MATH36001 Solutions: Theory of Eigensystems 2015

Note: the solution to Example 5 in the handout is added at the end of this document.

1. The characteristic polynomial of A is given by $p(t)=\operatorname{det}(t I-A)=\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)$ so that $p(0)=(-1)^{n} \operatorname{det}(A)=(-1)^{n} \prod_{i=1}^{n} \lambda_{i}$.

One can show by induction that the coefficient of t^{n-1} in $p(t)=\operatorname{det}(t I-A)$ is $-\operatorname{trace}(A)$ and that of $p(t)=\left(t-\lambda_{1}\right)\left(t-\lambda_{2}\right) \cdots\left(t-\lambda_{n}\right)$ is $-\sum_{i=1}^{n} \lambda_{i}$.
(A direct proof is obtained by using the Schur form $A=U T U^{*}$, and noting that trace $(A)=$ $\operatorname{trace}\left((U T) U^{*}\right)=\operatorname{trace}\left(U^{*} U T\right)=\operatorname{trace}(T)$, where we have used the relation $\operatorname{trace}(A B)=$ trace $(B A)$ proven in exercise 9 (ii) of the basics handout.)

Since the eigenvalues of A^{k} are $\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{n}^{k}$, it follows that trace $\left(A^{k}\right)=\sum_{i=1}^{n} \lambda_{i}^{k}$.
2. (a) Let $x=\sum_{i=1}^{k} \alpha_{i} x_{i} \in \mathcal{S}$. Then $A x=\sum_{i=1}^{k} \alpha_{i} \lambda_{i} x_{i} \in \mathcal{S}$ so that \mathcal{S} is an invariant subspace under A.
(b) We have $A e_{1}=2 e_{1} \in \mathcal{S}$ and $A e_{2}=e_{1}+2 e_{2} \in \mathcal{S}$ so \mathcal{S} is an invariant subspace under A. Note that e_{2} is not an eigenvector.
3. Let $U_{k}=\left[\begin{array}{lll}u_{1} & \ldots & u_{k}\end{array}\right], e_{i}$ is the i th column of the identity matrix and T_{k} denotes the $k \times k$ leading principal submatrix of T. Rewrite $A=U T U^{*}$ as $A U=U T$ so that

$$
A U_{k}=A U\left[\begin{array}{lll}
e_{1} & \ldots & e_{k}
\end{array}\right]=U T\left[\begin{array}{lll}
e_{1} & \ldots & e_{k}
\end{array}\right]=U\left[\begin{array}{c}
T_{k} \\
O
\end{array}\right]=U_{k} T_{k}
$$

and by Theorem $1, U_{k}$ is invariant under A.
4. (a) If $A^{*} A=A A^{*}$ then $B^{*} B=U^{*} A^{*} U U^{*} A U=U^{*} A^{*} A U=U^{*} A A^{*} U=U^{*} A U U^{*} A^{*} U=$ $B B^{*}$ so B is normal. If $A^{*}=A$ then $B^{*}=U^{*} A^{*} U=U^{*} A U=B$ so B is Hermitian.
(b) Take $S=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ and $A=\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right]$ which is Hermitian and therefore normal. Then $S^{-1} A S=\left[\begin{array}{cc}2 & 0 \\ 2 & -2\end{array}\right]$ is neither Hermitian nor normal.
5. Hermitian, skew-Hermitian and unitary matrices are normal. If A is normal, there exist a unitary matrix U and a diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $A=U \Lambda U^{*}$.
(a) A Hermitian $\Rightarrow A=U \Lambda U^{*}=\left(U \Lambda U^{*}\right)^{*}=U \bar{\Lambda} U^{*} \Rightarrow \Lambda=\bar{\Lambda}$, i.e., $\Lambda \in \mathbb{R}^{n \times n}$. Conversely, A normal with real eigenvalues $\Rightarrow A^{*}=\left(U \Lambda U^{*}\right)^{*}=U \Lambda U^{*}=A$ so A is Hermitian.
(b) Proof similar to (a). Here, $\Lambda=-\bar{\Lambda}$, i.e., $\Lambda \in i \mathbb{R}^{n \times n}$.
(c) A unitary $\Rightarrow I=A^{*} A=U \bar{\Lambda} U^{*} U \Lambda U^{*}=U \bar{\Lambda} \Lambda U^{*} \Rightarrow \bar{\Lambda} \Lambda=I$, i.e., $\left|\lambda_{i}\right|=1, i=1, \ldots, n$. Conversely, A normal with eigenvalues on the unit circle $\Rightarrow A^{*} A=U \bar{\Lambda} U^{*} U \Lambda U^{*}=I \Rightarrow A$ is unitary.
6. (a) If N is nilpotent then $N^{k}=O$ for some $k>0$. Let λ be an eigenvalue of N with corresponding eigenvector x. Then $N^{2} x=\lambda^{2} x, N^{3} x=\lambda^{3} x, \ldots, N^{k} x=\lambda^{k} x=0$. Hence $\lambda=0$ since $x \neq 0$.
(b) Consider the generic 4×4 strictly upper triangular matrix $T=\left[\begin{array}{cccc}0 & \times & \times & \times \\ 0 & 0 & \times & \times \\ 0 & 0 & 0 & \times \\ 0 & 0 & 0 & 0\end{array}\right]$, where \times denotes any entry that is not necessarily zero. Then,

