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1 Generalized Inverses of Matrices

A matrix has an inverse only if it is square and nonsingular. However there are theoretical and
practical applications for which some kind of partial inverse of a matrix that is singular or even
rectangular is needed. A generalized inverse of a matrix A is any matrix X satisfying

AXA = A. (1)

Note that a generalized inverse X must be the usual inverse when A is nonsingular since
multiplication by A−1 on both sides of (1) gives X = A−1.

1.1 Illustration: Solvability of Linear Systems

Consider the linear system Ax = b, where the matrix A ∈ Cn×n and the vector b ∈ Cn are
given and x is an unknown vector. If A is nonsingular there is a unique solution for x given by
x = A−1b. When A is singular, there may be no solution or infinitely many.

Theorem 1 Let A ∈ Cm×n. If X is any matrix satisfying AXA = A then Ax = b has a
solution if and only if AXb = b, in which case the general solution is

x = Xb+ (I −XA)y, (2)

where y ∈ Cn is an arbitrary vector.

Proof. Existence Let X be such that AXA = A.
(⇒) Suppose there exists x such that Ax = b. Then by (1), b = Ax = AXAx = AXb.
(⇐) AXb = b ⇒ x = Xb solves the linear system.

General solution First show that Xb+(I−XA)y is a solution. Indeed, A(Xb+(I−XA)y) =
AXb+ 0 = b.

Then if x is any solution we can write x = XAx + (I − XA)x, so every solution can be
expressed in the form of (2).

1.2 Existence of Generalized Inverses

We now show that for every A there exist one or more generalized inverses. Let A ∈ Cm×n and
let Ek, Ek−1, . . . , E1 be elementary row operations and P a permutation matrix such that

EAP =

[
Ir K
O O

]
, r ≤ min(n,m),

where E = EkEk−1 . . . E1. The matrix
[
Ir
O
K
O

]
is the reduced row echelon form of A and

rank(A) = r (see first year Linear Algebra course). Note that the two right-hand submatrices
are absent when r = n and the two lower submatrices are absent if r = m. It is easy to verify
that any X given by

X = P

[
Ir O
O L

]
E
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for some L ∈ C(n−r)×(m−r) satisfies AXA = A. Indeed,

AXA = AP

[
Ir O
O L

]
EE−1

[
Ir K
O O

]
P−1 = AP

[
Ir K
O O

]
P−1 = E−1

[
Ir K
O O

]
P−1 = A.

Example 1 Determine a generalized inverse for

A =

 1 2
2 0
0 2

 . (3)

Let us find the reduced row echelon form of A: 1 0 0
−2 1 0
0 0 1

 1 2
2 0
0 2

 =

 1 2
0 −4
0 2

 ,
 1 1/2 0

0 −1/4 0
0 1 2

 1 2
0 −4
0 2

 =

 1 0
0 1
0 0

 ,
so E =

 1 1/2 0
0 −1/4 0
0 1 2

 1 0 0
−2 1 0
0 0 1

 =

 0 1/2 0
1/2 −1/4 0
−2 1 2

, P = I2. Hence,

X =

[
1 0 0
0 1 0

] 0 1/2 0
1/2 −1/4 0
−2 1 2

 =

[
0 1/2 0

1/2 −1/4 0

]
is a generalized inverse of A. Check that AXA = A.

1.3 The Moore–Penrose Generalized Inverse

The Moore–Penrose generalized inverse of a matrix A ∈ Cm×n is the unique matrix
X ∈ Cn×m satisfying the four Moore–Penrose conditions:

(i) AXA = A, (ii) XAX = X,
(iii) AX = (AX)∗, (iv) XA = (XA)∗.

(4)

The Moore–Penrose generalized inverse of A is a generalized inverse since it satisfies (1). It is
commonly called the pseudoinverse of A and is denoted by A+. We show the existence of A+

via the singular value decomposition of A in Section 2.1.

2 Singular Value Decomposition

The spectral theorem says that normal matrices can be unitarily diagonalized using a basis of
eigenvectors. The singular value decomposition can be seen as a generalization of the spectral
theorem to arbitrary, not necessarily square, matrices.

