MATH36001 Solutions: SVD

1. We have that $z^*A^*Az = ||Az||_2^2 \ge 0 \ \forall z \ne 0$. Since rank(A) = n, A has full rank, that is, Az = 0 iff z = 0. Hence $z^*A^*Az > 0$ for all nonzero z which shows that A^*A is Hermitian positive definite and therefore nonsingular.

Let $X = (A^*A)^{-1}A^*$. Then it is easy to check that X satisfies the four Moore–Penrose conditions.

$\mathbf{2}$.

For any $A \in \mathbb{C}^{m \times n}$, $\operatorname{rank}(A) + \operatorname{dim}(\operatorname{null}(A)) = n$. Hence $\operatorname{dim}(\operatorname{null}(A)) = n - r$ and $\operatorname{dim}(\operatorname{range}(A)) = \operatorname{rank}(A) = r$.

From $AV = U\Sigma$ we have

$$Av_i = \sigma_i u_i, \ (\sigma_i \neq 0) \quad i = 1, \dots, r,$$
$$Av_i = 0, \quad i = r+1, \dots, n.$$

U unitary \Rightarrow the vectors u_i , i = 1, ..., r, are linearly independent and therefore range(A) = span $\{u_1, u_2, ..., u_r\}$.

V unitary \Rightarrow the vectors v_i , i = r + 1, ..., n, are linearly independent and therefore null(A) = span{ v_{r+1}, \ldots, v_n }.

3. Let A have the SVD $A = U\Sigma V^*$. By the unitary invariance of the 2 and Frobenius norms,

$$||A||_2 = ||\Sigma||_2 = \sigma_1,$$

$$||A||_F = ||\Sigma||_F = \left(\sum_{i=1}^n \sigma_i^2\right)^{1/2}.$$

Thus

 $||A||_2 \le ||A||_F \le \sqrt{n} ||A||_2$

(in fact, we can replace \sqrt{n} by \sqrt{r} , where $r = \operatorname{rank}(A)$).

There is equality on the left when $\sigma_2 = \cdots = \sigma_n = 0$, that is, when A has rank 1 $(A = xy^*)$ or A = O. There is equality on the right when $\sigma_1 = \cdots = \sigma_n = \alpha$, that is, when $A = \alpha Q$ where Q is unitary, $\alpha \in \mathbb{C}$.

4. The easiest is to notice that

$$||AX - I_m||_F^2 = ||A[x_1, \dots, x_m] - [e_1, \dots, e_m]||_F^2 = \sum_{i=1}^m ||Ax_i - e_i||_2^2,$$

which is minimized if $||Ax_i - e_i||_2$ is minimized for i = 1, ..., m. Thus we have m simultaneous, but independent, LS problems. The solution is $x_i = A^+e_i$, i = 1, ..., m, that is, $X = A^+I_m = A^+$. This is the unique solution only if A has full rank, but it is always the unique minimum *F*-norm solution. An alternative proof is to consider $f(\alpha) = ||A(X + \alpha Y) - I_m||_F^2$ and derive conditions for $f(0) = \min_{\alpha} f(\alpha)$. Another (longer) proof uses the SVD of A and works from first principles. **5**. (i)

$$||A - QB||_F^2 = \operatorname{trace}((A - QB)^T (A - QB))$$

= $\operatorname{trace}(A^T A) + \operatorname{trace}(B^T Q^T QB) - \operatorname{trace}(B^T Q^T A) - \operatorname{trace}(A^T QB)$
= $\operatorname{const} - 2\operatorname{trace}(A^T QB),$

where const denotes a term independent of Q. Hence minimizing $||A - QB||_F$ is equivalent to maximizing trace $(A^T QB)$.

(ii) We have

$$\operatorname{trace}(A^T Q B) = \operatorname{trace}(Q B A^T) = \operatorname{trace}(Q U \Sigma V^T) = \operatorname{trace}(V^T Q U \Sigma) = \operatorname{trace}(Z \Sigma).$$

Since Z is orthogonal, all its elements lie between -1 and 1, hence $\operatorname{trace}(Z\Sigma) = \sum_{i} z_{ii}\sigma_i \leq \sum_{i=1}^{m} \sigma_i$.

