MATH36001 Solutions: Norms

2015

1.

1. $||x||_A = ||Ax|| \ge 0$ since $||\cdot||$ is a vector norm and $||x||_A = 0 \Rightarrow Ax = 0 \Rightarrow x = 0$ because rank(A) = n.

2.
$$\|\alpha x\|_A = \|\alpha A x\| = |\alpha| \|A x\| = |\alpha| \|x\|_A$$
.

3.
$$||x + y||_A = ||A(x + y)|| = ||Ax + Ay|| \le ||Ax|| + ||Ay|| = ||x||_A + ||y||_A$$

2. The function ν is not a vector norm because $\nu(\alpha x) = |\alpha|\nu(x)$ does not hold for all $\alpha \in \mathbb{C}$, $x \in \mathbb{C}^n$.

3. $||x||_{\infty} = \max_{1 \le i \le n} |x_i| \le \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} = ||x||_2$. Equality is attained, for example, for $x = e_1$, where e_1 is the first column of the identity matrix.

$$\|x\|_{2}^{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right) \le \left(\sum_{i=1}^{n} |x_{i}|\right)^{2} = \|x\|_{1}^{2}.$$
 The equality is attained for $x = e_{1}.$

Let $e = [1, \dots, 1]^T \in \mathbb{R}^n$ and let $|x| = [|x_1|, \dots, |x_n|]^T$. We have

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}| = e^{T} |x| \le \|e\|_{2} \||x\|\|_{2} = \sqrt{n} \|x\|_{2},$$

using the Cauchy–Schwarz inequality for the last inequality. Equality is attained for x = e. $\|x\|_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2} \le \sqrt{n} \max_{1 \le i \le n} |x_i| = \sqrt{n} \|x\|_{\infty}$. Equality is attained for x = e.

4. Let $x \in \mathbb{C}^n$ and let $U \in \mathbb{C}^{n \times n}$ be unitary (i.e. $U^*U = I$). Then $||Ux||_2 = (x^*U^*Ux)^{1/2} = (x^*x)^{1/2} = ||x||_2$. Take $U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ (check that U is unitary) and $x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ so that $Ux = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 3 \end{bmatrix}$. Then $||x||_1 = 3 \neq ||Ux||_1 = 4/\sqrt{2}$ and $||x||_{\infty} = 2 \neq ||Ux||_{\infty} = 3/\sqrt{2}$.

5.
$$||xy^*||_F^2 = \operatorname{trace}(yx^*xy^*) = (x^*x)\operatorname{trace}(yy^*) = ||x||_2^2 \sum_{i=1}^n |y_i|^2 = ||x||_2^2 ||y||_2^2$$

 $||(xy^*)v||_2 = |y^*v|||x||_2 \le ||y||_2 ||v||_2 ||x||_2$ using the Cauchy–Schwarz inequality. Hence

$$||xy^*||_2 = \max_{v \neq 0} \frac{||(xy^*)v||_2}{||v||_2} \le ||y||_2 ||x||_2.$$

Equality is attained for v = y.

6.
$$||A||_2^2 = \lambda_{\max}(A^*A) \le \sum_{i=1}^m \lambda_i(A^*A) = \operatorname{trace}(A^*A) = ||A||_F^2$$

7. We first show that $||A||_1 \leq \max_j \sum_{i=1}^m |a_{ij}|$. For all $x \in \mathbb{C}^n$,

$$|Ax||_{1} = \sum_{i=1}^{m} |(Ax)_{i}| = \sum_{i=1}^{m} \left| \sum_{j=1}^{n} a_{ij} x_{j} \right|$$

$$\leq \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{n} \sum_{i=1}^{m} |a_{ij}| |x_{j}|$$

$$\leq \sum_{j=1}^{n} \left(\max_{k} \sum_{i=1}^{m} |a_{ik}| \right) |x_{j}| = \left(\max_{k} \sum_{i=1}^{m} |a_{ik}| \right) \left(\sum_{j=1}^{n} |x_{j}| \right) = \left(\max_{k} \sum_{i=1}^{m} |a_{ik}| \right) ||x||_{1}.$$