Theorem 2 (Singular value decomposition (SVD)) A matrix A ∈ Cm×n has a singular
value decomposition (SVD)

A = UΣV ∗,

where U ∈ Cm×m, V ∈ Cn×n are unitary and Σ = diag(σ1, . . . , σp) ∈ Rm×n, p = min(m,n),
where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0. If A is real, U and V can be taken real orthogonal.
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Proof. (Not examinable.)
Let x ∈ Cn and y ∈ Cm be unit 2-norm vectors (‖x‖2 = ‖y‖2 = 1) such that

Ax = σy,

where σ = ‖A‖2. Since any orthonormal set can be extended to form an orthonormal basis for the
whole space, we can define V1 ∈ Cn×(n−1) and U1 ∈ Cm×(m−1) such that V = [x, V1] and U = [y, U1]
are unitary. Then

U∗AV =

[
y∗

U∗1

]
A [x V1 ] =

[
y∗Ax y∗AV1
U∗1Ax U∗1AV1

]
=

[
σ w∗

0 B

]
= A1,

where w∗ = y∗AV1 and B = U∗1AV1. We now show that w = 0. We have

A1

[
σ
w

]
=

[
σ w∗

0 B

] [
σ
w

]
=

[
σ2 + w∗w

Bw

]
so

σ2 + w∗w =

∥∥∥∥[σ2 + w∗w
0

]∥∥∥∥
2

≤
∥∥∥∥[σ2 + w∗w

Bw

]∥∥∥∥
2

=

∥∥∥∥A1

[
σ
w

]∥∥∥∥
2

≤ ‖A1‖2(σ2 + w∗w)1/2.

Hence,
‖A1‖2 ≥ (σ2 + w∗w)1/2.

But, ‖A1‖2 = ‖U∗AV ‖2 = ‖A‖2 = σ since U and V are unitary. This implies that w = 0 and

U∗AV =

[
σ 0
0 B

]
. The proof is completed by the obvious induction.

The σi are called the singular values of A. The nonzero singular values of A are the
positive square roots of the nonzero eigenvalues of AA∗ or A∗A.

The columns of U = [u1, . . . , um] and V = [v1, . . . , vn] are left and right singular vectors
of A, respectively. The left singular vectors ui are eigenvectors of AA∗ and the right singular
vectors vi are eigenvectors of A∗A.

Suppose that the singular values satisfy

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, p = min(m,n). (5)

Then (see exercise 2)

rank(A) = r,

null(A) = span{vr+1, . . . , vn}, (6)

range(A) = span{u1, u2, . . . , ur}, (7)

A =
r∑
i=1

σiuiv
∗
i ,

Avi = σiui, A∗ui = σivi, i = 1, . . . , r. (8)

A geometric interpretation of the SVD: we can think of A ∈ Cm×n as mapping x ∈ Cn to
y = Ax ∈ Cm. Then we can choose one orthogonal coordinate system for Cn (where the unit
axes are the columns of V ) and another orthogonal coordinate system for Cm (where the unit
axes are the columns of U) such that A is diagonal (Σ), that is, maps a vector x =

∑n
i=1 βivi

to y = Ax =
∑n

i=1 σiβiui. In other words, “any matrix is diagonal,” provided we pick up
appropriate orthogonal systems for its domain and range!
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Example 2 Compute the singular value decomposition of A in (3).

• The eigenvalues of ATA =

[
5 2
2 8

]
are 9 and 4 so the singular values of A are 3 and 2.

• Normalized eigenvectors of ATA are v1 = 1√
5

[
1
2

]
, v2 = 1√

5

[
2
−1

]
.

