MATH36001 Generalized Inverses and the SVD 2015

1 Generalized Inverses of Matrices

A matrix has an inverse only if it is square and nonsingular. However there are theoretical and practical applications for which some kind of partial inverse of a matrix that is singular or even rectangular is needed. A generalized inverse of a matrix A is any matrix X satisfying

$$
\begin{equation*}
A X A=A . \tag{1}
\end{equation*}
$$

Note that a generalized inverse X must be the usual inverse when A is nonsingular since multiplication by A^{-1} on both sides of (1) gives $X=A^{-1}$.

1.1 Illustration: Solvability of Linear Systems

Consider the linear system $A x=b$, where the matrix $A \in \mathbb{C}^{n \times n}$ and the vector $b \in \mathbb{C}^{n}$ are given and x is an unknown vector. If A is nonsingular there is a unique solution for x given by $x=A^{-1} b$. When A is singular, there may be no solution or infinitely many.

Theorem 1 Let $A \in \mathbb{C}^{m \times n}$. If X is any matrix satisfying $A X A=A$ then $A x=b$ has a solution if and only if $A X b=b$, in which case the general solution is

$$
\begin{equation*}
x=X b+(I-X A) y, \tag{2}
\end{equation*}
$$

where $y \in \mathbb{C}^{n}$ is an arbitrary vector.
Proof. Existence Let X be such that $A X A=A$.
(\Rightarrow) Suppose there exists x such that $A x=b$. Then by (1), $b=A x=A X A x=A X b$.
$(\Leftarrow) A X b=b \Rightarrow x=X b$ solves the linear system.
General solution First show that $X b+(I-X A) y$ is a solution. Indeed, $A(X b+(I-X A) y)=$ $A X b+0=b$.

Then if x is any solution we can write $x=X A x+(I-X A) x$, so every solution can be expressed in the form of (2).

1.2 Existence of Generalized Inverses

We now show that for every A there exist one or more generalized inverses. Let $A \in \mathbb{C}^{m \times n}$ and let $E_{k}, E_{k-1}, \ldots, E_{1}$ be elementary row operations and P a permutation matrix such that

$$
E A P=\left[\begin{array}{ll}
I_{r} & K \\
O & O
\end{array}\right], \quad r \leq \min (n, m)
$$

where $E=E_{k} E_{k-1} \ldots E_{1}$. The matrix $\left[\begin{array}{cc}I_{r} & K \\ O & O\end{array}\right]$ is the reduced row echelon form of A and $\operatorname{rank}(A)=r$ (see first year Linear Algebra course). Note that the two right-hand submatrices are absent when $r=n$ and the two lower submatrices are absent if $r=m$. It is easy to verify that any X given by

$$
X=P\left[\begin{array}{cc}
I_{r} & O \\
O & L
\end{array}\right] E
$$

for some $L \in \mathbb{C}^{(n-r) \times(m-r)}$ satisfies $A X A=A$. Indeed,

$$
A X A=A P\left[\begin{array}{cc}
I_{r} & O \\
O & L
\end{array}\right] E E^{-1}\left[\begin{array}{cc}
I_{r} & K \\
O & O
\end{array}\right] P^{-1}=A P\left[\begin{array}{cc}
I_{r} & K \\
O & O
\end{array}\right] P^{-1}=E^{-1}\left[\begin{array}{cc}
I_{r} & K \\
O & O
\end{array}\right] P^{-1}=A
$$

Example 1 Determine a generalized inverse for

$$
A=\left[\begin{array}{ll}
1 & 2 \tag{3}\\
2 & 0 \\
0 & 2
\end{array}\right]
$$

Let us find the reduced row echelon form of A :

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
0 & -4 \\
0 & 2
\end{array}\right], \quad\left[\begin{array}{ccc}
1 & 1 / 2 & 0 \\
0 & -1 / 4 & 0 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
0 & -4 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

so $E=\left[\begin{array}{ccc}1 & 1 / 2 & 0 \\ 0 & -1 / 4 & 0 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}0 & 1 / 2 & 0 \\ 1 / 2 & -1 / 4 & 0 \\ -2 & 1 & 2\end{array}\right], P=I_{2}$. Hence,

$$
X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 / 2 & -1 / 4 & 0 \\
-2 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 / 2 & 0 \\
1 / 2 & -1 / 4 & 0
\end{array}\right]
$$

is a generalized inverse of A. Check that $A X A=A$.

