \text{ For any } u \in \mathbb{C}^n, \ \left(\frac{xy^*}{y^*x}\right)u = \frac{y^*u}{y^*x}x \in \operatorname{ange}(x) \text{ so } P_{\operatorname{range}(x)} := \frac{xy^*}{y^*x} \text{ is a projector onto } \operatorname{range}(x).$$

range(x) so $P_{\text{range}(x)} := \frac{xy^*}{y^*x}$ is a projector onto range(x). If $x = \alpha y$ for some $\alpha \in \mathbb{R}$, $P_{\text{range}(x)} := \frac{xx^*}{x^*x}$ is an orthogonal projector onto range(x) since $\frac{xx^*}{x^*x}$ is Hermitian.

Let $A \in \mathbb{C}^{m \times n}$ be such that $\operatorname{rank}(A) = r$. In terms of the SVD of $A, A = U\Sigma V^*$ with $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ and $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$ unitary and partitioned such that $U_1 \in \mathbb{C}^{m \times r}$ and $V_1 \in \mathbb{C}^{n \times r}$, the orthogonal projectors onto the four fundamental subspaces of A are given by (see Exercise 7)

$$P_{\text{range}(A)} = U_1 U_1^*, \qquad P_{\text{null}(A^*)} = U_2 U_2^*, P_{\text{range}(A^*)} = V_1 V_1^*, \qquad P_{\text{null}(A)} = V_2 V_2^*.$$

In terms of the pseudoinverse,

$$P_{\text{range}(A)} = AA^+, \qquad P_{\text{null}(A^*)} = I - AA^+,$$
$$P_{\text{range}(A^*)} = A^+A, \qquad P_{\text{null}(A)} = I - A^+A.$$

4 Least Squares Problems

Consider the system of linear equations Ax = b, where $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$ are given and x is an unknown vector.

Theorem 1 says that Ax = b has a solution if and only if $AA^+b = b$ or, equivalently, $b \in \operatorname{range}(A)$. In this case the general solution is $x = A^+b + (I - A^+A)y$ for any $y \in \mathbb{C}^n$.

Theorem 5 (Minimum 2-norm solution) For given $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$ with $b \in \operatorname{range}(A)$, the vector $x = A^+b$ is the solution of minimum 2-norm amongst all the solutions to Ax = b.

Proof. We will need the following fact

Fact 1 For $u, v \in \mathbb{C}^n$: $u^*v = 0 \implies ||u + v||_2^2 = ||u||_2^2 + ||v||_2^2$.

This follows directly from $||u+v||_2^2 = (u+v)^*(u+v) = ||u||_2^2 + ||v||_2^2 + 2\operatorname{Re}(u^*v).$

Then take $u = A^+b$ and $v = (I - A^+A)y$ with $y \in \mathbb{C}^n$, arbitrary and using (4) (ii) and (iv), check that $v^*u = y^*(I - A^+A)^*A^+b = y^*(A^+ - A^+AA^+)b = y^*(A^+ - A^+)b = 0$. It follows that for the general solution $x = A^+b + (I - A^+A)y$ to Ax = b,

$$||x||_{2}^{2} = ||A^{+}b||_{2}^{2} + ||(I - A^{+}A)y||_{2}^{2}$$

and the 2-norm of x is minimal when $(I - A^+A)y = 0$, in which case $x = A^+b$. (Note that $(I - A^+A)y = 0 \iff y \in \operatorname{null}(A)^\perp = \operatorname{range}(A^*)$, see Exercise 7(i).)

Theorem 1 says that there is no solution to Ax = b when $b \notin \operatorname{range}(A)$. However for some purposes we may be satisfied with a **least squares solution**, which is a vector $x \in \mathbb{C}^n$ such that $||Ax - b||_2$ is minimized.

Theorem 6 (Least squares solutions) For given $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^m$ the vectors

$$x = A^+b + (I - A^+A)y, \quad y \in \mathbb{C}^n \text{ arbitrary},$$

minimize $||Ax - b||_2$. Moreover $x_{LS} = A^+ b$ is the least squares solution of minimum 2-norm.