$$
T^{2}=\left[\begin{array}{cccc}
0 & 0 & \times & \times \\
0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad T^{3}=\left[\begin{array}{cccc}
0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right], \quad T^{4}=O
$$

In general, powering T causes the nonzero superdiagonals to move a diagonal at a time towards the top right-hand corner until there is none left. If T is $n \times n$ then necessarily $T^{n}=O$.
(c) Let $N=U T U^{*}$ be the Schur decomposition of N. If all eigenvalues of N are zero then T is strictly upper triangular and therefore nilpotent. Since $N^{k}=U T^{k} U^{*}$ it follows that if T is nilpotent so is N.
7. When A is normal the spectral theorem says that there exist a unitary matrix $U=$ $\left[\begin{array}{lll}u_{1} & \ldots & u_{n}\end{array}\right]$ and a diagonal matrix $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that

$$
A=U \Lambda U^{*}=\left[\begin{array}{lll}
\lambda_{1} u_{1} & \ldots & \lambda_{n} u_{n}
\end{array}\right]\left[\begin{array}{c}
u_{1}^{*} \\
\vdots \\
u_{n}^{*}
\end{array}\right]=\sum_{i=1}^{n} \lambda_{i} u_{i} u_{i}^{*}
$$

A has two eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=3$ with corresponding eigenvectors $x_{1}=(1 / \sqrt{2})\left[\begin{array}{cc}-1 & 1\end{array}\right]^{T}$ and $x_{2}=(1 / \sqrt{2})\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$. Therefore

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\left[\begin{array}{ll}
-1 & 1
\end{array}\right]+\frac{3}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right]
$$

8. Let T be a normal upper triangular matrix. That T is diagonal is seen by equating the entries of $T^{*} T$ and $T T^{*}$ as follows.
$e_{1}^{T}\left(T^{*} T\right) e_{1}=e_{1}^{T} T T^{*} e_{1} \Leftrightarrow t_{11} \bar{t}_{11}=t_{11} \bar{t}_{11}+\sum_{j=2}^{n} t_{1 j} \bar{t}_{1 j}$ which implies $0=\sum_{j=2}^{n}\left|t_{1 j}\right|^{2}$, i.e., $t_{1 j}=0$ for $j=2, \ldots, n$. In a similar way we show that $e_{2}^{T}\left(T^{*} T\right) e_{2}=e_{2}^{T} T T^{*} e_{2}$ implies that $t_{2 j}=0$ for $j=3, \ldots, n$. Arguing for each diagonal entry in turn, we conclude that $t_{i j}=0$, $j>i, i=1, \ldots, n$. Since T is upper triangular we have shown that T is diagonal.
9. (a) 2 Jordan blocks so 2 linearly independent eigenvectors. (b) 3 linearly independent eigenvectors. (c) 4 linearly independent eigenvectors.
10.