• u1 = 1
3
Av1 = 1

3
√
5

 5
2
4

, u2 = 1
2
Av2 = 1√

5

 0
2
−1

. Application of the Gram–Schmidt

process to u1, u2 and e1 produces u3 =
e1 − (

∑2
i=1 e

T
1 ui)ui

‖e1 − (
∑2

i=1 e
T
1 ui)ui‖2

=

 2/3
−1/3
−2/3

 .
• A has the SVD A = UΣV T where

U =
1

3
√

5

 5 0 2
√

5
2 6 −

√
5

4 −3 −2
√

5

 , Σ =

 3 0
0 2
0 0

 , V =
1√
5

[
1 2
2 −1

]
.

What is the singular value decomposition of x ∈ Cn?
Let A = UΣV ∗ be a singular value decomposition of A ≡ x with U ∈ Cn×n and V ∈ C1×1

unitary and Σ =

[
σ1

0(n−1)×1

]
∈ Rn×1. Note that x∗x is a positive scalar so σ1 = (x∗x)1/2 = ‖x‖2

and we can take V = [v1] = 1. We have from (8) that u1 = 1
σ1
Av1 = 1

‖x‖2x. Let Ũ be any

n×(n−1) matrix with orthonormal columns satisfying u∗1Ũ = 0. Then U = [u1 Ũ ] is unitary
and

UΣV ∗ =
[

x
‖x‖2 Ũ

] [ ‖x‖2
0

]
[ 1 ] = x.

2.1 Existence of the Moore–Penrose Inverse

Recall that the pseudoinverse X ∈ Cn×m of A ∈ Cm×n is the unique matrix satisfying the four
Moore–Penrose conditions (4) and is denoted by A+. The next theorem shows that any matrix
A has a pseudoinverse.

Theorem 3 If A = UΣV ∗ ∈ Cm×n is an SVD then

A+ = V Σ+U∗,

where Σ+ = diag(σ−11 , . . . , σ−1r , 0, . . . , 0) is n×m and r = rank(A).

Proof. One easily checks that Σ+ and A+ satisfy the four Moore–Penrose conditions (4)
so that they are pseudoinverses of Σ and A, respectively.

Example 3 From the SVD ofA in (3) obtained in Example 2 we have thatA+ = 1
18

[
2 8 −2
4 −2 5

]
.

In general it is not the case that (AB)+ = B+A+ for A ∈ Cm×n, B ∈ Cn×p. For example,

let A =

[
1 0
0 0

]
, B =

[
1 1
0 0

]
. Then (AB)+ =

[
1 1
0 0

]+
= 1

2

[
1 0
1 0

]
and B+A+ =

[
1 0
0 0

]
.
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rank = 359 rank = 1 rank = 20 rank = 100

Figure 1: Low-rank approximation of Dürer’s magic square.

2.2 Low-Rank Approximation

The singular values indicate how “near” a given matrix is to a matrix of low rank.

Theorem 4 Let the SVD of A ∈ Cm×n be given by Theorem 2. Write U = [u1, . . . , um] and
V = [v1, . . . , vn]. If k < r = rank(A) and Ak =

∑k
i=1 σiuiv

∗
i then

min
rank(B)=k

‖A−B‖2 = ‖A− Ak‖2 = σk+1.

Proof. Since U∗AkV = diag(σ1, . . . , σk, 0 . . . , 0), it follows that rank(Ak) = k and that
U∗(A− Ak)V = diag(0, . . . , 0, σk+1, . . . , σp) and so ‖A− Ak‖2 = σk+1.

The theorem is proved if we can show that ‖A−B‖2 ≥ σk+1 for all matrices B of rank k.
Let B be any matrix of rank k, so its null space is of dimension n − k. Let Vk+1 =

span(v1, . . . , vk+1). Then dimVk+1 = k + 1 and null(B) ∩ Vk+1 6= ∅ since the sum of their
dimensions is (n− k) + (k + 1) > n. Let z ∈ null(B) ∩ Vk+1 be of unit 2-norm (i.e., ‖z‖2 = 1)
so that Bz = 0 and z =

∑k+1
i=1 ζivi with

∑k+1
i=1 |ζi|2 = 1 since z is of unit norm. Then

‖A−B‖22 ≥ ‖(A−B)z‖22 = ‖Az‖22 = ‖UΣV ∗z‖22 = ‖ΣV ∗z‖22 =
k+1∑
i=1

σ2
i |ζi|2 ≥ σ2

k+1

k+1∑
i=1

|ζi|2 = σ2
k+1.

