
MATH36001 Solutions: SVD 2015

1. We have that z∗A∗Az = ‖Az‖22 ≥ 0 ∀ z 6= 0. Since rank(A) = n, A has full rank, that is,
Az = 0 iff z = 0. Hence z∗A∗Az > 0 for all nonzero z which shows that A∗A is Hermitian
positive definite and therefore nonsingular.

Let X = (A∗A)−1A∗. Then it is easy to check that X satisfies the four Moore–Penrose
conditions.

2.
For any A ∈ Cm×n, rank(A) + dim(null(A)) = n. Hence dim(null(A)) = n − r and

dim(range(A)) = rank(A) = r.
From AV = UΣ we have

Avi = σiui, (σi 6= 0) i = 1, . . . , r,

Avi = 0, i = r + 1, . . . , n.

U unitary ⇒ the vectors ui, i = 1, . . . , r, are linearly independent and therefore range(A) =
span{u1, u2, . . . , ur}.
V unitary ⇒ the vectors vi, i = r + 1, . . . , n, are linearly independent and therefore null(A) =
span{vr+1, . . . , vn}.

3. Let A have the SVD A = UΣV ∗. By the unitary invariance of the 2 and Frobenius norms,

‖A‖2 = ‖Σ‖2 = σ1,

‖A‖F = ‖Σ‖F =
( n∑
i=1

σ2
i

)1/2
.

Thus
‖A‖2 ≤ ‖A‖F ≤

√
n‖A‖2

(in fact, we can replace
√
n by

√
r, where r = rank(A)).

There is equality on the left when σ2 = · · · = σn = 0, that is, when A has rank 1 (A = xy∗) or
A = O. There is equality on the right when σ1 = · · · = σn = α, that is, when A = αQ where
Q is unitary, α ∈ C.

4. The easiest is to notice that

‖AX − Im‖2F = ‖A[x1, . . . , xm]− [e1, . . . , em]‖2F =
m∑
i=1

‖Axi − ei‖22,

which is minimized if ‖Axi− ei‖2 is minimized for i = 1, . . . ,m. Thus we have m simultaneous,
but independent, LS problems. The solution is xi = A+ei, i = 1, . . . ,m, that is, X = A+Im =
A+. This is the unique solution only if A has full rank, but it is always the unique minimum
F-norm solution. An alternative proof is to consider f(α) = ‖A(X + αY ) − Im‖2F and derive
conditions for f(0) = minα f(α). Another (longer) proof uses the SVD of A and works from
first principles.
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5. (i)

‖A−QB‖2F = trace((A−QB)T (A−QB))

= trace(ATA) + trace(BTQTQB)− trace(BTQTA)− trace(ATQB)

= const− 2 trace(ATQB),

where const denotes a term independent of Q. Hence minimizing ‖A−QB‖F is equivalent to
maximizing trace(ATQB).

(ii) We have

trace(ATQB) = trace(QBAT ) = trace(QUΣV T ) = trace(V TQUΣ) = trace(ZΣ).

Since Z is orthogonal, all its elements lie between −1 and 1, hence trace(ZΣ) =
∑

i ziiσi ≤∑m
i=1 σi.
(iii) Equality holds for Z = I, that is, Q = V UT .
(iv) Theorem: Let A,B ∈ Rm×n. Then ‖A − QB‖F with Q orthogonal is minimized by

Q = V UT , where BAT = UΣV T is an SVD.

6. Let P1 and P2 be orthogonal projectors onto S. Since range(P1) = range(P2), P2 = P1X for
some X. Then P1P2 = P 2

1X = P1X = P2. Likewise, P2P1 = P1. Hence, for any z,

‖(P1 − P2)z‖22 = z∗(P1 − P2)(P1 − P2)z

= z∗(P 2
1 + P 2

2 − P1P2 − P2P1)z

= z∗(P1 + P2 − P2 − P1)z = 0.

Therefore P1 − P2 = O.

7.
(i) Let A = UΣV ∗ be the singular value decomposition of A, r = rank(A) and U =

[u1, . . . , um]. Then in a similar way to Exercise ?? we find that null(A∗) = span{ur+1, . . . , um}.
But by (??), range(A) = span{u1, . . . , ur} so

(
range(A)

)⊥
= span{ur+1, . . . , um} and hence,(

range(A)
)⊥

= null(A∗). It follows that
(

range(A∗)
)⊥

= null(A) and hence range(A∗) =(
null(A)

)⊥
.

(ii) AA+ is Hermitian by condition (iii) of the Moore–Penrose conditions, and (AA+)2 =
AA+AA+ = AA+ by condition (i) of the Moore–Penrose conditions. It remains to show that
range(AA+) = range(A).

Let x ∈ range(A), so that x = Ay for some y. Then, by condition (i) of the Moore–Penrose
conditions, x = AA+Ay = AA+x, so x ∈ range(AA+). Conversely, x ∈ range(AA+) implies
x = AA+y for some y and then x = A(A+y) ∈ range(A). Thus Prange(A) = AA+ is the

orthogonal projector onto range(A). Since
(

range(A)
)⊥

= null(A∗), Pnull(A∗) = I −AA+ is the
orthogonal projector onto null(A∗).

By the first part, the orthogonal projector onto range(A∗) is A∗(A∗)+ = A∗(A+)∗ =

(A+A)∗ = A+A. Since
(

range(A∗)
)⊥

= null(A), Pnull(A) = I − A+A is the orthogonal pro-
jector onto null(A).
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(iii) Computing the products AA+ and A+A reveals that

AA+ = UΣV ∗V Σ+U∗ = U

[
Ir O
O O

]
U∗ = U1U

∗
1 , A+A = V Σ+U∗UΣV ∗ = V

[
Ir O
O O

]
V ∗ = V1V

∗
1

and since U and V are unitary, U2U
∗
2 = I − U1U

∗
1 and V2V

∗
2 = I − V1V ∗1 . The result follows

from (ii).

8. It is easy to verify that x+ = x∗/(x∗x) satisfies the four Moore–Penrose conditions.

9. Yes. This follows from the symmetry in A and X of the Moore–Penrose conditions (i.e., the
roles of A and X can be interchanged).