1.3 The Moore-Penrose Generalized Inverse

The Moore-Penrose generalized inverse of a matrix $A \in \mathbb{C}^{m \times n}$ is the unique matrix $X \in \mathbb{C}^{n \times m}$ satisfying the four Moore-Penrose conditions:

$$
\begin{array}{ll}
\text { (i) } A X A=A, & \text { (ii) } X A X=X \\
\text { (iii) } A X=(A X)^{*}, & \text { (iv) } X A=(X A)^{*}
\end{array}
$$

The Moore-Penrose generalized inverse of A is a generalized inverse since it satisfies (1). It is commonly called the pseudoinverse of A and is denoted by A^{+}. We show the existence of A^{+} via the singular value decomposition of A in Section 2.1.

2 Singular Value Decomposition

The spectral theorem says that normal matrices can be unitarily diagonalized using a basis of eigenvectors. The singular value decomposition can be seen as a generalization of the spectral theorem to arbitrary, not necessarily square, matrices.

Theorem 2 (Singular value decomposition (SVD)) A matrix $A \in \mathbb{C}^{m \times n}$ has a singular value decomposition (SVD)

$$
A=U \Sigma V^{*}
$$

where $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \in \mathbb{R}^{m \times n}, p=\min (m, n)$, where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{p} \geq 0$. If A is real, U and V can be taken real orthogonal.

Proof. (Not examinable.)
Let $x \in \mathbb{C}^{n}$ and $y \in \mathbb{C}^{m}$ be unit 2-norm vectors $\left(\|x\|_{2}=\|y\|_{2}=1\right)$ such that

$$
A x=\sigma y
$$

where $\sigma=\|A\|_{2}$. Since any orthonormal set can be extended to form an orthonormal basis for the whole space, we can define $V_{1} \in \mathbb{C}^{n \times(n-1)}$ and $U_{1} \in \mathbb{C}^{m \times(m-1)}$ such that $V=\left[x, V_{1}\right]$ and $U=\left[y, U_{1}\right]$ are unitary. Then

$$
U^{*} A V=\left[\begin{array}{c}
y^{*} \\
U_{1}^{*}
\end{array}\right] A\left[\begin{array}{ll}
x & V_{1}
\end{array}\right]=\left[\begin{array}{cc}
y^{*} A x & y^{*} A V_{1} \\
U_{1}^{*} A x & U_{1}^{*} A V_{1}
\end{array}\right]=\left[\begin{array}{cc}
\sigma & w^{*} \\
0 & B
\end{array}\right]=A_{1},
$$

where $w^{*}=y^{*} A V_{1}$ and $B=U_{1}^{*} A V_{1}$. We now show that $w=0$. We have

$$
A_{1}\left[\begin{array}{c}
\sigma \\
w
\end{array}\right]=\left[\begin{array}{cc}
\sigma & w^{*} \\
0 & B
\end{array}\right]\left[\begin{array}{c}
\sigma \\
w
\end{array}\right]=\left[\begin{array}{c}
\sigma^{2}+w^{*} w \\
B w
\end{array}\right]
$$

so

$$
\sigma^{2}+w^{*} w=\left\|\left[\begin{array}{c}
\sigma^{2}+w^{*} w \\
0
\end{array}\right]\right\|_{2} \leq\left\|\left[\begin{array}{c}
\sigma^{2}+w^{*} w \\
B w
\end{array}\right]\right\|_{2}=\left\|A_{1}\left[\begin{array}{c}
\sigma \\
w
\end{array}\right]\right\|_{2} \leq\left\|A_{1}\right\|_{2}\left(\sigma^{2}+w^{*} w\right)^{1 / 2}
$$

Hence,

$$
\left\|A_{1}\right\|_{2} \geq\left(\sigma^{2}+w^{*} w\right)^{1 / 2}
$$

But, $\left\|A_{1}\right\|_{2}=\left\|U^{*} A V\right\|_{2}=\|A\|_{2}=\sigma$ since U and V are unitary. This implies that $w=0$ and $U^{*} A V=\left[\begin{array}{cc}\sigma & 0 \\ 0 & B\end{array}\right]$. The proof is completed by the obvious induction.

The σ_{i} are called the singular values of A . The nonzero singular values of A are the positive square roots of the nonzero eigenvalues of $A A^{*}$ or $A^{*} A$.