Example 4 (Image Compression) An m×n grayscale image is just an m×n matrix where
entry (i, j) is interpreted as the brightness of pixel (i, j) ranging, say, from 0 (=black) to 1
(=white). Entries between 0 and 1 correspond to various shades of grey.

Now, let A be the matrix representing a detail from Albrecht Dürer’s engraving “Melanco-
lia I” from 1514 showing a 4× 4 magic square (see first plot in Figure 1). The matrix A is of
size 359×371 and of full rank. Its singular values decrease rapidly (only one > 104 and only six
> 103). The three other plots in Figure 1 show the low rank approximations Ak =

∑k
i=1 σiuiv

∗
i

for k = 1, 20, and 100. The checker board-like structure of A1 is typical of very low-rank ap-
proximation. The individual numerals are recognizable in the r = 20 approximation. There is
hardly any difference between the r = 100 approximation and the full rank image.

Although low-rank matrix approximation to images do require less computer storage and
transmission time than the full image, there are more effective data compression techniques.
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The primary uses of low-rank approximations in image processing involve feature recognition
such as in handwritten digits, faces, and finger prints.

3 Projectors

Let S be a subspace of Cm and let PS ∈ Cm×m.

• PS is the projector onto S if range(PS) = S and P 2
S = PS . The projector is not unique.

• PS is the orthogonal projector onto S if range(PS) = S, P 2
S = PS , and P ∗S = PS . The

orthogonal projector is unique (see Exercise 6). Also, PS⊥ = I − PS is the orthogonal
projector onto the orthogonal complement of S in Cm denoted by S⊥.

(Solution to Exercise 6): Let P1 and P2 be orthogonal projectors onto S. Since range(P1) =
range(P2), P2 = P1X for some X. Then P1P2 = P 2

1X = P1X = P2. Likewise, P2P1 = P1.
Hence, for any z,

‖(P1 − P2)z‖22 = z∗(P1 − P2)(P1 − P2)z

= z∗(P 2
1 + P 2

2 − P1P2 − P2P1)z

= z∗(P1 + P2 − P2 − P1)z = 0.

Therefore P1 − P2 = O.

Example 5 Is the rank-one matrix
xy∗

y∗x
with x, y ∈ Cn, y∗x 6= 0, a projector? Is it an

orthogonal projector?
xy∗

y∗x
is idempotent since

(
xy∗

y∗x

)(
xy∗

y∗x

)
=

xy∗

y∗x
. For any u ∈ Cn,

(
xy∗

y∗x

)
u =

y∗u

y∗x
x ∈

range(x) so Prange(x) :=
xy∗

y∗x
is a projector onto range(x).

If x = αy for some α ∈ R, Prange(x) :=
xx∗

x∗x
is an orthogonal projector onto range(x) since

xx∗

x∗x
is Hermitian.

Let A ∈ Cm×n be such that rank(A) = r. In terms of the SVD of A, A = UΣV ∗ with
U = [U1 U2 ] and V = [V1 V2 ] unitary and partitioned such that U1 ∈ Cm×r and V1 ∈ Cn×r,
the orthogonal projectors onto the four fundamental subspaces of A are given by (see Exercise 7)

Prange(A) = U1U
∗
1 , Pnull(A∗) = U2U

∗
2 ,

Prange(A∗) = V1V
∗
1 , Pnull(A) = V2V

∗
2 .

In terms of the pseudoinverse,

Prange(A) = AA+, Pnull(A∗) = I − AA+,

Prange(A∗) = A+A, Pnull(A) = I − A+A.
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4 Least Squares Problems

Consider the system of linear equations Ax = b, where A ∈ Cm×n and b ∈ Cm are given and x
is an unknown vector.

Theorem 1 says that Ax = b has a solution if and only if AA+b = b or, equivalently,
b ∈ range(A). In this case the general solution is x = A+b+ (I − A+A)y for any y ∈ Cn.