(a) Symmetric matrix so diagonalizable.
(b) 2×2 Jordan block so not diagonalizable.
(c) 2 distinct eigenvalues so diagonalizable.
(d) $\lambda=1$ with multiplicity 2 and only one eigenvector so not diagonalizable.
11. (a)
$\left.(i)\left[\begin{array}{lll}2 & & \\ & 2 & \\ & & 2\end{array}\right],(i i)\left[\begin{array}{lll}2 & 1 & \\ & 2 & \\ & & 2\end{array}\right],(i i i)\left[\begin{array}{lll}2 & 1 & \\ & 2 & \\ \\ & & 2\end{array}\right], \begin{array}{lll} \\ & & \\ & & \end{array}\right],(i v)\left[\begin{array}{llll}2 & 1 & & \\ & 2 & 1 & \\ & & 2 & \\ & & & 2\end{array}\right],(v)\left[\begin{array}{llll}2 & 1 & & \\ & 2 & 1 & \\ & & 2 & 1 \\ & & & 2\end{array}\right]$.
(b) (i): geometric multiplicity $4,(i i)$: geometric multiplicity $3,(i i i)$: geometric multiplicity 2 , (iv): geometric multiplicity $2,(v)$: geometric multiplicity 1.
(c)
(i) $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right], \quad($ ii $)\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right], \quad($ iii $)\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right], \quad($ iv $)\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right], \quad(v)\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(d) The minimal polynomials are $(i) q(\lambda)=\lambda-2$, (ii) $q(\lambda)=(\lambda-2)^{2},($ iii $) q(\lambda)=(\lambda-2)^{2}$, (iv) $q(\lambda)=(\lambda-2)^{3},(v) q(\lambda)=(\lambda-2)^{4}$. Note that the Jordan forms in (ii) and (iii) have the same minimal polynomial.
12. $\lambda=3$ is an eigenvalue of algebraic multiplicity 3 and $\operatorname{rank}(A-3 I)=1$ so the eigenvalue 3 has two eigenvectors associated with it: these are solution of $(A-3 I) x=0$. We find that $x_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $x_{2}=\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right]$ are eigenvectors (and are linearly independent). To find the generalized eigenvector associated with $\lambda=3$ solve $(A-3 I) v=x_{1}$ to get $v=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Now let $X=\left[\begin{array}{lll}x_{1} & v & x_{2}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & -2\end{array}\right]$. Check that $X^{-1} A X=\left[\begin{array}{ccc}3 & 1 & \\ & 3 & \\ & & 3\end{array}\right]$.
13. The characteristic polynomial of A is $p(\lambda)=\lambda^{2}-3 \lambda+2$ and $p(A)=A^{2}-3 A+2 I=O$. Thus $A^{2}=3 A-2 I, A^{3}=A\left(A^{2}\right)=3 A^{2}-2 A=3(3 A-2 I)-2 A=7 A-6 I, A^{4}=7 A^{2}-6 A=15 A-14 I$.
14. Let $p(\lambda)=a_{0}+a_{1} \lambda+\cdots+a_{n-1} \lambda^{n-1}+\lambda^{n}$ be the characteristic polynomial of A with $a_{0} \neq 0$ since A is nonsingular. From $p(A)=O$ we obtain $A^{-1} p(A)=a_{0} A^{-1}+a_{1} I+\cdots+a_{n-1} A^{n-2}+$ $A^{n-1}=O$. Hence, $A^{-1}=\left(-1 / a_{0}\right)\left(a_{1} I+\cdots+a_{n-1} A^{n-2}+A^{n-1}\right)$.
15. By polynomial long division any such p can be written $p=q \psi+r$, where the degree of the remainder r is less than that of q. But $O=p(A)=q(A) \psi(A)+r(A)=r(A)$, and this contradicts the minimality of the degree of q unless $r=0$. Hence $r=0$ and q divides p.
16. Let $B=I-\frac{1}{3} A$. From $q(A)=O$ we obtain $5 I+9 B^{2}-15 B=O$. Premultiplying by B^{-1} and rearranging gives $B^{-1}=(3 A+6 I) / 5$, as required.
17. Note that $\left(u v^{*}\right) u=\left(v^{*} u\right) u$ so $\lambda=v^{*} u$ is an eigenvalue of $u v^{*}$. Let v_{2}, \ldots, v_{n} be $n-1$ linearly independent vectors such that $v^{*} v_{i}=0, i=2, \ldots, n$. Then $\left(u v^{*}\right) v_{i}=0$ so $\lambda=0$ is an eigenvalue of multiplicity $n-1$. We deduce that the characteristic polynomial is $p(\lambda)=\lambda^{n-1}\left(\lambda-v^{*} u\right)$ and the minimal polynomial is $q(\lambda)=\lambda\left(\lambda-v^{*} u\right)$. As a check, we have $q\left(u v^{*}\right)=u v^{*}\left(u v^{*}-\left(v^{*} u\right) I\right)=$ $v^{*} u\left(u v^{*}-u v^{*}\right)=O$.
18. It is easy to see that for scalars x and $y, p(x)-p(y)=q(x, y)(x-y)$ for some polynomial q of two variables. We can substitute $t I$ for x and A for y to obtain

$$
\begin{equation*}
p(t) I-p(A)=q(t I, A)(t I-A) \tag{1}
\end{equation*}
$$

If $p(A)=O$ then we have $p(t)(t I-A)^{-1}=q(t I, A)$, so that $p(t)(t I-A)^{-1}$ is a polynomial in t. Conversely, if $p(t)(t I-A)^{-1}$ is a polynomial in t then from (1) it follows that $p(A)(t I-A)^{-1}=$ $p(t)(t I-A)^{-1}-q(t I, A)$ is a polynomial. Since $p(A)$ is a constant this implies that $p(A)=O$.