The columns of $U=\left[u_{1}, \ldots, u_{m}\right]$ and $V=\left[v_{1}, \ldots, v_{n}\right]$ are left and right singular vectors of A, respectively. The left singular vectors u_{i} are eigenvectors of $A A^{*}$ and the right singular vectors v_{i} are eigenvectors of $A^{*} A$.

Suppose that the singular values satisfy

$$
\begin{equation*}
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{p}=0, \quad p=\min (m, n) \tag{5}
\end{equation*}
$$

Then (see exercise 2)

$$
\begin{align*}
& \operatorname{rank}(A)=r \\
& \operatorname{null}(A)=\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}, \tag{6}\\
& \operatorname{range}(A)=\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}, \tag{7}\\
& A=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{*}, \\
& A v_{i}=\sigma_{i} u_{i}, \quad A^{*} u_{i}=\sigma_{i} v_{i}, \quad i=1, \ldots, r . \tag{8}
\end{align*}
$$

A geometric interpretation of the SVD: we can think of $A \in \mathbb{C}^{m \times n}$ as mapping $x \in \mathbb{C}^{n}$ to $y=A x \in \mathbb{C}^{m}$. Then we can choose one orthogonal coordinate system for \mathbb{C}^{n} (where the unit axes are the columns of V) and another orthogonal coordinate system for \mathbb{C}^{m} (where the unit axes are the columns of U) such that A is diagonal (Σ), that is, maps a vector $x=\sum_{i=1}^{n} \beta_{i} v_{i}$ to $y=A x=\sum_{i=1}^{n} \sigma_{i} \beta_{i} u_{i}$. In other words, "any matrix is diagonal," provided we pick up appropriate orthogonal systems for its domain and range!

Example 2 Compute the singular value decomposition of A in (3).

- The eigenvalues of $A^{T} A=\left[\begin{array}{ll}5 & 2 \\ 2 & 8\end{array}\right]$ are 9 and 4 so the singular values of A are 3 and 2 .
- Normalized eigenvectors of $A^{T} A$ are $v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right], v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}2 \\ -1\end{array}\right]$.
- $u_{1}=\frac{1}{3} A v_{1}=\frac{1}{3 \sqrt{5}}\left[\begin{array}{l}5 \\ 2 \\ 4\end{array}\right], u_{2}=\frac{1}{2} A v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$. Application of the Gram-Schmidt process to u_{1}, u_{2} and e_{1} produces $u_{3}=\frac{e_{1}-\left(\sum_{i=1}^{2} e_{1}^{T} u_{i}\right) u_{i}}{\left\|e_{1}-\left(\sum_{i=1}^{2} e_{1}^{T} u_{i}\right) u_{i}\right\|_{2}}=\left[\begin{array}{c}2 / 3 \\ -1 / 3 \\ -2 / 3\end{array}\right]$.
- A has the SVD $A=U \Sigma V^{T}$ where

$$
U=\frac{1}{3 \sqrt{5}}\left[\begin{array}{ccc}
5 & 0 & 2 \sqrt{5} \\
2 & 6 & -\sqrt{5} \\
4 & -3 & -2 \sqrt{5}
\end{array}\right], \quad \Sigma=\left[\begin{array}{cc}
3 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right], \quad V=\frac{1}{\sqrt{5}}\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right] .
$$

What is the singular value decomposition of $x \in \mathbb{C}^{n}$?
Let $A=U \Sigma V^{*}$ be a singular value decomposition of $A \equiv x$ with $U \in \mathbb{C}^{n \times n}$ and $V \in \mathbb{C}^{1 \times 1}$ unitary and $\Sigma=\left[\begin{array}{c}\sigma_{1} \\ 0_{(n-1) \times 1}\end{array}\right] \in \mathbb{R}^{n \times 1}$. Note that $x^{*} x$ is a positive scalar so $\sigma_{1}=\left(x^{*} x\right)^{1 / 2}=\|x\|_{2}$ and we can take $V=\left[v_{1}\right]=1$. We have from (8) that $u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\|x\|_{2}} x$. Let \widetilde{U} be any $n \times(n-1)$ matrix with orthonormal columns satisfying $u_{1}^{*} \widetilde{U}=0$. Then $U=\left[\begin{array}{ll}u_{1} & \widetilde{U}\end{array}\right]$ is unitary and

$$
U \Sigma V^{*}=\left[\begin{array}{ll}
\frac{x}{\|x\|_{2}} & \widetilde{U}
\end{array}\right]\left[\begin{array}{c}
\|x\|_{2} \\
0
\end{array}\right][1]=x .
$$

2.1 Existence of the Moore-Penrose Inverse

Recall that the pseudoinverse $X \in \mathbb{C}^{n \times m}$ of $A \in \mathbb{C}^{m \times n}$ is the unique matrix satisfying the four Moore-Penrose conditions (4) and is denoted by A^{+}. The next theorem shows that any matrix A has a pseudoinverse.