Theorem 5 (Minimum 2-norm solution) For given A ∈ Cm×n and b ∈ Cm with b ∈
range(A), the vector x = A+b is the solution of minimum 2-norm amongst all the solutions
to Ax = b.

Proof. We will need the following fact

Fact 1 For u, v ∈ Cn: u∗v = 0 =⇒ ‖u+ v‖22 = ‖u‖22 + ‖v‖22.

This follows directly from ‖u+ v‖22 = (u+ v)∗(u+ v) = ‖u‖22 + ‖v‖22 + 2 Re(u∗v).

Then take u = A+b and v = (I −A+A)y with y ∈ Cn, arbitrary and using (4) (ii) and (iv),
check that v∗u = y∗(I −A+A)∗A+b = y∗(A+ −A+AA+)b = y∗(A+ −A+)b = 0. It follows that
for the general solution x = A+b+ (I − A+A)y to Ax = b,

‖x‖22 = ‖A+b‖22 + ‖(I − A+A)y‖22

and the 2-norm of x is minimal when (I − A+A)y = 0, in which case x = A+b. (Note that
(I − A+A)y = 0 ⇔ y ∈ null(A)⊥ = range(A∗), see Exercise 7(i).)

Theorem 1 says that there is no solution to Ax = b when b 6∈ range(A). However for some
purposes we may be satisfied with a least squares solution, which is a vector x ∈ Cn such
that ‖Ax− b‖2 is minimized.

Theorem 6 (Least squares solutions) For given A ∈ Cm×n and b ∈ Cm the vectors

x = A+b+ (I − A+A)y, y ∈ Cn arbitrary,

minimize ‖Ax− b‖2. Moreover xLS = A+b is the least squares solution of minimum 2-norm.

Proof. Let r = rank(A) and A = UΣV ∗ be an SVD. For any x ∈ Cn we have

‖Ax− b‖22 = ‖U∗AV (V ∗x)− U∗b‖22
= ‖Σy − c‖22 (y = V ∗x, c = U∗b)

=
r∑
i=1

|σiyi − ci|2 +
m∑

i=r+1

|ci|2.

‖Ax− b‖22 is minimized if and only if yi = ci/σi = u∗i b/σi, i = 1, . . . , r, where yr+1, . . . , yn are
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arbitrary. Hence

x = V y = V



u∗1b/σ1
...

u∗rb/σr
yr+1

...
yn


=

r∑
i=1

u∗i b

σi
vi +

n∑
i=r+1

yivi, with yi arbitrary for i = r + 1, . . . , n.

The formula for x in the theorem follows from A+b = V Σ+U∗b =
∑r

i=1
u∗i b

σi
vi and

∑n
i=r+1 yivi =

(I − A+A)z for some z ∈ Cn since (I − A+A) is the orthogonal projector onto null(A) =
span{vr+1, . . . , vn}.

Since V is unitary, ‖x‖2 = ‖y‖2 and we get the minimum norm solution xLS by setting
yr+1 = · · · = yn = 0. Therefore,

xLS = V y =
r∑
i=1

yivi =
r∑
i=1

(u∗i b/σi)vi = A+b.

To summarize we have the following diagram: see Ortega p.169.

5 Polar Decomposition

The polar decomposition is the generalization to matrices of the familiar polar representation
z = reiθ of a complex number. It is intimately related to the singular value decomposition
(SVD), as our proof of the decomposition reveals.

Theorem 7 (Polar decomposition) Any A ∈ Cm×n with m ≥ n can be represented in the
form

A = QH,

where Q ∈ Cm×n has orthonormal columns and H ∈ Cn×n is Hermitian positive semidefinite.
If A is real then Q can be taken real orthogonal and H symmetric positive semidefinite.
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Proof. Let A = U
[
Σr

0
0

0m−r,n−r

]
V ∗ be an SVD, r = rank(A). Then

A = U

[
Ir 0
0 Im−r,n−r

]
V ∗ · V

[
Σr 0
0 0n−r

]
V ∗ ≡ QH. (9)

Q has orthonormal columns since U , V are unitary and
[
Ir
0

0
Im−r,n−r

]
has orthonormal columns.

