MATH36001 Solutions: Theory of Eigensystems 2015

Note: the solution to Example 5 in the handout is added at the end of this document.

1. The characteristic polynomial of A is given by p(t) = det(tI1—A) = (t—XA1)(t—Xa) - -+ (t—=\,)
so that p(0) = (—1)"det(A) = (=1)" [T, A

One can show by induction that the coefficient of "~ in p(t) = det(t] — A) is — trace(A)
and that of p(t) = (t = A)(t — Xg) -+~ (t = A\y) Is — >0 | A

(A direct proof is obtained by using the Schur form A = UTU*, and noting that trace(A) =
trace((UT)U*) = trace(U*UT) = trace(T'), where we have used the relation trace(AB) =
trace( BA) proven in exercise 9 (ii) of the basics handout.)

Since the eigenvalues of A% are Af, A5, ... A% it follows that trace(A*) = Y7 | AF.

) n’

2. (a) Let x = Zle o;x; € S. Then Az = Zle o;\x; € S so that S is an invariant subspace
under A.

(b) We have Ae; = 2e; € S and Aes = €1 + 2e5 € S so S is an invariant subspace under A.
Note that e, is not an eigenvector.

3. Let Uy =[uy ... wugl,e;is the ith column of the identity matrix and T} denotes the k x k
leading principal submatrix of T'. Rewrite A = UTU* as AU = UT so that
Ty
AUk:AU[el €k]:UT[61 ek]—U[O}—Uka

and by Theorem 1, Uy, is invariant under A.

4. (a) If A*A = AA* then B*B = U*A*UU*AU = U*A*AU = U*AA*U = U*AUU*A*U =
BB* so B is normal. If A* = A then B* = U*A*U = U*AU = B so B is Hermitian.

(b) Take S = “) _11] and A = {g (2)} which is Hermitian and therefore normal. Then
STLAS = B _2] is neither Hermitian nor normal.

5. Hermitian, skew-Hermitian and unitary matrices are normal. If A is normal, there exist a
unitary matrix U and a diagonal matrix A = diag(Ay, ..., A,) such that A = UAU*.

(a) A Hermitian = A = UAU* = (UAU*)* = UAU* = A = A, ie., A € R™". Conversely,
A normal with real eigenvalues = A* = (UAU*)* = UAU* = A so A is Hermitian.

(b) Proof similar to (a). Here, A = —A, i.e., A € iR™",

(c) A unitary = [ = A*A = UAU*UAU* = UAAU* = AA =1, ie., [N|=1,i=1,...,n.
Conversely, A normal with eigenvalues on the unit circle = A*A = UAU*UAU* = 1 = A is
unitary.
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6. (a) If N is nilpotent then N* = O for some k > 0. Let A be an eigenvalue of N with
corresponding eigenvector . Then N%x = N2z, N3z = Xz,..., N*z = M2 = 0. Hence A =0
since x # 0.

0 x x X
(b) Consider the generic 4 x 4 strictly upper triangular matrix 7' = 8 8 S z , where
0 0 0 O
x denotes any entry that is not necessarily zero. Then,
T° = T° = T =0.

o O OO
o O OO
S O O X
o O X X
o O OO
o O O O
o O OO
o O O X

In general, powering 1" causes the nonzero superdiagonals to move a diagonal at a time towards
the top right-hand corner until there is none left. If T is n x n then necessarily 7" = O.

(¢) Let N = UTU* be the Schur decomposition of N. If all eigenvalues of N are zero then
T is strictly upper triangular and therefore nilpotent. Since N¥ = UT*U* it follows that if T
is nilpotent so is V.