Theorem 3 If $A=U \Sigma V^{*} \in \mathbb{C}^{m \times n}$ is an $S V D$ then

$$
A^{+}=V \Sigma^{+} U^{*}
$$

where $\Sigma^{+}=\operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right)$ is $n \times m$ and $r=\operatorname{rank}(A)$.
Proof. One easily checks that Σ^{+}and A^{+}satisfy the four Moore-Penrose conditions (4) so that they are pseudoinverses of Σ and A, respectively.

Example 3 From the SVD of A in (3) obtained in Example 2 we have that $A^{+}=\frac{1}{18}\left[\begin{array}{ccc}2 & 8 & -2 \\ 4 & -2 & 5\end{array}\right]$.
In general it is not the case that $(A B)^{+}=B^{+} A^{+}$for $A \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times p}$. For example, let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. Then $(A B)^{+}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]^{+}=\frac{1}{2}\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ and $B^{+} A^{+}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

Figure 1: Low-rank approximation of Dürer's magic square.

2.2 Low-Rank Approximation

The singular values indicate how "near" a given matrix is to a matrix of low rank.
Theorem 4 Let the $S V D$ of $A \in \mathbb{C}^{m \times n}$ be given by Theorem 2. Write $U=\left[u_{1}, \ldots, u_{m}\right]$ and $V=\left[v_{1}, \ldots, v_{n}\right]$. If $k<r=\operatorname{rank}(A)$ and $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{*}$ then

$$
\min _{\operatorname{rank}(B)=k}\|A-B\|_{2}=\left\|A-A_{k}\right\|_{2}=\sigma_{k+1} .
$$

Proof. Since $U^{*} A_{k} V=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, 0 \ldots, 0\right)$, it follows that $\operatorname{rank}\left(A_{k}\right)=k$ and that $U^{*}\left(A-A_{k}\right) V=\operatorname{diag}\left(0, \ldots, 0, \sigma_{k+1}, \ldots, \sigma_{p}\right)$ and so $\left\|A-A_{k}\right\|_{2}=\sigma_{k+1}$.

The theorem is proved if we can show that $\|A-B\|_{2} \geq \sigma_{k+1}$ for all matrices B of rank k.
Let B be any matrix of rank k, so its null space is of dimension $n-k$. Let $\mathcal{V}_{k+1}=$ $\operatorname{span}\left(v_{1}, \ldots, v_{k+1}\right)$. Then $\operatorname{dim} \mathcal{V}_{k+1}=k+1$ and $\operatorname{null}(B) \cap \mathcal{V}_{k+1} \neq \emptyset$ since the sum of their dimensions is $(n-k)+(k+1)>n$. Let $z \in \operatorname{null}(B) \cap \mathcal{V}_{k+1}$ be of unit 2-norm (i.e., $\|z\|_{2}=1$) so that $B z=0$ and $z=\sum_{i=1}^{k+1} \zeta_{i} v_{i}$ with $\sum_{i=1}^{k+1}\left|\zeta_{i}\right|^{2}=1$ since z is of unit norm. Then

$$
\|A-B\|_{2}^{2} \geq\|(A-B) z\|_{2}^{2}=\|A z\|_{2}^{2}=\left\|U \Sigma V^{*} z\right\|_{2}^{2}=\left\|\Sigma V^{*} z\right\|_{2}^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2}\left|\zeta_{i}\right|^{2} \geq \sigma_{k+1}^{2} \sum_{i=1}^{k+1}\left|\zeta_{i}\right|^{2}=\sigma_{k+1}^{2}
$$

Example 4 (Image Compression) An $m \times n$ grayscale image is just an $m \times n$ matrix where entry (i, j) is interpreted as the brightness of pixel (i, j) ranging, say, from 0 (=black) to 1 (=white). Entries between 0 and 1 correspond to various shades of grey.