H is Hermitian since H∗ = H and positive semidefinite since all its eigenvalues are real and
nonnegative.

Example 6 (Aligning two objects) Consider the molecule A, which we will specify by the
coordinates a1, . . . , a7 of the centers of the seven spheres that represent some of its atoms, and
let B be a second molecule. Define the 3×7 matrices A = [ a1 . . . a7 ] and B = [ b1 . . . b7 ].

Molecule A Molecule B

How can we tell whether molecule A and molecule B are the same, that is, if B was obtained by
“rotating A”. In other words, is A = QB for some orthogonal matrix Q? Because life is about
change and imperfection, we do not expect to obtain exact equality, but we want to make the
difference between B and QA as small as possible. So our task is to solve the following problem

minimize ‖A−QB‖F subject to QTQ = I.

This is called an orthogonal Procrustes problem. It is shown in Exercise 5 that the
transpose of the solution Q is the orthogonal polar factor of BAT .

Exercises

1. Let A ∈ Cm×n, m ≥ n. If rank(A) = n, show that A∗A is nonsingular and that A+ =
(A∗A)−1A∗.

2. Let A ∈ Cm×n with m ≥ n be such that rank(A) = r. The matrix A has the singular value
decomposition A = UΣV ∗, where U = [u1, . . . , um] ∈ Cm×m, V = [v1, . . . , vn] ∈ Cn×n are
unitary, and Σ = diag(σ1, . . . , σn) ∈ Rm×n, where σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σn = 0.
Show that

null(A) = span{vr+1, . . . , vn},
range(A) = span{u1, u2, . . . , ur}.
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3. For A ∈ Cn×n use the SVD to find expressions for ‖A‖2 and ‖A‖F in terms of the singular
values of A. Hence obtain a bound of the form c1‖A‖2 ≤ ‖A‖F ≤ c2‖A‖2, where c1 and c2 are
constants that depend on n. When is there equality in these two inequalities?

4. Show that the pseudoinverse A+ of A ∈ Cm×n solves the problem

min
X∈Cn×m

‖AX − Im‖F .

[Hint: Reduce it to m standard least squares problems.] Is the solution unique?

5. Let A,B ∈ Rm×n. Recall that ‖A‖2F = trace(ATA) and that for any matrix D for which the
product AD is defined, trace(AD) = trace(DA).

(i) Show that the Q that minimizes ‖A − QB‖F over all choices of orthogonal Q also
maximizes trace(ATQB).

(ii) Suppose that the SVD of the m×m matrix BAT is UΣV T , where U and V are m×m
and orthogonal and Σ is diagonal with diagonal entries σ1 ≥ · · · ≥ σm ≥ 0. Define Z = V TQU .
Use these definitions and (i) to show that

trace(ATQB) = trace(ZΣ) ≤
m∑
i=1

σi.

(iii) Identify the choice of Q that gives equality in the bound of (ii).

(iv) Carefully state a theorem summarizing the solution to the minimization of ‖A−QB‖F .

6. Show that the orthogonal projector onto a subspace S is unique.

7. Let A ∈ Cm×n.

(i) Show that
(

range(A)
)⊥

= null(A∗) and that
(

null(A)
)⊥

= range(A∗).

(ii) Show that AA+, A+A, I−A+A and I−AA+ are the orthogonal projectors onto range(A),
range(A∗), null(A) and null(A∗), respectively.

(iii) Suppose rank(A) = r and let A = UΣV ∗ with U = [U1 U2 ] and V = [V1 V2 ] unitary
and partitioned such that U1 ∈ Cm×r and V1 ∈ Cn×r. Show that U1U

∗
1 , V1V

∗
1 , V2V

∗
2

and U2U
∗
2 are the orthogonal projectors onto range(A), range(A∗), null(A) and null(A∗),

respectively.

8. What is the pseudoinverse of a vector x ∈ Cn?

9. Is it true that (A+)
+

= A?


