1.
2. $\|x\|_{A}=\|A x\| \geq 0$ since $\|\cdot\|$ is a vector norm and $\|x\|_{A}=0 \Rightarrow A x=0 \Rightarrow x=0$ because $\operatorname{rank}(A)=n$.
3. $\|\alpha x\|_{A}=\|\alpha A x\|=|\alpha|\|A x\|=|\alpha|\|x\|_{A}$.
4. $\|x+y\|_{A}=\|A(x+y)\|=\|A x+A y\| \leq\|A x\|+\|A y\|=\|x\|_{A}+\|y\|_{A}$.
5. The function ν is not a vector norm because $\nu(\alpha x)=|\alpha| \nu(x)$ does not hold for all $\alpha \in \mathbb{C}$, $x \in \mathbb{C}^{n}$.
6. $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2}=\|x\|_{2}$. Equality is attained, for example, for $x=e_{1}$, where e_{1} is the first column of the identity matrix.
$\|x\|_{2}^{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right) \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|\right)^{2}=\|x\|_{1}^{2}$. The equality is attained for $x=e_{1}$.
Let $e=[1, \cdots, 1]^{T} \in \mathbb{R}^{n}$ and let $|x|=\left[\left|x_{1}\right|, \cdots,\left|x_{n}\right|\right]^{T}$. We have

$$
\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|=e^{T}|x| \leq\|e\|_{2}\||x|\|_{2}=\sqrt{n}\|x\|_{2}
$$

using the Cauchy-Schwarz inequality for the last inequality. Equality is attained for $x=e$.

$$
\|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{1 / 2} \leq \sqrt{n} \max _{1 \leq i \leq n}\left|x_{i}\right|=\sqrt{n}\|x\|_{\infty} . \text { Equality is attained for } x=e
$$

4. Let $x \in \mathbb{C}^{n}$ and let $U \in \mathbb{C}^{n \times n}$ be unitary (i.e. $U^{*} U=I$). Then $\|U x\|_{2}=\left(x^{*} U^{*} U x\right)^{1 / 2}=$ $\left(x^{*} x\right)^{1 / 2}=\|x\|_{2}$. Take $U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$ (check that U is unitary) and $x=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ so that $U x=$ $\frac{1}{\sqrt{2}}\left[\begin{array}{c}-1 \\ 3\end{array}\right]$. Then $\|x\|_{1}=3 \neq\|U x\|_{1}=4 / \sqrt{2}$ and $\|x\|_{\infty}=2 \neq\|U x\|_{\infty}=3 / \sqrt{2}$.
5. $\left\|x y^{*}\right\|_{F}^{2}=\operatorname{trace}\left(y x^{*} x y^{*}\right)=\left(x^{*} x\right) \operatorname{trace}\left(y y^{*}\right)=\|x\|_{2}^{2} \sum_{i=1}^{n}\left|y_{i}\right|^{2}=\|x\|_{2}^{2}\|y\|_{2}^{2}$.
$\left\|\left(x y^{*}\right) v\right\|_{2}=\left|y^{*} v\right|\|x\|_{2} \leq\|y\|_{2}\|v\|_{2}\|x\|_{2}$ using the Cauchy-Schwarz inequality. Hence

$$
\left\|x y^{*}\right\|_{2}=\max _{v \neq 0} \frac{\left\|\left(x y^{*}\right) v\right\|_{2}}{\|v\|_{2}} \leq\|y\|_{2}\|x\|_{2} .
$$

Equality is attained for $v=y$.
6. $\|A\|_{2}^{2}=\lambda_{\max }\left(A^{*} A\right) \leq \sum_{i=1}^{m} \lambda_{i}\left(A^{*} A\right)=\operatorname{trace}\left(A^{*} A\right)=\|A\|_{F}^{2}$.
7. We first show that $\|A\|_{1} \leq \max _{j} \sum_{i=1}^{m}\left|a_{i j}\right|$. For all $x \in \mathbb{C}^{n}$,

$$
\begin{aligned}
\|A x\|_{1} & =\sum_{i=1}^{m}\left|(A x)_{i}\right|=\sum_{i=1}^{m}\left|\sum_{j=1}^{n} a_{i j} x_{j}\right| \\
& \leq \sum_{i=1}^{m} \sum_{j=1}^{n}\left|a_{i j}\right|\left|x_{j}\right|=\sum_{j=1}^{n} \sum_{i=1}^{m}\left|a_{i j}\right|\left|x_{j}\right| \\
& \leq \sum_{j=1}^{n}\left(\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|\right)\left|x_{j}\right|=\left(\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|\right)\left(\sum_{j=1}^{n}\left|x_{j}\right|\right)=\left(\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|\right)\|x\|_{1 .} .
\end{aligned}
$$

