MATH36001 Solutions: Norms 2015

1.
L. ||z|la = ||Az| > 0 since || - || is a vector norm and ||z||[a =0 = Az =0 = z =20
because rank(A) = n.
2. Jlazxlla = [aAz| = |af[Az] = [al]|z]] -

3. [lz +ylla = Az + y)ll = | Az + Ay[| < [|Az|[ + [[Ay[| = [lz]l2 + lly[|a-

2. The function v is not a vector norm because v(ax) = |ajv(z) does not hold for all a € C,
x e Cn.

n 1/2
|2]| o = %1%§|xz| < (2; |xz|2) = ||z|]o. Equality is attained, for example, for x = ey,
1=
where e; is the first column of the identity matrix.

2
|z||3 = <Z?:1 \xz|2> < <Z?:1 \xz|) = ||z||?. The equality is attained for x = e;.
Let e =[1,---,1]T € R™ and let |z| = [|z1], - -, |z,|]T. We have
n
Izl = Lol = €Ml < [lelllllzlllz = vallll2,
i=1
using the Cauchy—Schwarz inequality for the last inequality. Equality is attained for x = e.

1/2
||| = <Z?:1 \xl|2> < v/nmaxi<i<y || = v/nl|z|| . Equality is attained for z = e.

Let x € C" and let U € (C”X" be unitary (i.e. U*U = I). Then |Uz|, = (2*U*Ux)"/? =

4.
(z*z)/? = ||z|];. Take U = H_H (check that U is unitary) and « = [}] so that Uz =

T
5[5 ]- Then [zl =3 # HUle =4/V2and ||z]ec = 2 # |Uz]le = 3/V2.

5. [ley*|[f = trace(ya’zy”) = (x"x) trace(yy”) = [l2]5 25 [4il* = [l=/5]lyl13-
|(zy*)vll2 = [y vl||lz]l2 < [lyll2]|v]l2]|z|l2 using the Cauchy—Schwarz inequality. Hence

. [(zy*)vll2
ol = mage S < Yol

Equality is attained for v = y.

6. A5 = Amax(A"A) < 351, Ai(ATA) = trace(A”A) = || A%
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7. We first show that ||A|; <max; > ", |a;|. For all z € C",

Azl = Y 1(Any] = S0 D aya
=1

=1 j=1
m n n m
SIS agllrl =D las ]
i=1 j=1 =1 i=1

n

m m n m
-y (mgxzm) 11 = (mgxzmiu) (zw) _ <mgxzraik\) el
j=1 i=1 i=1 j=1 i=1

Therefore ||Ax||1/||z||; < maxg > i, |a| for all z # 0. From this [|Al|; < maxy > . |axl.

To prove equality we must find an & for which ||Az|1/||2]1 = maxg > i, |ax|. Suppose
that the maximum is attained in the /th column of A. Let Z be the vector with 1 in position ¢
and zeros elsewhere. Then [|Z||; =1 and ||Az||; = Y", |ai|. Thus [|AZ[|1/||Z]l1 = Doty law| =
maxy, 3 7 -

The expression for || - || is proved in a similar way.

8. If z # Oissuch that A* Az = p?x with g = || A, then p2||z||; = ||A* Azl < [|A*[1||All1||z], =
[Allsol[All2 ]l

9. Suppose I — A is singular. It follows that (I — A)x = 0 for some nonzero z. But then
|z|| = ||Az|| implies that ||A|| > 1, a contradiction. Thus I — A is nonsingular. To obtain an

expression for its inverse consider the identity (Z ARY(I — A) =T — A" Since ||A]| < 1, it
k=0

follows that limy .. A* = 0 because ||A¥|| < [|A||*. Thus lim, (ZZ:o Ak) (I—A) =1

10. (i) Since A is Hermitian, the eigendecomposition A = UAU* holds with U unitary and
A = diag(Aq,...,A\,) real. Then z*Axz > 0 for all nonzero x € C* < z*UAU*x > 0 for all
nonzeror € C" < y*Ay >0forallye C" < \; >0, i=1,...,n.

(ii) Note that A* = A so A is Hermitian. Gershgorin’s theorem says that the eigenvalues
lie in the union of the disks

{z:]z=3|<1}U{z:|z=3]<2}={z:|z—3| <2},

showing that A cannot have negative or zero eigenvalues. So A is Hermitian positive definite.

11. (i) We prove the result for n = 3 but the same technique can be used for arbitrary degree
—Q2 —Qa1 —Q Z+ax ai agp
n. Let n = 3 so that C'(p) = | 1 0 0 |. Thus zI — C(p) = -1 z 0
0 1 0 0 -1 =z
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Adding 2? times the first column and z times the 2nd column to the last column leaves the
determinant unchanged and yields

det (21 — C(p)) = d PR p(oz) (2)d [_1 z } (2)
et (21 — = det — z = p(z)det =p(2).
p ; 5 0 p 0 —1 p

(ii) From (i) we conclude that a root z of p(z) = 0 is also an eigenvalue of C(p). It follows
that |Z] < ||C(p)|| for any consistent matrix norm (see Sec. 3 of the handout).

(iil) 2] < [|C(p)[lh = max{1l + |an-],- -+, 1 + |aa], [ao|} <1+ maxo<icp—1|ai-

21 < Ol = max{L, ans| + -+ laol} < 1+ 30 Jasl

Note that Montel’s bound is poorer than Cauchy’s bound.

12. (i) M,e = pne (vector of row sums), el M,, = p,e’ (vector of column sums).
(i) M2e = M,(M,e) = M,(une) = pZe, and similarly e’ M? = pi2e’’, so M? has the magic
sum p2 for any n. For example,

345 257 281 273
257 313 305 281
281 305 313 257
273 281 257 345

ME =

has row and column sums equal to 1156 but it is not a genuine magic square because its entries
are not the integers 1 to 16.

(iii) For any magic square matrix, the 1, 2 and oo norms are all the same: they equal the
magic number, u,. The 1 and oo norms obviously equal the magic number, so we just have to
show that the 2-norm does too.

[Maells _ Npnells
lel: = Tell

From Exercise 8, [|[M,|2 < /I Mull1]|Mnlloo = /B fn = fn- Thus || M,]l2 = pin.
Since p, is an eigenvalue of M, p(M,) > p, but p(M,) < || Mpll1 = pn so p(M,) = piy.
(iv) Let B = M,/p,. Then B has distinct eigenvalues, one equal to 1 and the others of
modulus less than 1. Therefore B is diagonalizable: there is a nonsingular matrix V', whose
columns are eigenvectors of B, such that B = VDV ™! where D = diag()\;), with A\; = 1, say.
Hence B¥ = VD*V~! and so

[ M|z =

n-

lim B* =V lim D*V ™' = V diag(1,0,0,0)V " = vjw?,
k—o0 k—o0
where v; is the first column of V and w? is the first row of V1.
But v; is an eigenvector of B associated with the eigenvalue A = 1 and since B = M,/ iy,
vy is an eigenvector of M,, associated with the eigenvalue A = p,,. From (i) we can take v; = e.
We now show that if v; = e then wy; = e. First, e] V!B =¢{DV! & w{B=w{ &
wi M, = p,wl so from (i), w; must be a multiple of e, say ae. Since V'V =TI, wlv, =1
which implies that o = 1/n. Hence v,w! = ee® /n.