(iii) Equality holds for Z = I, that is, $Q = VU^T$.

(iv) Theorem: Let $A, B \in \mathbb{R}^{m \times n}$. Then $||A - QB||_F$ with Q orthogonal is minimized by $Q = VU^T$, where $BA^T = U\Sigma V^T$ is an SVD.

6. Let P_1 and P_2 be orthogonal projectors onto S. Since range $(P_1) = \text{range}(P_2)$, $P_2 = P_1 X$ for some X. Then $P_1P_2 = P_1^2 X = P_1 X = P_2$. Likewise, $P_2P_1 = P_1$. Hence, for any z,

$$\begin{aligned} \|(P_1 - P_2)z\|_2^2 &= z^*(P_1 - P_2)(P_1 - P_2)z \\ &= z^*(P_1^2 + P_2^2 - P_1P_2 - P_2P_1)z \\ &= z^*(P_1 + P_2 - P_2 - P_1)z = 0. \end{aligned}$$

Therefore $P_1 - P_2 = O$.

7.

(i) Let $A = U\Sigma V^*$ be the singular value decomposition of A, $r = \operatorname{rank}(A)$ and $U = [u_1, \ldots, u_m]$. Then in a similar way to Exercise ?? we find that $\operatorname{null}(A^*) = \operatorname{span}\{u_{r+1}, \ldots, u_m\}$. But by (??), $\operatorname{range}(A) = \operatorname{span}\{u_1, \ldots, u_r\}$ so $(\operatorname{range}(A))^{\perp} = \operatorname{span}\{u_{r+1}, \ldots, u_m\}$ and hence, $(\operatorname{range}(A))^{\perp} = \operatorname{null}(A^*)$. It follows that $(\operatorname{range}(A^*))^{\perp} = \operatorname{null}(A)$ and hence $\operatorname{range}(A^*) = (\operatorname{null}(A))^{\perp}$.

(ii) AA^+ is Hermitian by condition (iii) of the Moore–Penrose conditions, and $(AA^+)^2 = AA^+AA^+ = AA^+$ by condition (i) of the Moore–Penrose conditions. It remains to show that range $(AA^+) = \text{range}(A)$.

Let $x \in \operatorname{range}(A)$, so that x = Ay for some y. Then, by condition (i) of the Moore–Penrose conditions, $x = AA^+Ay = AA^+x$, so $x \in \operatorname{range}(AA^+)$. Conversely, $x \in \operatorname{range}(AA^+)$ implies $x = AA^+y$ for some y and then $x = A(A^+y) \in \operatorname{range}(A)$. Thus $P_{\operatorname{range}(A)} = AA^+$ is the orthogonal projector onto $\operatorname{range}(A)$. Since $(\operatorname{range}(A))^{\perp} = \operatorname{null}(A^*)$, $P_{\operatorname{null}(A^*)} = I - AA^+$ is the orthogonal projector onto $\operatorname{null}(A^*)$.

By the first part, the orthogonal projector onto $\operatorname{range}(A^*)$ is $A^*(A^*)^+ = A^*(A^+)^* = (A^+A)^* = A^+A$. Since $(\operatorname{range}(A^*))^{\perp} = \operatorname{null}(A)$, $P_{\operatorname{null}(A)} = I - A^+A$ is the orthogonal projector onto $\operatorname{null}(A)$.

(iii) Computing the products AA^+ and A^+A reveals that

$$AA^{+} = U\Sigma V^{*}V\Sigma^{+}U^{*} = U\begin{bmatrix} I_{r} & O\\ O & O \end{bmatrix}U^{*} = U_{1}U_{1}^{*}, \quad A^{+}A = V\Sigma^{+}U^{*}U\Sigma V^{*} = V\begin{bmatrix} I_{r} & O\\ O & O \end{bmatrix}V^{*} = V_{1}V_{1}^{*}$$

and since U and V are unitary, $U_2U_2^* = I - U_1U_1^*$ and $V_2V_2^* = I - V_1V_1^*$. The result follows from (ii).

8. It is easy to verify that $x^+ = x^*/(x^*x)$ satisfies the four Moore–Penrose conditions.

9. Yes. This follows from the symmetry in A and X of the Moore–Penrose conditions (i.e., the roles of A and X can be interchanged).