7. When A is normal the spectral theorem says that there exist a unitary matrix U =

[up ... wu,]and a diagonal matrix A = diag(\, ..., A\,) such that
uj n
A=UAU" = [Mur ... Mup] | : :Z/\,-uiu;‘.
u* i=1

n

A has two eigenvalues A\; = 1 and A\, = 3 with corresponding eigenvectors ; = (1/v/2)[-1 1]"
and z, = (1/v/2)[1 1]". Therefore

<[44 e

8. Let T be a normal upper triangular matrix. That 7' is diagonal is seen by equating the
entries of T*T and TT* as follows.
GI{(T*T)el = efTT*el 54 tllfll = tllfll + 2?22 tljflj which implies 0= 2?22 |t1j|2, i.e.,

t;; = 0 for j = 2,...,n. In a similar way we show that el (T*T)ey = el TT*e,y implies that
to; = 0 for j = 3,...,n. Arguing for each diagonal entry in turn, we conclude that ¢;; = 0,
j>1,i=1,...,n. Since T is upper triangular we have shown that 7" is diagonal.

9. (a) 2 Jordan blocks so 2 linearly independent eigenvectors. (b) 3 linearly independent
eigenvectors. (c) 4 linearly independent eigenvectors.
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10.
(a) Symmetric matrix so diagonalizable.
(b) 2 x 2 Jordan block so not diagonalizable.
(c) 2 distinct eigenvalues so diagonalizable.
(d) A =1 with multiplicity 2 and only one eigenvector so not diagonalizable.
11. (a)
2 2 1 2 1
. 2 . : 2 1 2
Q 5 , (i) (iid) 9 1| (@) 5 , (V)
2 2 2
(b) (i): geometric multiplicity 4, (i7): geometric multiplicity 3, (7i7): geometric multiplic-
ity 2, (iv): geometric multiplicity 2, (v): geometric multiplicity 1.

(c)

, (@) (i) , () (V)

o O O
o O = O
o= O O
— o O O
o O O
o= O O
_— o O O
o O O =
o = O O
o O O
— O O O
o O O =

(d) The minimal polynomials are (i) ¢(A\) = A—2, (i) g(\) = (A —2)?, (i74) ()\) = (A—2)2,
(iv) q(A) = (A —2), (v) ¢(A\) = (A — 2)*. Note that the Jordan forms in (ii) and (z74) have the

same minimal polynomial.

12. X\ = 3 is an eigenvalue of algebraic multiplicity 3 and rank(A — 37) = 1 so the eigenvalue
3 has two eigenvectors associated with it: these are solution of (A — 3/)z = 0. We find that

1 0
zy = | 0| and 2o = | 1 | are eigenvectors (and are linearly independent). To find the
0 -2
0
generalized eigenvector associated with A = 3 solve (A —3I)v = z; to get v = | 0 |. Now let
1
1 0 0 3 1
X=[zr; v x2]=|0 0 1 |. Check that X" 'AX = 3
0 1 -2 3

13. The characteristic polynomial of A is p(A) = A>—3A+2 and p(A) = A*—3A+2I = O. Thus
A? = 3A-2I, A3 = A(A?) = 34224 = 3(3A—21)—2A = TA—61, A* = TA2—6A = 15A—141.

N —
DN —
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14. Let p(A\) = ap+a A+ -+ -+ a, 1 A" "1 + A" be the characteristic polynomial of A with ay # 0
since A is nonsingular. From p(A) = O we obtain A™'p(A) = apA™ ' + a1l + -+ a, A" +
A1 = 0. Hence, A~ = (—1/ag)(ar ] + -+ + a1 A" 2+ A" 1),

15. By polynomial long division any such p can be written p = ¢q ¢ + r, where the degree of
the remainder r is less than that of ¢. But O = p(A) = q(A)Y(A) + r(A) = r(A), and this

contradicts the minimality of the degree of ¢ unless r = 0. Hence r = 0 and ¢ divides p.

16. Let B=1— %A. From q(A) = O we obtain 51 + 9B% — 15B = O. Premultiplying by B~!
and rearranging gives B~' = (34 + 61)/5, as required.