Now, let A be the matrix representing a detail from Albrecht Dürer's engraving "Melancolia I" from 1514 showing a 4×4 magic square (see first plot in Figure 1). The matrix A is of size 359×371 and of full rank. Its singular values decrease rapidly (only one $>10^{4}$ and only six $>10^{3}$). The three other plots in Figure 1 show the low rank approximations $A_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{*}$ for $k=1,20$, and 100. The checker board-like structure of A_{1} is typical of very low-rank approximation. The individual numerals are recognizable in the $r=20$ approximation. There is hardly any difference between the $r=100$ approximation and the full rank image.

Although low-rank matrix approximation to images do require less computer storage and transmission time than the full image, there are more effective data compression techniques.

The primary uses of low-rank approximations in image processing involve feature recognition such as in handwritten digits, faces, and finger prints.

3 Projectors

Let \mathcal{S} be a subspace of \mathbb{C}^{m} and let $P_{\mathcal{S}} \in \mathbb{C}^{m \times m}$.

- $P_{\mathcal{S}}$ is the projector onto \mathcal{S} if range $\left(P_{\mathcal{S}}\right)=\mathcal{S}$ and $P_{\mathcal{S}}^{2}=P_{\mathcal{S}}$. The projector is not unique.
- $P_{\mathcal{S}}$ is the orthogonal projector onto \mathcal{S} if $\operatorname{range}\left(P_{\mathcal{S}}\right)=\mathcal{S}, P_{\mathcal{S}}^{2}=P_{\mathcal{S}}$, and $P_{\mathcal{S}}^{*}=P_{\mathcal{S}}$. The orthogonal projector is unique (see Exercise 6). Also, $P_{\mathcal{S}^{\perp}}=I-P_{\mathcal{S}}$ is the orthogonal projector onto the orthogonal complement of \mathcal{S} in \mathbb{C}^{m} denoted by \mathcal{S}^{\perp}.
(Solution to Exercise 6): Let P_{1} and P_{2} be orthogonal projectors onto S. Since range $\left(P_{1}\right)=$ range $\left(P_{2}\right), P_{2}=P_{1} X$ for some X. Then $P_{1} P_{2}=P_{1}^{2} X=P_{1} X=P_{2}$. Likewise, $P_{2} P_{1}=P_{1}$. Hence, for any z,

$$
\begin{aligned}
\left\|\left(P_{1}-P_{2}\right) z\right\|_{2}^{2} & =z^{*}\left(P_{1}-P_{2}\right)\left(P_{1}-P_{2}\right) z \\
& =z^{*}\left(P_{1}^{2}+P_{2}^{2}-P_{1} P_{2}-P_{2} P_{1}\right) z \\
& =z^{*}\left(P_{1}+P_{2}-P_{2}-P_{1}\right) z=0 .
\end{aligned}
$$

Therefore $P_{1}-P_{2}=O$.
Example 5 Is the rank-one matrix $\frac{x y^{*}}{y^{*} x}$ with $x, y \in \mathbb{C}^{n}, y^{*} x \neq 0$, a projector? Is it an orthogonal projector?
$\frac{x y^{*}}{y^{*} x}$ is idempotent since $\left(\frac{x y^{*}}{y^{*} x}\right)\left(\frac{x y^{*}}{y^{*} x}\right)=\frac{x y^{*}}{y^{*} x}$. For any $u \in \mathbb{C}^{n},\left(\frac{x y^{*}}{y^{*} x}\right) u=\frac{y^{*} u}{y^{*} x} x \in$ range (x) so $P_{\text {range }(x)}:=\frac{x y^{*}}{y^{*} x}$ is a projector onto range (x).

If $x=\alpha y$ for some $\alpha \in \mathbb{R}, P_{\text {range }(x)}:=\frac{x x^{*}}{x^{*} x}$ is an orthogonal projector onto range (x) since $\frac{x x^{*}}{x^{*} x}$ is Hermitian.

