1.

(a) $(A x)_{i}=\sum_{j=1}^{n} a_{i j} x_{j}>0$ since $a_{i j}>0$ and not all x_{j} are zero.
(b) $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], x=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(c) If $z=w$ then clearly $A z=A w$. Now assume that $z \neq w$ so that $z-w \geq 0, z-w \neq 0$ and by (a), $A(z-w)>0$, that is, $A z>A w$.
2. Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ with $a_{i j}>0$ for all i, j. If A is stochastic then $a_{11}+a_{12}=1$ and $a_{21}+a_{22}=1$ which which together with $a_{i j}>0$ implies that $a_{i j}<1$ for all i, j. If we denote $a_{12}=\alpha$ and $a_{21}=\beta$ then $A=\left[\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right]$ with $0<\alpha, \beta<1$.

Since A is positive stochastic, $\rho(A)=\rho\left(A^{T}\right)=1$ is the Perron root. The Perron vector $p>0$ solves $\left(I-A^{T}\right) p=0,\|p\|_{1}=1$, that is, $\left[\begin{array}{cc}\alpha & -\beta \\ -\alpha & \beta\end{array}\right]\left[\begin{array}{l}p_{1} \\ p_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ with $p_{1}+p_{2}=1$. This yields $p=\frac{1}{\alpha+\beta}\left[\begin{array}{l}\beta \\ \alpha\end{array}\right]$.
3. The graph of A is strongly connected so A is irreducible. Note that $A^{T} e=3 e$, where $e=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{T}$ so $\rho(A) \geq 3$. But $\rho(A) \leq\|A\|_{1}=3$ so the Perron root $\rho(A)=3$. An easy calculation shows that the Perron vector is $p=\left[\begin{array}{lll}1 / 6 & 1 / 2 & 1 / 3\end{array}\right]$.
4. If (λ, y) is an eigenpair of A such that $y \geq 0$ and if $x>0$ is the Perron vector of A^{T} then $x^{T} y>0$ and $\rho(A) x^{T}=x^{T} A \Rightarrow \rho(A) x^{T} y=x^{T} A y=\lambda x^{T} y \Rightarrow \rho(A)=\lambda$. Since $\rho(A)$ is a simple eigenvalue (Perron-Frobenius theorem (iv)), y must be a positive multiple of x.
5. If P is irreducible and stochastic then $\rho(P)=1$ is a simple eigenvalue for P. Consequently, $\operatorname{rank}(I-P)=n-\operatorname{dim}(\operatorname{null}(I-P))=n-$ geom mult of $1=n-\operatorname{alg}$ mult of $1=n-1$.
6. By definition $p_{i j}=e_{i}^{T} P e_{j}=\rho(A)^{-1} x_{i}^{-1} a_{i j} x_{j}$ and since $A x=\rho(A) x$,

$$
\sum_{j=1}^{n} a_{i j} x_{j}=\rho(A) x_{i}, \quad i=1,2, \ldots, n
$$

Hence

$$
\sum_{j=1}^{n} p_{i j}=\rho(A)^{-1} x_{i}^{-1} \sum_{j=1}^{n} a_{i j} x_{j}=\rho(A)^{-1} x_{i}^{-1} \rho(A) x_{i}=1
$$

Thus P is stochastic.
This exercise shows that a wide class of nonnegative matrices can be reduced to stochastic matrices by simple diagonal scaling.

