1. We have that $z^{*} A^{*} A z=\|A z\|_{2}^{2} \geq 0 \forall z \neq 0$. Since $\operatorname{rank}(A)=n$, A has full rank, that is, $A z=0$ iff $z=0$. Hence $z^{*} A^{*} A z>0$ for all nonzero z which shows that $A^{*} A$ is Hermitian positive definite and therefore nonsingular.

Let $X=\left(A^{*} A\right)^{-1} A^{*}$. Then it is easy to check that X satisfies the four Moore-Penrose conditions.
2.

For any $A \in \mathbb{C}^{m \times n}, \operatorname{rank}(A)+\operatorname{dim}(\operatorname{null}(A))=n$. Hence $\operatorname{dim}(\operatorname{null}(A))=n-r$ and $\operatorname{dim}(\operatorname{range}(A))=\operatorname{rank}(A)=r$.

From $A V=U \Sigma$ we have

$$
\begin{aligned}
& A v_{i}=\sigma_{i} u_{i}, \quad\left(\sigma_{i} \neq 0\right) \quad i=1, \ldots, r, \\
& A v_{i}=0, \quad i=r+1, \ldots, n
\end{aligned}
$$

U unitary \Rightarrow the vectors $u_{i}, i=1, \ldots, r$, are linearly independent and therefore range $(A)=$ $\operatorname{span}\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$.
V unitary \Rightarrow the vectors $v_{i}, i=r+1, \ldots, n$, are linearly independent and therefore $\operatorname{null}(A)=$ $\operatorname{span}\left\{v_{r+1}, \ldots, v_{n}\right\}$.
3. Let A have the SVD $A=U \Sigma V^{*}$. By the unitary invariance of the 2 and Frobenius norms,

$$
\begin{aligned}
\|A\|_{2} & =\|\Sigma\|_{2}=\sigma_{1} \\
\|A\|_{F} & =\|\Sigma\|_{F}=\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{1 / 2}
\end{aligned}
$$

Thus

$$
\|A\|_{2} \leq\|A\|_{F} \leq \sqrt{n}\|A\|_{2}
$$

(in fact, we can replace \sqrt{n} by \sqrt{r}, where $r=\operatorname{rank}(A)$).
There is equality on the left when $\sigma_{2}=\cdots=\sigma_{n}=0$, that is, when A has rank $1\left(A=x y^{*}\right)$ or $A=O$. There is equality on the right when $\sigma_{1}=\cdots=\sigma_{n}=\alpha$, that is, when $A=\alpha Q$ where Q is unitary, $\alpha \in \mathbb{C}$.
4. The easiest is to notice that

$$
\left\|A X-I_{m}\right\|_{F}^{2}=\left\|A\left[x_{1}, \ldots, x_{m}\right]-\left[e_{1}, \ldots, e_{m}\right]\right\|_{F}^{2}=\sum_{i=1}^{m}\left\|A x_{i}-e_{i}\right\|_{2}^{2}
$$

which is minimized if $\left\|A x_{i}-e_{i}\right\|_{2}$ is minimized for $i=1, \ldots, m$. Thus we have m simultaneous, but independent, LS problems. The solution is $x_{i}=A^{+} e_{i}, i=1, \ldots, m$, that is, $X=A^{+} I_{m}=$ A^{+}. This is the unique solution only if A has full rank, but it is always the unique minimum F-norm solution. An alternative proof is to consider $f(\alpha)=\left\|A(X+\alpha Y)-I_{m}\right\|_{F}^{2}$ and derive conditions for $f(0)=\min _{\alpha} f(\alpha)$. Another (longer) proof uses the SVD of A and works from first principles.
5. (i)

$$
\begin{aligned}
\|A-Q B\|_{F}^{2} & =\operatorname{trace}\left((A-Q B)^{T}(A-Q B)\right) \\
& =\operatorname{trace}\left(A^{T} A\right)+\operatorname{trace}\left(B^{T} Q^{T} Q B\right)-\operatorname{trace}\left(B^{T} Q^{T} A\right)-\operatorname{trace}\left(A^{T} Q B\right) \\
& =\operatorname{const}-2 \operatorname{trace}\left(A^{T} Q B\right),
\end{aligned}
$$

where const denotes a term independent of Q. Hence minimizing $\|A-Q B\|_{F}$ is equivalent to maximizing trace $\left(A^{T} Q B\right)$.
(ii) We have

$$
\operatorname{trace}\left(A^{T} Q B\right)=\operatorname{trace}\left(Q B A^{T}\right)=\operatorname{trace}\left(Q U \Sigma V^{T}\right)=\operatorname{trace}\left(V^{T} Q U \Sigma\right)=\operatorname{trace}(Z \Sigma)
$$