Let $A \in \mathbb{C}^{m \times n}$ be such that $\operatorname{rank}(A)=r$. In terms of the SVD of $A, A=U \Sigma V^{*}$ with $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ unitary and partitioned such that $U_{1} \in \mathbb{C}^{m \times r}$ and $V_{1} \in \mathbb{C}^{n \times r}$, the orthogonal projectors onto the four fundamental subspaces of A are given by (see Exercise 7)

$$
\begin{aligned}
P_{\mathrm{range}(A)} & =U_{1} U_{1}^{*}, & & P_{\operatorname{null}\left(A^{*}\right)}=U_{2} U_{2}^{*}, \\
P_{\mathrm{range}\left(A^{*}\right)} & =V_{1} V_{1}^{*}, & & P_{\operatorname{null}(A)}=V_{2} V_{2}^{*} .
\end{aligned}
$$

In terms of the pseudoinverse,

$$
\begin{aligned}
P_{\text {range }(A)} & =A A^{+}, & & P_{\operatorname{null}\left(A^{*}\right)}=I-A A^{+} \\
P_{\mathrm{range}\left(A^{*}\right)} & =A^{+} A, & & P_{\mathrm{null}(A)}=I-A^{+} A .
\end{aligned}
$$

4 Least Squares Problems

Consider the system of linear equations $A x=b$, where $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^{m}$ are given and x is an unknown vector.

Theorem 1 says that $A x=b$ has a solution if and only if $A A^{+} b=b$ or, equivalently, $b \in \operatorname{range}(A)$. In this case the general solution is $x=A^{+} b+\left(I-A^{+} A\right) y$ for any $y \in \mathbb{C}^{n}$.

Theorem 5 (Minimum 2-norm solution) For given $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^{m}$ with $b \in$ range (A), the vector $x=A^{+} b$ is the solution of minimum 2-norm amongst all the solutions to $A x=b$.

Proof. We will need the following fact
Fact 1 For $u, v \in \mathbb{C}^{n}: u^{*} v=0 \Longrightarrow\|u+v\|_{2}^{2}=\|u\|_{2}^{2}+\|v\|_{2}^{2}$.
This follows directly from $\|u+v\|_{2}^{2}=(u+v)^{*}(u+v)=\|u\|_{2}^{2}+\|v\|_{2}^{2}+2 \operatorname{Re}\left(u^{*} v\right)$.
Then take $u=A^{+} b$ and $v=\left(I-A^{+} A\right) y$ with $y \in \mathbb{C}^{n}$, arbitrary and using (4) (ii) and (iv), check that $v^{*} u=y^{*}\left(I-A^{+} A\right)^{*} A^{+} b=y^{*}\left(A^{+}-A^{+} A A^{+}\right) b=y^{*}\left(A^{+}-A^{+}\right) b=0$. It follows that for the general solution $x=A^{+} b+\left(I-A^{+} A\right) y$ to $A x=b$,

$$
\|x\|_{2}^{2}=\left\|A^{+} b\right\|_{2}^{2}+\left\|\left(I-A^{+} A\right) y\right\|_{2}^{2}
$$

and the 2-norm of x is minimal when $\left(I-A^{+} A\right) y=0$, in which case $x=A^{+} b$. (Note that $\left(I-A^{+} A\right) y=0 \Leftrightarrow y \in \operatorname{null}(A)^{\perp}=\operatorname{range}\left(A^{*}\right)$, see Exercise 7(i).)

Theorem 1 says that there is no solution to $A x=b$ when $b \notin \operatorname{range}(A)$. However for some purposes we may be satisfied with a least squares solution, which is a vector $x \in \mathbb{C}^{n}$ such that $\|A x-b\|_{2}$ is minimized.

Theorem 6 (Least squares solutions) For given $A \in \mathbb{C}^{m \times n}$ and $b \in \mathbb{C}^{m}$ the vectors

$$
x=A^{+} b+\left(I-A^{+} A\right) y, \quad y \in \mathbb{C}^{n} \text { arbitrary }
$$

minimize $\|A x-b\|_{2}$. Moreover $x_{L S}=A^{+} b$ is the least squares solution of minimum 2-norm.
Proof. Let $r=\operatorname{rank}(A)$ and $A=U \Sigma V^{*}$ be an SVD. For any $x \in \mathbb{C}^{n}$ we have

$$
\begin{aligned}
\|A x-b\|_{2}^{2} & =\left\|U^{*} A V\left(V^{*} x\right)-U^{*} b\right\|_{2}^{2} \\
& =\|\Sigma y-c\|_{2}^{2} \quad\left(y=V^{*} x, c=U^{*} b\right) \\
& =\sum_{i=1}^{r}\left|\sigma_{i} y_{i}-c_{i}\right|^{2}+\sum_{i=r+1}^{m}\left|c_{i}\right|^{2} .
\end{aligned}
$$

