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1. (i)
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2. A =
∑n−1

j=1 eje
T
j+1.

3. (i)
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0 1 0
0 0 1

 = I.

Since AAT = I we have A−1 = AT =


√
3
2

0 −1
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0
√
3
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.

(ii) Let Q1, Q2 be orthogonal. Then (Q1Q2)(Q1Q2)
T = Q1Q2Q

T
2Q

T
1 = Q1Q

T
1 = I.

(iii) 1 = det I = det(QTQ) = detQT detQ = (detQ)2 so det(Q) = ±1.

1 = det I = det(U∗U) = detU∗ detU = detU detU so detU = eiθ.

4. (i) X = D − CA−1B and Y = A−BD−1C.
(ii) From the block LU factorization of

[
A
C
B
D

]
we deduce that

det
([

A
C
B
D

])
= det

([
I

CA−1
O
I

])
det
([

A
O

B
D−CA−1B

])
= det(A) det(D − CA−1B),

where we have used the fact that the determinant of a block-triangular matrix is the product of
determinants of the diagonal blocks, and that det(I) = 1. Likewise, the block UL factorization
of
[
A
C
B
D

]
leads to det

([
A
C
B
D

])
= det(D) det(A−BD−1C).

Setting A = I and D = I in (1) yields (2). With B = x and C = y∗ so that n = 1, (2) yields
det(I − xy∗) = det(1− y∗x) = 1− y∗x.
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5. (i)

(A+ uv∗)
(
A−1 − A−1uv∗A−1

1 + v∗A−1u

)
= I − uv∗A−1

1 + v∗A−1u
+ uv∗A−1 − uv∗A−1uv∗A−1

1 + v∗A−1u

= I − uv∗A−1

1 + v∗A−1u
(1 + v∗A−1u) + uv∗A−1

= I.

(ii) From Exercise (4), det(I + αeie
T
j ) = 1 + αeTj ei. Thus for i 6= j, I + αeie

T
j is always

nonsingular. When i = j, I + αeie
T
i is nonsingular as long as α 6= −1. In this case, the

Sherman–Morrison formula gives (I + αeie
T
j )−1 = I − α(1 + αeTj ei)

−1eie
T
j .

6. Suppose x1, . . . , xn are linearly dependent so that
∑n

i=1 αixi = 0 with not all constants
α1, . . . , αn equal to zero. Then for j = 1, . . . , n, x∗j

∑n
i=1 αixi = αjx

∗
jxj = 0 which implies that

αj = 0 since x∗jxj 6= 0.

7.

(i) Identity matrix.

(ii) Zero matrix.

(iii) xy∗ idempotent when y∗x = 1 and nilpotent when y∗x = 0.

(iv) AB = AABB = ABAB = (AB)2.

(v) Suppose A2 = A and A nonsingular. Then A−1(A2) = A−1A⇔ A = I.

(vi) A2 − I = (A− I)(A+ I). So A2 = I if and only if (A− I)(A+ I) = (A+ I)(A− I) = O.

(vii) (I − 2xx∗)(I − 2xx∗) = I − 4xx∗ + 4xx∗ = I.

(viii) I = (I −A)(I −A)−1 = (I −A)
∑k

j=0A
j =

∑k
j=0A

j −
∑k+1

j=1 A
j = I −Ak+1 ⇒ Ak+1 = O.

8. (i) If T = AB is a product of upper triangular matrices, then, accounting for the zero
subdiagonals of A and B,

tij =
n∑
k=1

aikbkj =

j∑
k=i

aikbkj, (1)

and the product is zero if j < i, as required. Transposing the equation T = AB gives T T =
BTAT , which implies the corresponding result for lower triangular matrices.

Setting i = j in (1) gives that tii = eTi ABei = aiibii.
(ii) det(A) =

∏n
j=1 ajj 6= 0 iff ajj 6= 0 for all j. Regarding the inverse, let T = A−1. Since

TA = I we have, equating (i, 1) elements,

0 =
n∑
k=1

tikak1 = ti1a11, i > 1.
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Since a11 6= 0 this implies t21 = · · · = tn1 = 0. For i > j = 2, we then have 0 = ti2a22, showing
that T is zero beneath the diagonal in the second column. ‘By induction’ T is upper triangular.

Using (i) with B = A−1 we have that 1 = eTj Iej = eTj ABej = ajjbjj ⇒ bjj = 1/ajj.

9.
(i) trace(αA+ βB) =

∑
αaii +

∑
βbii = α

∑
aii + β

∑
bii = α trace(A) + β trace(B).

(ii) Since (AB)ii =
∑n

k=1 aikbki,

trace(AB) =
n∑
i=1

n∑
k=1

aikbki =
n∑
i=1

n∑
k=1

bikaki = trace(BA).

(iii) 0 = S + ST ⇒ trace(S + ST ) = 2 trace(S) = 0⇒ trace(S) = 0.
Let A =

[
1
1

1
−1

]
. Then trace(A) = 0 but A is not skew-symmetric.