Therefore $\|A x\|_{1} /\|x\|_{1} \leq \max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$ for all $x \neq 0$. From this $\|A\|_{1} \leq \max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$.
To prove equality we must find an \hat{x} for which $\|A \hat{x}\|_{1} /\|\hat{x}\|_{1}=\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$. Suppose that the maximum is attained in the ℓ th column of A. Let \hat{x} be the vector with 1 in position ℓ and zeros elsewhere. Then $\|\hat{x}\|_{1}=1$ and $\|A \hat{x}\|_{1}=\sum_{i=1}^{m}\left|a_{i \ell}\right|$. Thus $\|A \hat{x}\|_{1} /\|\hat{x}\|_{1}=\sum_{i=1}^{m}\left|a_{i \ell}\right|=$ $\max _{k} \sum_{i=1}^{m}\left|a_{i k}\right|$.

The expression for $\|\cdot\|_{\infty}$ is proved in a similar way.
8. If $x \neq 0$ is such that $A^{*} A x=\mu^{2} x$ with $\mu=\|A\|_{2}$, then $\mu^{2}\|x\|_{1}=\left\|A^{*} A x\right\|_{1} \leq\left\|A^{*}\right\|_{1}\|A\|_{1}\|x\|_{1}=$ $\|A\|_{\infty}\|A\|_{1}\|x\|_{1}$.
9. Suppose $I-A$ is singular. It follows that $(I-A) x=0$ for some nonzero x. But then $\|x\|=\|A x\|$ implies that $\|A\| \geq 1$, a contradiction. Thus $I-A$ is nonsingular. To obtain an expression for its inverse consider the identity $\left(\sum_{k=0}^{n} A^{k}\right)(I-A)=I-A^{n+1}$. Since $\|A\|<1$, it follows that $\lim _{k \rightarrow \infty} A^{k}=0$ because $\left\|A^{k}\right\| \leq\|A\|^{k}$. Thus $\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} A^{k}\right)(I-A)=I$.
10. (i) Since A is Hermitian, the eigendecomposition $A=U \Lambda U^{*}$ holds with U unitary and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ real. Then $x^{*} A x>0$ for all nonzero $x \in \mathbb{C}^{n} \Leftrightarrow x^{*} U \Lambda U^{*} x>0$ for all nonzero $x \in \mathbb{C}^{n} \Leftrightarrow y^{*} \Lambda y>0$ for all $y \in \mathbb{C}^{n} \Leftrightarrow \lambda_{i}>0, i=1, \ldots, n$.
(ii) Note that $A^{*}=A$ so A is Hermitian. Gershgorin's theorem says that the eigenvalues lie in the union of the disks

$$
\{z:|z-3| \leq 1\} \cup\{z:|z-3| \leq 2\}=\{z:|z-3| \leq 2\}
$$

showing that A cannot have negative or zero eigenvalues. So A is Hermitian positive definite.
11. (i) We prove the result for $n=3$ but the same technique can be used for arbitrary degree n. Let $n=3$ so that $C(p)=\left[\begin{array}{ccc}-a_{2} & -a_{1} & -a_{0} \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. Thus $z I-C(p)=\left[\begin{array}{ccc}z+a_{2} & a_{1} & a_{0} \\ -1 & z & 0 \\ 0 & -1 & z\end{array}\right]$.

Adding z^{2} times the first column and z times the 2 nd column to the last column leaves the determinant unchanged and yields

$$
\operatorname{det}(z I-C(p))=\operatorname{det}\left[\begin{array}{ccc}
z+a_{2} & a_{1} & p(z) \\
-1 & z & 0 \\
0 & -1 & 0
\end{array}\right]=p(z) \operatorname{det}\left[\begin{array}{cc}
-1 & z \\
0 & -1
\end{array}\right]=p(z)
$$