$\|A x-b\|_{2}^{2}$ is minimized if and only if $y_{i}=c_{i} / \sigma_{i}=u_{i}^{*} b / \sigma_{i}, \quad i=1, \ldots, r$, where y_{r+1}, \ldots, y_{n} are
arbitrary. Hence

$$
x=V y=V\left[\begin{array}{c}
u_{1}^{*} b / \sigma_{1} \\
\vdots \\
u_{r}^{*} b / \sigma_{r} \\
y_{r+1} \\
\vdots \\
y_{n}
\end{array}\right]=\sum_{i=1}^{r} \frac{u_{i}^{*} b}{\sigma_{i}} v_{i}+\sum_{i=r+1}^{n} y_{i} v_{i}, \quad \text { with } y_{i} \text { arbitrary for } i=r+1, \ldots, n .
$$

The formula for x in the theorem follows from $A^{+} b=V \Sigma^{+} U^{*} b=\sum_{i=1}^{r} \frac{u_{i}^{*} b}{\sigma_{i}} v_{i}$ and $\sum_{i=r+1}^{n} y_{i} v_{i}=$ $\left(I-A^{+} A\right) z$ for some $z \in \mathbb{C}^{n}$ since $\left(I-A^{+} A\right)$ is the orthogonal projector onto $\operatorname{null}(A)=$ $\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}$.

Since V is unitary, $\|x\|_{2}=\|y\|_{2}$ and we get the minimum norm solution $x_{L S}$ by setting $y_{r+1}=\cdots=y_{n}=0$. Therefore,

$$
x_{L S}=V y=\sum_{i=1}^{r} y_{i} v_{i}=\sum_{i=1}^{r}\left(u_{i}^{*} b / \sigma_{i}\right) v_{i}=A^{+} b
$$

To summarize we have the following diagram: see Ortega p.169.

5 Polar Decomposition

The polar decomposition is the generalization to matrices of the familiar polar representation $z=r e^{i \theta}$ of a complex number. It is intimately related to the singular value decomposition (SVD), as our proof of the decomposition reveals.

Theorem 7 (Polar decomposition) Any $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ can be represented in the form

$$
A=Q H
$$

where $Q \in \mathbb{C}^{m \times n}$ has orthonormal columns and $H \in \mathbb{C}^{n \times n}$ is Hermitian positive semidefinite. If A is real then Q can be taken real orthogonal and H symmetric positive semidefinite.

Proof. Let $A=U\left[\begin{array}{cc}\Sigma_{r} & 0 \\ 0 & 0_{m-r, n-r}\end{array}\right] V^{*}$ be an SVD, $r=\operatorname{rank}(A)$. Then

$$
A=U\left[\begin{array}{cc}
I_{r} & 0 \tag{9}\\
0 & I_{m-r, n-r}
\end{array}\right] V^{*} \cdot V\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0_{n-r}
\end{array}\right] V^{*} \equiv Q H .
$$

Q has orthonormal columns since U, V are unitary and $\left[\begin{array}{cc}I_{r} & 0 \\ 0 & I_{m-r, n-r}\end{array}\right]$ has orthonormal columns. H is Hermitian since $H^{*}=H$ and positive semidefinite since all its eigenvalues are real and nonnegative.

Example 6 (Aligning two objects) Consider the molecule A, which we will specify by the coordinates a_{1}, \ldots, a_{7} of the centers of the seven spheres that represent some of its atoms, and let B be a second molecule. Define the 3×7 matrices $A=\left[\begin{array}{lll}a_{1} & \ldots & a_{7}\end{array}\right]$ and $B=\left[\begin{array}{lll}b_{1} & \ldots & b_{7}\end{array}\right]$.

Molecule A

Molecule B

How can we tell whether molecule A and molecule B are the same, that is, if B was obtained by "rotating A ". In other words, is $A=Q B$ for some orthogonal matrix Q ? Because life is about change and imperfection, we do not expect to obtain exact equality, but we want to make the difference between B and $Q A$ as small as possible. So our task is to solve the following problem

$$
\text { minimize }\|A-Q B\|_{F} \text { subject to } Q^{T} Q=I
$$

This is called an orthogonal Procrustes problem. It is shown in Exercise 5 that the transpose of the solution Q is the orthogonal polar factor of $B A^{T}$.