Since Z is orthogonal, all its elements lie between -1 and 1 , hence $\operatorname{trace}(Z \Sigma)=\sum_{i} z_{i i} \sigma_{i} \leq$ $\sum_{i=1}^{m} \sigma_{i}$.
(iii) Equality holds for $Z=I$, that is, $Q=V U^{T}$.
(iv) Theorem: Let $A, B \in \mathbb{R}^{m \times n}$. Then $\|A-Q B\|_{F}$ with Q orthogonal is minimized by $Q=V U^{T}$, where $B A^{T}=U \Sigma V^{T}$ is an SVD.
6. Let P_{1} and P_{2} be orthogonal projectors onto S. Since range $\left(P_{1}\right)=\operatorname{range}\left(P_{2}\right), P_{2}=P_{1} X$ for some X. Then $P_{1} P_{2}=P_{1}^{2} X=P_{1} X=P_{2}$. Likewise, $P_{2} P_{1}=P_{1}$. Hence, for any z,

$$
\begin{aligned}
\left\|\left(P_{1}-P_{2}\right) z\right\|_{2}^{2} & =z^{*}\left(P_{1}-P_{2}\right)\left(P_{1}-P_{2}\right) z \\
& =z^{*}\left(P_{1}^{2}+P_{2}^{2}-P_{1} P_{2}-P_{2} P_{1}\right) z \\
& =z^{*}\left(P_{1}+P_{2}-P_{2}-P_{1}\right) z=0 .
\end{aligned}
$$

Therefore $P_{1}-P_{2}=O$.
7.
(i) Let $A=U \Sigma V^{*}$ be the singular value decomposition of $A, r=\operatorname{rank}(A)$ and $U=$ $\left[u_{1}, \ldots, u_{m}\right]$. Then in a similar way to Exercise ?? we find that $\operatorname{null}\left(A^{*}\right)=\operatorname{span}\left\{u_{r+1}, \ldots, u_{m}\right\}$. But by (??), range $(A)=\operatorname{span}\left\{u_{1}, \ldots, u_{r}\right\}$ so $(\operatorname{range}(A))^{\perp}=\operatorname{span}\left\{u_{r+1}, \ldots, u_{m}\right\}$ and hence, $(\operatorname{range}(A))^{\perp}=\operatorname{null}\left(A^{*}\right)$. It follows that $\left(\operatorname{range}\left(A^{*}\right)\right)^{\perp}=\operatorname{null}(A)$ and hence range $\left(A^{*}\right)=$ $(\operatorname{null}(A))^{\perp}$.
(ii) $A A^{+}$is Hermitian by condition (iii) of the Moore-Penrose conditions, and $\left(A A^{+}\right)^{2}=$ $A A^{+} A A^{+}=A A^{+}$by condition (i) of the Moore-Penrose conditions. It remains to show that $\operatorname{range}\left(A A^{+}\right)=\operatorname{range}(A)$.

Let $x \in \operatorname{range}(A)$, so that $x=A y$ for some y. Then, by condition (i) of the Moore-Penrose conditions, $x=A A^{+} A y=A A^{+} x$, so $x \in \operatorname{range}\left(A A^{+}\right)$. Conversely, $x \in \operatorname{range}\left(A A^{+}\right)$implies $x=A A^{+} y$ for some y and then $x=A\left(A^{+} y\right) \in \operatorname{range}(A)$. Thus $P_{\text {range }(A)}=A A^{+}$is the orthogonal projector onto range (A). Since $(\operatorname{range}(A))^{\perp}=\operatorname{null}\left(A^{*}\right), P_{\left.\text {null(} A^{*}\right)}=I-A A^{+}$is the orthogonal projector onto $\operatorname{null}\left(A^{*}\right)$.

By the first part, the orthogonal projector onto range $\left(A^{*}\right)$ is $A^{*}\left(A^{*}\right)^{+}=A^{*}\left(A^{+}\right)^{*}=$ $\left(A^{+} A\right)^{*}=A^{+} A$. Since $\left(\operatorname{range}\left(A^{*}\right)\right)^{\perp}=\operatorname{null}(A), P_{\text {null }(A)}=I-A^{+} A$ is the orthogonal projector onto $\operatorname{null}(A)$.
(iii) Computing the products $A A^{+}$and $A^{+} A$ reveals that

$$
A A^{+}=U \Sigma V^{*} V \Sigma^{+} U^{*}=U\left[\begin{array}{cc}
I_{r} & O \\
O & O
\end{array}\right] U^{*}=U_{1} U_{1}^{*}, \quad A^{+} A=V \Sigma^{+} U^{*} U \Sigma V^{*}=V\left[\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right] V^{*}=V_{1} V_{1}^{*}
$$

and since U and V are unitary, $U_{2} U_{2}^{*}=I-U_{1} U_{1}^{*}$ and $V_{2} V_{2}^{*}=I-V_{1} V_{1}^{*}$. The result follows from (ii).
8. It is easy to verify that $x^{+}=x^{*} /\left(x^{*} x\right)$ satisfies the four Moore-Penrose conditions.
9. Yes. This follows from the symmetry in A and X of the Moore-Penrose conditions (i.e., the roles of A and X can be interchanged).