(ii) From (i) we conclude that a root \widetilde{z} of $p(z)=0$ is also an eigenvalue of $C(p)$. It follows that $|\widetilde{z}| \leq\|C(p)\|$ for any consistent matrix norm (see Sec. 3 of the handout).
(iii) $|\widetilde{z}| \leq\|C(p)\|_{1}=\max \left\{1+\left|a_{n-1}\right|, \cdots, 1+\left|a_{1}\right|,\left|a_{0}\right|\right\} \leq 1+\max _{0 \leq i \leq n-1}\left|a_{i}\right|$.
$|\widetilde{z}| \leq\|C(p)\|_{\infty}=\max \left\{1,\left|a_{n-1}\right|+\cdots+\left|a_{0}\right|\right\} \leq 1+\sum_{i=0}^{n-1}\left|a_{i}\right|$.
Note that Montel's bound is poorer than Cauchy's bound.
12. (i) $M_{n} e=\mu_{n} e$ (vector of row sums), $e^{T} M_{n}=\mu_{n} e^{T}$ (vector of column sums).
(ii) $M_{n}^{2} e=M_{n}\left(M_{n} e\right)=M_{n}\left(\mu_{n} e\right)=\mu_{n}^{2} e$, and similarly $e^{T} M_{n}^{2}=\mu_{n}^{2} e^{T}$, so M_{n}^{2} has the magic sum μ_{n}^{2} for any n. For example,

$$
M_{4}^{2}=\left[\begin{array}{llll}
345 & 257 & 281 & 273 \\
257 & 313 & 305 & 281 \\
281 & 305 & 313 & 257 \\
273 & 281 & 257 & 345
\end{array}\right]
$$

has row and column sums equal to 1156 but it is not a genuine magic square because its entries are not the integers 1 to 16 .
(iii) For any magic square matrix, the 1,2 and ∞ norms are all the same: they equal the magic number, μ_{n}. The 1 and ∞ norms obviously equal the magic number, so we just have to show that the 2 -norm does too.

$$
\left\|M_{n}\right\|_{2} \geq \frac{\left\|M_{n} e\right\|_{2}}{\|e\|_{2}}=\frac{\left\|\mu_{n} e\right\|_{2}}{\|e\|_{2}}=\mu_{n}
$$

From Exercise 8, $\left\|M_{n}\right\|_{2} \leq \sqrt{\left\|M_{n}\right\|_{1}\left\|M_{n}\right\|_{\infty}}=\sqrt{\mu_{n} \cdot \mu_{n}}=\mu_{n}$. Thus $\left\|M_{n}\right\|_{2}=\mu_{n}$.
Since μ_{n} is an eigenvalue of $M_{n}, \rho\left(M_{n}\right) \geq \mu_{n}$ but $\rho\left(M_{n}\right) \leq\left\|M_{n}\right\|_{1}=\mu_{n}$ so $\rho\left(M_{n}\right)=\mu_{n}$.
(iv) Let $B=M_{n} / \mu_{n}$. Then B has distinct eigenvalues, one equal to 1 and the others of modulus less than 1 . Therefore B is diagonalizable: there is a nonsingular matrix V, whose columns are eigenvectors of B, such that $B=V D V^{-1}$, where $D=\operatorname{diag}\left(\lambda_{i}\right)$, with $\lambda_{1}=1$, say. Hence $B^{k}=V D^{k} V^{-1}$ and so

$$
\lim _{k \rightarrow \infty} B^{k}=V \lim _{k \rightarrow \infty} D^{k} V^{-1}=V \operatorname{diag}(1,0,0,0) V^{-1}=v_{1} w_{1}^{T}
$$

where v_{1} is the first column of V and w_{1}^{T} is the first row of V^{-1}.
But v_{1} is an eigenvector of B associated with the eigenvalue $\lambda=1$ and since $B=M_{n} / \mu_{n}$, v_{1} is an eigenvector of M_{n} associated with the eigenvalue $\lambda=\mu_{n}$. From (i) we can take $v_{1}=e$.

We now show that if $v_{1}=e$ then $w_{1}=\frac{1}{n} e$. First, $e_{1}^{T} V^{-1} B=e_{1}^{T} D V^{-1} \Leftrightarrow w_{1}^{T} B=w_{1}^{T} \Leftrightarrow$ $w_{1}^{T} M_{n}=\mu_{n} w_{1}^{T}$ so from (i), w_{1} must be a multiple of e, say αe. Since $V^{-1} V=I, w_{1}^{T} v_{1}=1$ which implies that $\alpha=1 / n$. Hence $v_{1} w_{1}^{T}=e e^{T} / n$.