17. Note that (vv*)u = (v*u)u so A = v*u is an eigenvalue of uv*. Let vy, ..., v, be n—1 linearly
independent vectors such that v*v; = 0,¢ = 2,...,n. Then (uv*)v; = 0 so A = 0 is an eigenvalue
of multiplicity n— 1. We deduce that the characteristic polynomial is p(\) = A"~}(A —v*u) and
the minimal polynomial is ¢(A) = A(A—v*u). As a check, we have ¢(uv*) = wv*(uwv* — (v*u)l) =
viu(uv* —uv*) = O.

18. It is easy to see that for scalars  and y, p(z) — p(y) = q(z,y)(xz — y) for some polynomial
q of two variables. We can substitute ¢t for x and A for y to obtain

PO — p(A) = g(t1, A)(tT — A). (1)

If p(A) = O then we have p(t)(t] — A)~' = ¢(tI, A), so that p(t)(tI — A)~! is a polynomial in .
Conversely, if p(t)(tI — A)~! is a polynomial in ¢ then from (1) it follows that p(A)(t] — A)~! =
p(t)(tI — A)~' —q(tI, A) is a polynomial. Since p(A) is a constant this implies that p(A) = O.

To obtain the Cayley-Hamilton theorem set p(¢) = det(t/ — A). From the formula B~! =
adj(B)/ det(B), where the adjugate adj is the transpose of the matrix of cofactors, we have
p(t)(tI — A)~' = adj(t] — A) is a polynomial in ¢, so p(A) = O by the first part.

19.
(a) A*X = X B* clearly holds for k = 1. Assume that A*X = X B*. Then AF11X = A(A*X) =
AXB* = XBB* = X B+,

(b) From (a) it follows that p(A)X = Xp(B) for any polynomial p(t). Choose p(t) to be the
characteristic polynomial of A. By the Cayley—Hamilton theorem, p(A) = O and therefore
p(A)X = O = Xp(B). Since p(B) = (B — M\I)---(B — A1), where \y,...,\, are the
eigenvalues of A, the matrix p(B) is nonsingular and p(B)X = O has only the solution X = O.
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Solution to Example 5 from the handout:

A=1: dim(null(A — I)) = n —rank(A — I) = 14 — 11 = 3 so there are 3 Jordan blocks with
eigenvalue A = 1. Also since rank(A — I)? = rank(A — I)*, the index of A = 1 is 3 and therefore
the size of the largest Jordan block with eigenvalue A = 1 is 3. The formula in (4) (see handout)
gives

number of blocks of size 1: 14 +10 — 2 x 11 = 2.
number of blocks of size 2: 11 +9 — 2 x 10 = 0.
number of blocks of size 3: 104+9 —2 x 9 = 1.

Hence A = 1 has algebraic multiplicity 2 x 1 4+ 1 x 3 = 5.

A = 2: dim(null(A —27)) = n —rank(A — 2]) = 14 — 12 = 2 so there are 2 Jordan blocks with
eigenvalue A = 2. Also since rank(A — I)? = rank(A — I)?, the index of A = 2 is 2 and therefore
the size of the largest Jordan block with eigenvalue A = 2 is 2. The formula in (4) gives

number of blocks of size 1: 14 + 10 — 2 x 12 = 0.
number of blocks of size 2: 12 4+ 10 — 2 x 10 = 2.

Hence A = 2 has algebraic multiplicity 2 x 2 = 4.

A =3: dim(null(A — I)) = n —rank(A — 3/) = 14 — 12 = 2 so there are 3 Jordan blocks with
eigenvalue A = 3. Also since rank(A — I)* = rank(A — I)5, the size of the largest Jordan block
with eigenvalue A = 3 is 4. The formula in (4) gives

number of blocks of size 1: 14+ 11 -2 x 12 = 1.
number of blocks of size 2: 12410 -2 x 11 = 0.
number of blocks of size 3: 11 +9 — 2 x 10 = 0.
number of blocks of size 4: 104+9 -2 x 9 = 1.

Hence A = 1 has algebraic multiplicity 1 x 1 4+ 1 x 4 = 5.
From this information we obtain

What is the minimal polynomial of this matrix?