Therefore $||Ax||_1/||x||_1 \le \max_k \sum_{i=1}^m |a_{ik}|$ for all $x \ne 0$. From this $||A||_1 \le \max_k \sum_{i=1}^m |a_{ik}|$. To prove equality we must find an \hat{x} for which $||A\hat{x}||_1/||\hat{x}||_1 = \max_k \sum_{i=1}^m |a_{ik}|$. Suppose

To prove equality we must find an \hat{x} for which $||A\hat{x}||_1/||\hat{x}||_1 = \max_k \sum_{i=1}^m |a_{ik}|$. Suppose that the maximum is attained in the ℓ th column of A. Let \hat{x} be the vector with 1 in position ℓ and zeros elsewhere. Then $||\hat{x}||_1 = 1$ and $||A\hat{x}||_1 = \sum_{i=1}^m |a_{i\ell}|$. Thus $||A\hat{x}||_1/||\hat{x}||_1 = \sum_{i=1}^m |a_{i\ell}| = \max_k \sum_{i=1}^m |a_{ik}|$.

The expression for $\|\cdot\|_{\infty}$ is proved in a similar way.

8. If $x \neq 0$ is such that $A^*Ax = \mu^2 x$ with $\mu = ||A||_2$, then $\mu^2 ||x||_1 = ||A^*Ax||_1 \le ||A^*||_1 ||A||_1 ||x||_1 = ||A||_{\infty} ||A||_1 ||x||_1$.

9. Suppose I - A is singular. It follows that (I - A)x = 0 for some nonzero x. But then ||x|| = ||Ax|| implies that $||A|| \ge 1$, a contradiction. Thus I - A is nonsingular. To obtain an expression for its inverse consider the identity $(\sum_{k=0}^{n} A^k)(I - A) = I - A^{n+1}$. Since ||A|| < 1, it follows that $\lim_{k\to\infty} A^k = 0$ because $||A^k|| \le ||A||^k$. Thus $\lim_{n\to\infty} \left(\sum_{k=0}^{n} A^k\right)(I - A) = I$.

10. (i) Since A is Hermitian, the eigendecomposition $A = UAU^*$ holds with U unitary and $A = \text{diag}(\lambda_1, \ldots, \lambda_n)$ real. Then $x^*Ax > 0$ for all nonzero $x \in \mathbb{C}^n \Leftrightarrow x^*UAU^*x > 0$ for all nonzero $x \in \mathbb{C}^n \Leftrightarrow y^*Ay > 0$ for all $y \in \mathbb{C}^n \Leftrightarrow \lambda_i > 0$, $i = 1, \ldots, n$.

(ii) Note that $A^* = A$ so A is Hermitian. Gershgorin's theorem says that the eigenvalues lie in the union of the disks

$$\{ z : |z - 3| \le 1 \} \cup \{ z : |z - 3| \le 2 \} = \{ z : |z - 3| \le 2 \},\$$

showing that A cannot have negative or zero eigenvalues. So A is Hermitian positive definite.

11. (i) We prove the result for n = 3 but the same technique can be used for arbitrary degree n. Let n = 3 so that $C(p) = \begin{bmatrix} -a_2 & -a_1 & -a_0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Thus $zI - C(p) = \begin{bmatrix} z + a_2 & a_1 & a_0 \\ -1 & z & 0 \\ 0 & -1 & z \end{bmatrix}$. Adding z^2 times the first column and z times the 2nd column to the last column leaves the determinant unchanged and yields

$$\det (zI - C(p)) = \det \begin{bmatrix} z + a_2 & a_1 & p(z) \\ -1 & z & 0 \\ 0 & -1 & 0 \end{bmatrix} = p(z) \det \begin{bmatrix} -1 & z \\ 0 & -1 \end{bmatrix} = p(z).$$

(ii) From (i) we conclude that a root \tilde{z} of p(z) = 0 is also an eigenvalue of C(p). It follows that $|\tilde{z}| \leq ||C(p)||$ for any consistent matrix norm (see Sec. 3 of the handout).

