
MATH36001 Solutions: Theory of Eigensystems 2015

Note: the solution to Example 5 in the handout is added at the end of this document.

1. The characteristic polynomial of A is given by p(t) = det(tI−A) = (t−λ1)(t−λ2) · · · (t−λn)
so that p(0) = (−1)n det(A) = (−1)n

∏n
i=1 λi.

One can show by induction that the coefficient of tn−1 in p(t) = det(tI − A) is − trace(A)
and that of p(t) = (t− λ1)(t− λ2) · · · (t− λn) is −

∑n
i=1 λi.

(A direct proof is obtained by using the Schur form A = UTU∗, and noting that trace(A) =
trace((UT )U∗) = trace(U∗UT ) = trace(T ), where we have used the relation trace(AB) =
trace(BA) proven in exercise 9 (ii) of the basics handout.)

Since the eigenvalues of Ak are λk1, λ
k
2, . . . , λ

k
n, it follows that trace(Ak) =

∑n
i=1 λ

k
i .

2. (a) Let x =
∑k

i=1 αixi ∈ S. Then Ax =
∑k

i=1 αiλixi ∈ S so that S is an invariant subspace
under A.

(b) We have Ae1 = 2e1 ∈ S and Ae2 = e1 + 2e2 ∈ S so S is an invariant subspace under A.
Note that e2 is not an eigenvector.

3. Let Uk = [u1 . . . uk ], ei is the ith column of the identity matrix and Tk denotes the k×k
leading principal submatrix of T . Rewrite A = UTU∗ as AU = UT so that

AUk = AU [ e1 . . . ek ] = UT [ e1 . . . ek ] = U

[
Tk
O

]
= UkTk

and by Theorem 1, Uk is invariant under A.

4. (a) If A∗A = AA∗ then B∗B = U∗A∗UU∗AU = U∗A∗AU = U∗AA∗U = U∗AUU∗A∗U =
BB∗ so B is normal. If A∗ = A then B∗ = U∗A∗U = U∗AU = B so B is Hermitian.

(b) Take S =

[
1 −1
0 1

]
and A =

[
0 2
2 0

]
which is Hermitian and therefore normal. Then

S−1AS =

[
2 0
2 −2

]
is neither Hermitian nor normal.

5. Hermitian, skew-Hermitian and unitary matrices are normal. If A is normal, there exist a
unitary matrix U and a diagonal matrix Λ = diag(λ1, . . . , λn) such that A = UΛU∗.

(a) A Hermitian ⇒ A = UΛU∗ = (UΛU∗)∗ = UΛU∗ ⇒ Λ = Λ, i.e., Λ ∈ Rn×n. Conversely,
A normal with real eigenvalues ⇒ A∗ = (UΛU∗)∗ = UΛU∗ = A so A is Hermitian.

(b) Proof similar to (a). Here, Λ = −Λ, i.e., Λ ∈ iRn×n.
(c) A unitary ⇒ I = A∗A = UΛU∗UΛU∗ = UΛΛU∗ ⇒ ΛΛ = I, i.e., |λi| = 1, i = 1, . . . , n.

Conversely, A normal with eigenvalues on the unit circle ⇒ A∗A = UΛU∗UΛU∗ = I ⇒ A is
unitary.
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6. (a) If N is nilpotent then Nk = O for some k > 0. Let λ be an eigenvalue of N with
corresponding eigenvector x. Then N2x = λ2x, N3x = λ3x, . . . , Nkx = λkx = 0. Hence λ = 0
since x 6= 0.

(b) Consider the generic 4×4 strictly upper triangular matrix T =


0 × × ×
0 0 × ×
0 0 0 ×
0 0 0 0

, where

× denotes any entry that is not necessarily zero. Then,

T 2 =


0 0 × ×
0 0 0 ×
0 0 0 0
0 0 0 0

 , T 3 =


0 0 0 ×
0 0 0 0
0 0 0 0
0 0 0 0

 , T 4 = O.

In general, powering T causes the nonzero superdiagonals to move a diagonal at a time towards
the top right-hand corner until there is none left. If T is n× n then necessarily T n = O.

(c) Let N = UTU∗ be the Schur decomposition of N . If all eigenvalues of N are zero then
T is strictly upper triangular and therefore nilpotent. Since Nk = UT kU∗ it follows that if T
is nilpotent so is N .

7. When A is normal the spectral theorem says that there exist a unitary matrix U =
[u1 . . . un ] and a diagonal matrix Λ = diag(λ1, . . . , λn) such that

A = UΛU∗ = [λ1u1 . . . λnun ]

 u∗1...
u∗n

 =
n∑

i=1

λiuiu
∗
i .