Proof. Let $r = \operatorname{rank}(A)$ and $A = U\Sigma V^*$ be an SVD. For any $x \in \mathbb{C}^n$ we have

$$\|Ax - b\|_{2}^{2} = \|U^{*}AV(V^{*}x) - U^{*}b\|_{2}^{2}$$

= $\|\Sigma y - c\|_{2}^{2}$ $(y = V^{*}x, c = U^{*}b)$
= $\sum_{i=1}^{r} |\sigma_{i}y_{i} - c_{i}|^{2} + \sum_{i=r+1}^{m} |c_{i}|^{2}.$

 $||Ax - b||_2^2$ is minimized if and only if $y_i = c_i/\sigma_i = u_i^* b/\sigma_i$, $i = 1, \ldots, r$, where y_{r+1}, \ldots, y_n are

MATH36001:

arbitrary. Hence

$$x = Vy = V \begin{bmatrix} u_1^* b/\sigma_1 \\ \vdots \\ u_r^* b/\sigma_r \\ y_{r+1} \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^r \frac{u_i^* b}{\sigma_i} v_i + \sum_{i=r+1}^n y_i v_i, \quad \text{with } y_i \text{ arbitrary for } i = r+1, \dots, n.$$

The formula for x in the theorem follows from $A^+b = V\Sigma^+U^*b = \sum_{i=1}^r \frac{u_i^*b}{\sigma_i}v_i$ and $\sum_{i=r+1}^n y_iv_i = (I - A^+A)z$ for some $z \in \mathbb{C}^n$ since $(I - A^+A)$ is the orthogonal projector onto $\operatorname{null}(A) = \operatorname{span}\{v_{r+1}, \ldots, v_n\}$.

Since V is unitary, $||x||_2 = ||y||_2$ and we get the minimum norm solution x_{LS} by setting $y_{r+1} = \cdots = y_n = 0$. Therefore,

$$x_{LS} = Vy = \sum_{i=1}^{r} y_i v_i = \sum_{i=1}^{r} (u_i^* b / \sigma_i) v_i = A^+ b. \quad \Box$$

To summarize we have the following diagram: see Ortega p.169.

5 Polar Decomposition

The polar decomposition is the generalization to matrices of the familiar polar representation $z = re^{i\theta}$ of a complex number. It is intimately related to the singular value decomposition (SVD), as our proof of the decomposition reveals.

Theorem 7 (Polar decomposition) Any $A \in \mathbb{C}^{m \times n}$ with $m \ge n$ can be represented in the form

$$A = QH,$$

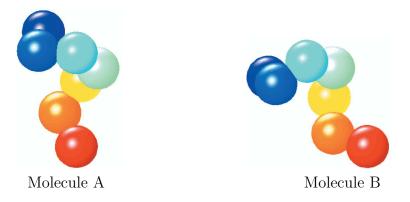
where $Q \in \mathbb{C}^{m \times n}$ has orthonormal columns and $H \in \mathbb{C}^{n \times n}$ is Hermitian positive semidefinite. If A is real then Q can be taken real orthogonal and H symmetric positive semidefinite.

Proof. Let
$$A = U\begin{bmatrix} \Sigma_r & 0\\ 0 & 0_{m-r,n-r} \end{bmatrix} V^*$$
 be an SVD, $r = \operatorname{rank}(A)$. Then

$$A = U\begin{bmatrix} I_r & 0\\ 0 & I_{m-r,n-r} \end{bmatrix} V^* \cdot V\begin{bmatrix} \Sigma_r & 0\\ 0 & 0_{n-r} \end{bmatrix} V^* \equiv QH.$$
(9)

Q has orthonormal columns since U, V are unitary and $\begin{bmatrix} I_r & 0\\ 0 & I_{m-r,n-r} \end{bmatrix}$ has orthonormal columns. H is Hermitian since $H^* = H$ and positive semidefinite since all its eigenvalues are real and nonnegative. \Box

Example 6 (Aligning two objects) Consider the molecule A, which we will specify by the coordinates a_1, \ldots, a_7 of the centers of the seven spheres that represent some of its atoms, and let B be a second molecule. Define the 3×7 matrices $A = \begin{bmatrix} a_1 & \ldots & a_7 \end{bmatrix}$ and $B = \begin{bmatrix} b_1 & \ldots & b_7 \end{bmatrix}$.