Exercises

1. Let $A \in \mathbb{C}^{m \times n}, m \geq n$. If $\operatorname{rank}(A)=n$, show that $A^{*} A$ is nonsingular and that $A^{+}=$ $\left(A^{*} A\right)^{-1} A^{*}$.
2. Let $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ be such that $\operatorname{rank}(A)=r$. The matrix A has the singular value decomposition $A=U \Sigma V^{*}$, where $U=\left[u_{1}, \ldots, u_{m}\right] \in \mathbb{C}^{m \times m}, V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{C}^{n \times n}$ are unitary, and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \in \mathbb{R}^{m \times n}$, where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{n}=0$. Show that

$$
\begin{aligned}
\operatorname{null}(A) & =\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\} \\
\operatorname{range}(A) & =\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}
\end{aligned}
$$

3. For $A \in \mathbb{C}^{n \times n}$ use the SVD to find expressions for $\|A\|_{2}$ and $\|A\|_{F}$ in terms of the singular values of A. Hence obtain a bound of the form $c_{1}\|A\|_{2} \leq\|A\|_{F} \leq c_{2}\|A\|_{2}$, where c_{1} and c_{2} are constants that depend on n. When is there equality in these two inequalities?
4. Show that the pseudoinverse A^{+}of $A \in \mathbb{C}^{m \times n}$ solves the problem

$$
\min _{X \in \mathbb{C}^{n} \times m}\left\|A X-I_{m}\right\|_{F} .
$$

[Hint: Reduce it to m standard least squares problems.] Is the solution unique?
5. Let $A, B \in \mathbb{R}^{m \times n}$. Recall that $\|A\|_{F}^{2}=\operatorname{trace}\left(A^{T} A\right)$ and that for any matrix D for which the product $A D$ is defined, $\operatorname{trace}(A D)=\operatorname{trace}(D A)$.
(i) Show that the Q that minimizes $\|A-Q B\|_{F}$ over all choices of orthogonal Q also maximizes trace $\left(A^{T} Q B\right)$.
(ii) Suppose that the SVD of the $m \times m$ matrix $B A^{T}$ is $U \Sigma V^{T}$, where U and V are $m \times m$ and orthogonal and Σ is diagonal with diagonal entries $\sigma_{1} \geq \cdots \geq \sigma_{m} \geq 0$. Define $Z=V^{T} Q U$. Use these definitions and (i) to show that

$$
\operatorname{trace}\left(A^{T} Q B\right)=\operatorname{trace}(Z \Sigma) \leq \sum_{i=1}^{m} \sigma_{i}
$$

(iii) Identify the choice of Q that gives equality in the bound of (ii).
(iv) Carefully state a theorem summarizing the solution to the minimization of $\|A-Q B\|_{F}$.
6. Show that the orthogonal projector onto a subspace S is unique.
7. Let $A \in \mathbb{C}^{m \times n}$.
(i) Show that $(\operatorname{range}(A))^{\perp}=\operatorname{null}\left(A^{*}\right)$ and that $(\operatorname{null}(A))^{\perp}=\operatorname{range}\left(A^{*}\right)$.
(ii) Show that $A A^{+}, A^{+} A, I-A^{+} A$ and $I-A A^{+}$are the orthogonal projectors onto range (A), range $\left(A^{*}\right)$, $\operatorname{null}(A)$ and $\operatorname{null}\left(A^{*}\right)$, respectively.
(iii) Suppose $\operatorname{rank}(A)=r$ and let $A=U \Sigma V^{*}$ with $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ unitary and partitioned such that $U_{1} \in \mathbb{C}^{m \times r}$ and $V_{1} \in \mathbb{C}^{n \times r}$. Show that $U_{1} U_{1}^{*}, V_{1} V_{1}^{*}, V_{2} V_{2}^{*}$ and $U_{2} U_{2}^{*}$ are the orthogonal projectors onto range $(A), \operatorname{range}\left(A^{*}\right), \operatorname{null}(A)$ and $\operatorname{null}\left(A^{*}\right)$, respectively.
8. What is the pseudoinverse of a vector $x \in \mathbb{C}^{n}$?
9. Is it true that $\left(A^{+}\right)^{+}=A$?