To obtain the Cayley-Hamilton theorem set $p(t)=\operatorname{det}(t I-A)$. From the formula $B^{-1}=$ $\operatorname{adj}(B) / \operatorname{det}(B)$, where the adjugate adj is the transpose of the matrix of cofactors, we have $p(t)(t I-A)^{-1}=\operatorname{adj}(t I-A)$ is a polynomial in t, so $p(A)=O$ by the first part.
19.
(a) $A^{k} X=X B^{k}$ clearly holds for $k=1$. Assume that $A^{k} X=X B^{k}$. Then $A^{k+1} X=A\left(A^{k} X\right)=$ $A X B^{k}=X B B^{k}=X B^{k+1}$.
(b) From (a) it follows that $p(A) X=X p(B)$ for any polynomial $p(t)$. Choose $p(t)$ to be the characteristic polynomial of A. By the Cayley-Hamilton theorem, $p(A)=O$ and therefore $p(A) X=O=X p(B)$. Since $p(B)=\left(B-\lambda_{1} I\right) \cdots\left(B-\lambda_{n} I\right)$, where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A, the matrix $p(B)$ is nonsingular and $p(B) X=O$ has only the solution $X=O$.

Solution to Example 5 from the handout:
$\underline{\lambda=1}: \operatorname{dim}(\operatorname{null}(A-I))=n-\operatorname{rank}(A-I)=14-11=3$ so there are 3 Jordan blocks with eigenvalue $\lambda=1$. Also since $\operatorname{rank}(A-I)^{3}=\operatorname{rank}(A-I)^{4}$, the index of $\lambda=1$ is 3 and therefore the size of the largest Jordan block with eigenvalue $\lambda=1$ is 3 . The formula in (4) (see handout) gives
number of blocks of size 1: $14+10-2 \times 11=2$.
number of blocks of size $2: 11+9-2 \times 10=0$.
number of blocks of size 3 : $10+9-2 \times 9=1$.
Hence $\lambda=1$ has algebraic multiplicity $2 \times 1+1 \times 3=5$.
$\underline{\lambda=2}: \operatorname{dim}(\operatorname{null}(A-2 I))=n-\operatorname{rank}(A-2 I)=14-12=2$ so there are 2 Jordan blocks with eigenvalue $\lambda=2$. Also since $\operatorname{rank}(A-I)^{2}=\operatorname{rank}(A-I)^{3}$, the index of $\lambda=2$ is 2 and therefore the size of the largest Jordan block with eigenvalue $\lambda=2$ is 2 . The formula in (4) gives
number of blocks of size 1: $14+10-2 \times 12=0$.
number of blocks of size 2 : $12+10-2 \times 10=2$.
Hence $\lambda=2$ has algebraic multiplicity $2 \times 2=4$.
$\underline{\lambda=3}: \operatorname{dim}(\operatorname{null}(A-I))=n-\operatorname{rank}(A-3 I)=14-12=2$ so there are 3 Jordan blocks with eigenvalue $\lambda=3$. Also since $\operatorname{rank}(A-I)^{4}=\operatorname{rank}(A-I)^{5}$, the size of the largest Jordan block with eigenvalue $\lambda=3$ is 4 . The formula in (4) gives
number of blocks of size $1: 14+11-2 \times 12=1$.
number of blocks of size 2 : $12+10-2 \times 11=0$.
number of blocks of size $3: 11+9-2 \times 10=0$.
number of blocks of size 4 : $10+9-2 \times 9=1$.
Hence $\lambda=1$ has algebraic multiplicity $1 \times 1+1 \times 4=5$.
From this information we obtain

$$
J=\operatorname{diag}\left(\left[\begin{array}{ccc}
1 & 1 & \\
& 1 & 1 \\
& & 1
\end{array}\right],[1],[1],\left[\begin{array}{ll}
2 & 1 \\
& 2
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
& 2
\end{array}\right],\left[\begin{array}{cccc}
3 & 1 & & \\
& 3 & 1 & \\
& & 3 & 1 \\
& & & 3
\end{array}\right],[3]\right)
$$

What is the minimal polynomial of this matrix?

