MATH36001 Solutions: Background Material

1. (i)

$$
\left.b=\left[\begin{array}{ll}
1 & 2 \\
\frac{3}{5} & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{ll}
{[1} & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right]=\left[\begin{array}{c}
1+4 \\
3+8 \\
5+12
\end{array}\right]=\left[\begin{array}{c}
5 \\
11 \\
17
\end{array}\right] .
$$

(ii)

$$
\left[\begin{array}{l|l}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=1\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right]+2\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]=\left[\begin{array}{c}
5 \\
11 \\
17
\end{array}\right]
$$

2. $A=\sum_{j=1}^{n-1} e_{j} e_{j+1}^{T}$.
3. (i)

$$
A A^{T}=\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
-\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\
0 & 1 & 0 \\
\frac{1}{2} & 0 & \frac{\sqrt{3}}{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{3}{4}+\frac{1}{4} & 0 & -\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} \\
0 & 1 & 0 \\
-\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4} & 0 & \frac{1}{4}-\frac{3}{4}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I .
$$

Since $A A^{T}=I$ we have $A^{-1}=A^{T}=\left[\begin{array}{ccc}\frac{\sqrt{3}}{2} & 0 & -\frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{\sqrt{3}}{2}\end{array}\right]$.
(ii) Let Q_{1}, Q_{2} be orthogonal. Then $\left(Q_{1} Q_{2}\right)\left(Q_{1} Q_{2}\right)^{T}=Q_{1} Q_{2} Q_{2}^{T} Q_{1}^{T}=Q_{1} Q_{1}^{T}=I$.
(iii) $1=\operatorname{det} I=\operatorname{det}\left(Q^{T} Q\right)=\operatorname{det} Q^{T} \operatorname{det} Q=(\operatorname{det} Q)^{2}$ so $\operatorname{det}(Q)= \pm 1$.
$1=\operatorname{det} I=\operatorname{det}\left(U^{*} U\right)=\operatorname{det} U^{*} \operatorname{det} U=\overline{\operatorname{det} U} \operatorname{det} U$ so $\operatorname{det} U=e^{i \theta}$.
4. (i) $X=D-C A^{-1} B$ and $Y=A-B D^{-1} C$.
(ii) From the block LU factorization of $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ we deduce that

$$
\operatorname{det}\left(\left[\begin{array}{cc}
A & B \\
C & D
\end{array}\right]\right)=\operatorname{det}\left(\left[\begin{array}{cc}
I & O \\
C A^{-1} & I
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
A & B \\
O & D-C A^{-1} B
\end{array}\right]\right)=\operatorname{det}(A) \operatorname{det}\left(D-C A^{-1} B\right),
$$

where we have used the fact that the determinant of a block-triangular matrix is the product of determinants of the diagonal blocks, and that $\operatorname{det}(I)=1$. Likewise, the block UL factorization of $\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]$ leads to $\operatorname{det}\left(\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]\right)=\operatorname{det}(D) \operatorname{det}\left(A-B D^{-1} C\right)$.
Setting $A=I$ and $D=I$ in (1) yields (2). With $B=x$ and $C=y^{*}$ so that $n=1$, (2) yields $\operatorname{det}\left(I-x y^{*}\right)=\operatorname{det}\left(1-y^{*} x\right)=1-y^{*} x$.
5. (i)

$$
\begin{aligned}
\left(A+u v^{*}\right)\left(A^{-1}-\frac{A^{-1} u v^{*} A^{-1}}{1+v^{*} A^{-1} u}\right) & =I-\frac{u v^{*} A^{-1}}{1+v^{*} A^{-1} u}+u v^{*} A^{-1}-\frac{u v^{*} A^{-1} u v^{*} A^{-1}}{1+v^{*} A^{-1} u} \\
& =I-\frac{u v^{*} A^{-1}}{1+v^{*} A^{-1} u}\left(1+v^{*} A^{-1} u\right)+u v^{*} A^{-1} \\
& =I .
\end{aligned}
$$