How can we tell whether molecule A and molecule B are the same, that is, if B was obtained by "rotating A". In other words, is A = QB for some orthogonal matrix Q? Because life is about change and imperfection, we do not expect to obtain exact equality, but we want to make the difference between B and QA as small as possible. So our task is to solve the following problem

minimize $||A - QB||_F$ subject to $Q^TQ = I$.

This is called an **orthogonal Procrustes problem**. It is shown in Exercise 5 that the transpose of the solution Q is the orthogonal polar factor of BA^{T} .

Exercises

- **1.** Let $A \in \mathbb{C}^{m \times n}$, $m \ge n$. If rank(A) = n, show that A^*A is nonsingular and that $A^+ = (A^*A)^{-1}A^*$.
- **2.** Let $A \in \mathbb{C}^{m \times n}$ with $m \ge n$ be such that $\operatorname{rank}(A) = r$. The matrix A has the singular value decomposition $A = U\Sigma V^*$, where $U = [u_1, \ldots, u_m] \in \mathbb{C}^{m \times m}$, $V = [v_1, \ldots, v_n] \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n) \in \mathbb{R}^{m \times n}$, where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0$. Show that

$$\operatorname{null}(A) = \operatorname{span}\{v_{r+1}, \dots, v_n\},$$

$$\operatorname{range}(A) = \operatorname{span}\{u_1, u_2, \dots, u_r\}.$$

- **3.** For $A \in \mathbb{C}^{n \times n}$ use the SVD to find expressions for $||A||_2$ and $||A||_F$ in terms of the singular values of A. Hence obtain a bound of the form $c_1 ||A||_2 \leq ||A||_F \leq c_2 ||A||_2$, where c_1 and c_2 are constants that depend on n. When is there equality in these two inequalities?
- 4. Show that the pseudoinverse A^+ of $A \in \mathbb{C}^{m \times n}$ solves the problem

$$\min_{X \in \mathbb{C}^{n \times m}} \|AX - I_m\|_F.$$

[Hint: Reduce it to m standard least squares problems.] Is the solution unique?

5. Let $A, B \in \mathbb{R}^{m \times n}$. Recall that $||A||_F^2 = \text{trace}(A^T A)$ and that for any matrix D for which the product AD is defined, trace(AD) = trace(DA).

(i) Show that the Q that minimizes $||A - QB||_F$ over all choices of orthogonal Q also maximizes trace $(A^T Q B)$.

(ii) Suppose that the SVD of the $m \times m$ matrix BA^T is $U\Sigma V^T$, where U and V are $m \times m$ and orthogonal and Σ is diagonal with diagonal entries $\sigma_1 \geq \cdots \geq \sigma_m \geq 0$. Define $Z = V^T QU$. Use these definitions and (i) to show that

trace
$$(A^T Q B)$$
 = trace $(Z \Sigma) \le \sum_{i=1}^m \sigma_i$.

- (iii) Identify the choice of Q that gives equality in the bound of (ii).
- (iv) Carefully state a theorem summarizing the solution to the minimization of $||A QB||_F$.

6. Show that the orthogonal projector onto a subspace S is unique.

7. Let $A \in \mathbb{C}^{m \times n}$.

- (i) Show that $(\operatorname{range}(A))^{\perp} = \operatorname{null}(A^*)$ and that $(\operatorname{null}(A))^{\perp} = \operatorname{range}(A^*)$.
- (ii) Show that AA^+ , A^+A , $I A^+A$ and $I AA^+$ are the orthogonal projectors onto range(A), range(A^{*}), null(A) and null(A^{*}), respectively.
- (iii) Suppose rank(A) = r and let $A = U\Sigma V^*$ with $U = \begin{bmatrix} U_1 & U_2 \end{bmatrix}$ and $V = \begin{bmatrix} V_1 & V_2 \end{bmatrix}$ unitary and partitioned such that $U_1 \in \mathbb{C}^{m \times r}$ and $V_1 \in \mathbb{C}^{n \times r}$. Show that $U_1 U_1^*$, $V_1 V_1^*$, $V_2 V_2^*$ and $U_2 U_2^*$ are the orthogonal projectors onto range(A), range(A*), null(A) and null(A*), respectively.
- 8. What is the pseudoinverse of a vector $x \in \mathbb{C}^n$?
- **9.** Is it true that $(A^+)^+ = A$?