(iii) $|\tilde{z}| \leq ||C(p)||_1 = \max\{1 + |a_{n-1}|, \dots, 1 + |a_1|, |a_0|\} \leq 1 + \max_{0 \leq i \leq n-1} |a_i|.$ $|\tilde{z}| \leq ||C(p)||_{\infty} = \max\{1, |a_{n-1}| + \dots + |a_0|\} \leq 1 + \sum_{i=0}^{n-1} |a_i|.$ Note that Montel's bound is poorer than Cauchy's bound.

12. (i) $M_n e = \mu_n e$ (vector of row sums), $e^T M_n = \mu_n e^T$ (vector of column sums). (ii) $M_n^2 e = M_n(M_n e) = M_n(\mu_n e) = \mu_n^2 e$, and similarly $e^T M_n^2 = \mu_n^2 e^T$, so M_n^2 has the magic

sum μ_n^2 for any *n*. For example,

$$M_4^2 = \begin{bmatrix} 345 & 257 & 281 & 273\\ 257 & 313 & 305 & 281\\ 281 & 305 & 313 & 257\\ 273 & 281 & 257 & 345 \end{bmatrix}$$

has row and column sums equal to 1156 but it is not a genuine magic square because its entries are not the integers 1 to 16.

(iii) For any magic square matrix, the 1, 2 and ∞ norms are all the same: they equal the magic number, μ_n . The 1 and ∞ norms obviously equal the magic number, so we just have to show that the 2-norm does too.

$$||M_n||_2 \ge \frac{||M_n e||_2}{||e||_2} = \frac{||\mu_n e||_2}{||e||_2} = \mu_n.$$

From Exercise 8, $||M_n||_2 \le \sqrt{||M_n||_1 ||M_n||_\infty} = \sqrt{\mu_n \cdot \mu_n} = \mu_n$. Thus $||M_n||_2 = \mu_n$.

Since μ_n is an eigenvalue of M_n , $\rho(M_n) \ge \mu_n$ but $\rho(M_n) \le ||M_n||_1 = \mu_n$ so $\rho(M_n) = \mu_n$.

(iv) Let $B = M_n/\mu_n$. Then B has distinct eigenvalues, one equal to 1 and the others of modulus less than 1. Therefore B is diagonalizable: there is a nonsingular matrix V, whose columns are eigenvectors of B, such that $B = VDV^{-1}$, where $D = \text{diag}(\lambda_i)$, with $\lambda_1 = 1$, say. Hence $B^k = VD^kV^{-1}$ and so

$$\lim_{k \to \infty} B^k = V \lim_{k \to \infty} D^k V^{-1} = V \operatorname{diag}(1, 0, 0, 0) V^{-1} = v_1 w_1^T,$$

where v_1 is the first column of V and w_1^T is the first row of V^{-1} .

But v_1 is an eigenvector of B associated with the eigenvalue $\lambda = 1$ and since $B = M_n/\mu_n$, v_1 is an eigenvector of M_n associated with the eigenvalue $\lambda = \mu_n$. From (i) we can take $v_1 = e$.

We now show that if $v_1 = e$ then $w_1 = \frac{1}{n}e$. First, $e_1^T V^{-1}B = e_1^T DV^{-1} \Leftrightarrow w_1^T B = w_1^T \Leftrightarrow w_1^T M_n = \mu_n w_1^T$ so from (i), w_1 must be a multiple of e, say αe . Since $V^{-1}V = I$, $w_1^T v_1 = 1$ which implies that $\alpha = 1/n$. Hence $v_1 w_1^T = ee^T/n$.