A has two eigenvalues λ1 = 1 and λ2 = 3 with corresponding eigenvectors x1 = (1/
√

2) [−1 1 ]T

and x2 = (1/
√

2) [ 1 1 ]T . Therefore

A =

[
2 1
1 2

]
=

1

2

[
−1
1

]
[−1 1 ] +

3

2

[
1
1

]
[ 1 1 ] .

8. Let T be a normal upper triangular matrix. That T is diagonal is seen by equating the
entries of T ∗T and TT ∗ as follows.

eT1 (T ∗T )e1 = eT1 TT
∗e1 ⇔ t11t11 = t11t11 +

∑n
j=2 t1jt1j which implies 0 =

∑n
j=2 |t1j|2, i.e.,

t1j = 0 for j = 2, . . . , n. In a similar way we show that eT2 (T ∗T )e2 = eT2 TT
∗e2 implies that

t2j = 0 for j = 3, . . . , n. Arguing for each diagonal entry in turn, we conclude that tij = 0,
j > i, i = 1, . . . , n. Since T is upper triangular we have shown that T is diagonal.

9. (a) 2 Jordan blocks so 2 linearly independent eigenvectors. (b) 3 linearly independent
eigenvectors. (c) 4 linearly independent eigenvectors.
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10.
(a) Symmetric matrix so diagonalizable.
(b) 2× 2 Jordan block so not diagonalizable.
(c) 2 distinct eigenvalues so diagonalizable.
(d) λ = 1 with multiplicity 2 and only one eigenvector so not diagonalizable.

11. (a)

(i)


2

2
2

2

 , (ii)


2 1

2
2

2

 , (iii)


2 1

2
2 1

2

 , (iv)


2 1

2 1
2

2

 , (v)


2 1

2 1
2 1

2

 .
(b) (i): geometric multiplicity 4, (ii): geometric multiplicity 3, (iii): geometric multiplic-

ity 2, (iv): geometric multiplicity 2, (v): geometric multiplicity 1.
(c)

(i)


1
0
0
0




0
1
0
0




0
0
1
0




0
0
0
1

 , (ii)


1
0
0
0




0
0
1
0




0
0
0
1

 , (iii)


1
0
0
0




0
0
1
0

 , (iv)


1
0
0
0




0
0
0
1

 , (v)


1
0
0
0

 .
(d) The minimal polynomials are (i) q(λ) = λ−2, (ii) q(λ) = (λ−2)2, (iii) q(λ) = (λ−2)2,

(iv) q(λ) = (λ− 2)3, (v) q(λ) = (λ− 2)4. Note that the Jordan forms in (ii) and (iii) have the
same minimal polynomial.

12. λ = 3 is an eigenvalue of algebraic multiplicity 3 and rank(A − 3I) = 1 so the eigenvalue
3 has two eigenvectors associated with it: these are solution of (A − 3I)x = 0. We find that

x1 =

 1
0
0

 and x2 =

 0
1
−2

 are eigenvectors (and are linearly independent). To find the

generalized eigenvector associated with λ = 3 solve (A − 3I)v = x1 to get v =

 0
0
1

. Now let

X = [x1 v x2 ] =

 1 0 0
0 0 1
0 1 −2

. Check that X−1AX =

 3 1
3

3

.

13. The characteristic polynomial of A is p(λ) = λ2−3λ+2 and p(A) = A2−3A+2I = O. Thus
A2 = 3A−2I, A3 = A(A2) = 3A2−2A = 3(3A−2I)−2A = 7A−6I, A4 = 7A2−6A = 15A−14I.
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14. Let p(λ) = a0 +a1λ+ · · ·+an−1λ
n−1 +λn be the characteristic polynomial of A with a0 6= 0

since A is nonsingular. From p(A) = O we obtain A−1p(A) = a0A
−1 + a1I + · · ·+ an−1A

n−2 +
An−1 = O. Hence, A−1 = (−1/a0)(a1I + · · ·+ an−1A

n−2 + An−1).

15. By polynomial long division any such p can be written p = q ψ + r, where the degree of
the remainder r is less than that of q. But O = p(A) = q(A)ψ(A) + r(A) = r(A), and this
contradicts the minimality of the degree of q unless r = 0. Hence r = 0 and q divides p.

16. Let B = I − 1
3
A. From q(A) = O we obtain 5I + 9B2 − 15B = O. Premultiplying by B−1

and rearranging gives B−1 = (3A+ 6I)/5, as required.