(ii) From Exercise (4), $\operatorname{det}\left(I+\alpha e_{i} e_{j}^{T}\right)=1+\alpha e_{j}^{T} e_{i}$. Thus for $i \neq j, I+\alpha e_{i} e_{j}^{T}$ is always nonsingular. When $i=j, I+\alpha e_{i} e_{i}^{T}$ is nonsingular as long as $\alpha \neq-1$. In this case, the Sherman-Morrison formula gives $\left(I+\alpha e_{i} e_{j}^{T}\right)^{-1}=I-\alpha\left(1+\alpha e_{j}^{T} e_{i}\right)^{-1} e_{i} e_{j}^{T}$.
6. Suppose x_{1}, \ldots, x_{n} are linearly dependent so that $\sum_{i=1}^{n} \alpha_{i} x_{i}=0$ with not all constants $\alpha_{1}, \ldots, \alpha_{n}$ equal to zero. Then for $j=1, \ldots, n, x_{j}^{*} \sum_{i=1}^{n} \alpha_{i} x_{i}=\alpha_{j} x_{j}^{*} x_{j}=0$ which implies that $\alpha_{j}=0$ since $x_{j}^{*} x_{j} \neq 0$.
7.
(i) Identity matrix.
(ii) Zero matrix.
(iii) $x y^{*}$ idempotent when $y^{*} x=1$ and nilpotent when $y^{*} x=0$.
(iv) $A B=A A B B=A B A B=(A B)^{2}$.
(v) Suppose $A^{2}=A$ and A nonsingular. Then $A^{-1}\left(A^{2}\right)=A^{-1} A \Leftrightarrow A=I$.
(vi) $A^{2}-I=(A-I)(A+I)$. So $A^{2}=I$ if and only if $(A-I)(A+I)=(A+I)(A-I)=O$.
(vii) $\left(I-2 x x^{*}\right)\left(I-2 x x^{*}\right)=I-4 x x^{*}+4 x x^{*}=I$.
(viii) $I=(I-A)(I-A)^{-1}=(I-A) \sum_{j=0}^{k} A^{j}=\sum_{j=0}^{k} A^{j}-\sum_{j=1}^{k+1} A^{j}=I-A^{k+1} \Rightarrow A^{k+1}=O$.
8. (i) If $T=A B$ is a product of upper triangular matrices, then, accounting for the zero subdiagonals of A and B,

$$
\begin{equation*}
t_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=\sum_{k=i}^{j} a_{i k} b_{k j}, \tag{1}
\end{equation*}
$$

and the product is zero if $j<i$, as required. Transposing the equation $T=A B$ gives $T^{T}=$ $B^{T} A^{T}$, which implies the corresponding result for lower triangular matrices.

Setting $i=j$ in (1) gives that $t_{i i}=e_{i}^{T} A B e_{i}=a_{i i} b_{i i}$.
(ii) $\operatorname{det}(A)=\prod_{j=1}^{n} a_{j j} \neq 0$ iff $a_{j j} \neq 0$ for all j. Regarding the inverse, let $T=A^{-1}$. Since $T A=I$ we have, equating $(i, 1)$ elements,

$$
0=\sum_{k=1}^{n} t_{i k} a_{k 1}=t_{i 1} a_{11}, \quad i>1 .
$$

Since $a_{11} \neq 0$ this implies $t_{21}=\cdots=t_{n 1}=0$. For $i>j=2$, we then have $0=t_{i 2} a_{22}$, showing that T is zero beneath the diagonal in the second column. 'By induction' T is upper triangular. Using (i) with $B=A^{-1}$ we have that $1=e_{j}^{T} I e_{j}=e_{j}^{T} A B e_{j}=a_{j j} b_{j j} \Rightarrow b_{j j}=1 / a_{j j}$.
9.
(i) $\operatorname{trace}(\alpha A+\beta B)=\sum \alpha a_{i i}+\sum \beta b_{i i}=\alpha \sum a_{i i}+\beta \sum b_{i i}=\alpha \operatorname{trace}(A)+\beta \operatorname{trace}(B)$.
(ii) Since $(A B)_{i i}=\sum_{k=1}^{n} a_{i k} b_{k i}$,

$$
\operatorname{trace}(A B)=\sum_{i=1}^{n} \sum_{k=1}^{n} a_{i k} b_{k i}=\sum_{i=1}^{n} \sum_{k=1}^{n} b_{i k} a_{k i}=\operatorname{trace}(B A) .
$$

(iii) $0=S+S^{T} \Rightarrow \operatorname{trace}\left(S+S^{T}\right)=2 \operatorname{trace}(S)=0 \Rightarrow \operatorname{trace}(S)=0$.

Let $A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$. Then $\operatorname{trace}(A)=0$ but A is not skew-symmetric.