17. Note that (uv∗)u = (v∗u)u so λ = v∗u is an eigenvalue of uv∗. Let v2, . . . , vn be n−1 linearly
independent vectors such that v∗vi = 0, i = 2, . . . , n. Then (uv∗)vi = 0 so λ = 0 is an eigenvalue
of multiplicity n−1. We deduce that the characteristic polynomial is p(λ) = λn−1(λ−v∗u) and
the minimal polynomial is q(λ) = λ(λ−v∗u). As a check, we have q(uv∗) = uv∗(uv∗−(v∗u)I) =
v∗u(uv∗ − uv∗) = O.

18. It is easy to see that for scalars x and y, p(x)− p(y) = q(x, y)(x− y) for some polynomial
q of two variables. We can substitute tI for x and A for y to obtain

p(t)I − p(A) = q(tI, A)(tI − A). (1)

If p(A) = O then we have p(t)(tI−A)−1 = q(tI, A), so that p(t)(tI−A)−1 is a polynomial in t.
Conversely, if p(t)(tI−A)−1 is a polynomial in t then from (1) it follows that p(A)(tI−A)−1 =
p(t)(tI −A)−1 − q(tI, A) is a polynomial. Since p(A) is a constant this implies that p(A) = O.

To obtain the Cayley–Hamilton theorem set p(t) = det(tI − A). From the formula B−1 =
adj(B)/ det(B), where the adjugate adj is the transpose of the matrix of cofactors, we have
p(t)(tI − A)−1 = adj(tI − A) is a polynomial in t, so p(A) = O by the first part.

19.

(a) AkX = XBk clearly holds for k = 1. Assume that AkX = XBk. Then Ak+1X = A(AkX) =
AXBk = XBBk = XBk+1.

(b) From (a) it follows that p(A)X = Xp(B) for any polynomial p(t). Choose p(t) to be the
characteristic polynomial of A. By the Cayley–Hamilton theorem, p(A) = O and therefore
p(A)X = O = Xp(B). Since p(B) = (B − λ1I) · · · (B − λnI), where λ1, . . . , λn are the
eigenvalues of A, the matrix p(B) is nonsingular and p(B)X = O has only the solution X = O.



MATH36001: Solutions: Theory of Eigensystems Page 5

Solution to Example 5 from the handout:

λ = 1: dim(null(A − I)) = n − rank(A − I) = 14 − 11 = 3 so there are 3 Jordan blocks with
eigenvalue λ = 1. Also since rank(A− I)3 = rank(A− I)4, the index of λ = 1 is 3 and therefore
the size of the largest Jordan block with eigenvalue λ = 1 is 3. The formula in (4) (see handout)
gives

number of blocks of size 1: 14 + 10− 2× 11 = 2.

number of blocks of size 2: 11 + 9− 2× 10 = 0.

number of blocks of size 3: 10 + 9− 2× 9 = 1.

Hence λ = 1 has algebraic multiplicity 2× 1 + 1× 3 = 5.

λ = 2: dim(null(A− 2I)) = n− rank(A− 2I) = 14− 12 = 2 so there are 2 Jordan blocks with
eigenvalue λ = 2. Also since rank(A− I)2 = rank(A− I)3, the index of λ = 2 is 2 and therefore
the size of the largest Jordan block with eigenvalue λ = 2 is 2. The formula in (4) gives

number of blocks of size 1: 14 + 10− 2× 12 = 0.

number of blocks of size 2: 12 + 10− 2× 10 = 2.

Hence λ = 2 has algebraic multiplicity 2× 2 = 4.

λ = 3: dim(null(A− I)) = n− rank(A− 3I) = 14− 12 = 2 so there are 3 Jordan blocks with
eigenvalue λ = 3. Also since rank(A− I)4 = rank(A− I)5, the size of the largest Jordan block
with eigenvalue λ = 3 is 4. The formula in (4) gives

number of blocks of size 1: 14 + 11− 2× 12 = 1.

number of blocks of size 2: 12 + 10− 2× 11 = 0.

number of blocks of size 3: 11 + 9− 2× 10 = 0.

number of blocks of size 4: 10 + 9− 2× 9 = 1.

Hence λ = 1 has algebraic multiplicity 1× 1 + 1× 4 = 5.
From this information we obtain

J = diag


 1 1

1 1
1

 , [ 1 ] , [ 1 ] ,

[
2 1

2

]
,

[
2 1

2

]
,


3 1

3 1
3 1

3

 , [ 3 ]

 .

What is the minimal polynomial of this matrix?


