Vector norm

A vector norm is a function $\|\cdot\| : \mathbb{C}^n \to \mathbb{R}$ satisfying

- 1 $||x|| \ge 0$ with equality iff x = 0,
- 2 $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for all $\alpha \in \mathbb{C}$, $\mathbf{x} \in \mathbb{C}^n$,
- **3** $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{C}^n$.

Vector norm

A vector norm is a function $\|\cdot\| : \mathbb{C}^n \to \mathbb{R}$ satisfying

1
$$||x|| \ge 0$$
 with equality iff $x = 0$,

2
$$\|\alpha x\| = |\alpha| \|x\|$$
 for all $\alpha \in \mathbb{C}$, $x \in \mathbb{C}^n$,

3
$$||x + y|| \le ||x|| + ||y||$$
 for all $x, y \in \mathbb{C}^n$.

Examples:

$$\begin{split} \|x\|_{1} &= |x_{1}| + \dots + |x_{n}|, \\ \|x\|_{2} &= (|x_{1}|^{2} + \dots + |x_{n}|^{2})^{1/2} = (x^{*}x)^{1/2}, \\ \|x\|_{\infty} &= \max_{1 \le i \le n} |x_{i}|, \\ \|x\|_{p} &= (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}, \quad p \ge 1, \quad (p\text{-norm}). \end{split}$$

Vector norm

A vector norm is a function $\|\cdot\| : \mathbb{C}^n \to \mathbb{R}$ satisfying

- 1 $||x|| \ge 0$ with equality iff x = 0,
- 2 $\|\alpha x\| = |\alpha| \|x\|$ for all $\alpha \in \mathbb{C}$, $x \in \mathbb{C}^n$,
- **3** $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{C}^n$.

Examples:

$$\begin{split} \|x\|_{1} &= |x_{1}| + \dots + |x_{n}|, \\ \|x\|_{2} &= (|x_{1}|^{2} + \dots + |x_{n}|^{2})^{1/2} = (x^{*}x)^{1/2}, \\ \|x\|_{\infty} &= \max_{1 \le i \le n} |x_{i}|, \\ \|x\|_{p} &= (|x_{1}|^{p} + \dots + |x_{n}|^{p})^{1/p}, \quad p \ge 1, \quad (p\text{-norm}). \end{split}$$

Hölder inequality: $|x^*y| \leq ||x||_p ||y||_q$, $\frac{1}{p} + \frac{1}{q} = 1$.

Cauchy–Schwarz inequality: $|x^*y| \le ||x||_2 ||y||_2$.

Vector norms (cont.)

All norms on \mathbb{C}^n are **equivalent**: if $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on \mathbb{C}^n then there exist $\nu_1 > 0$ and $\nu_2 > 0$ such that

$$u_1 \| \mathbf{x} \|_{\boldsymbol{\alpha}} \le \| \mathbf{x} \|_{\beta} \le \nu_2 \| \mathbf{x} \|_{\boldsymbol{\alpha}}, \quad \forall \mathbf{x} \in \mathbb{C}^n.$$

Vector norms (cont.)

All norms on \mathbb{C}^n are **equivalent**: if $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on \mathbb{C}^n then there exist $\nu_1 > 0$ and $\nu_2 > 0$ such that

$$u_1 \| \mathbf{x} \|_{\boldsymbol{\alpha}} \le \| \mathbf{x} \|_{\beta} \le \nu_2 \| \mathbf{x} \|_{\boldsymbol{\alpha}}, \quad \forall \mathbf{x} \in \mathbb{C}^n.$$

For example, for all $x \in \mathbb{C}^n$

$$\|x\|_{\infty} \leq \|x\|_{2} \leq \|x\|_{1} \leq \sqrt{n} \|x\|_{2} \leq n \|x\|_{\infty}.$$

Vector norms (cont.)

All norms on \mathbb{C}^n are **equivalent**: if $\|\cdot\|_{\alpha}$ and $\|\cdot\|_{\beta}$ are norms on \mathbb{C}^n then there exist $\nu_1 > 0$ and $\nu_2 > 0$ such that

$$u_1 \| \mathbf{x} \|_{\boldsymbol{\alpha}} \le \| \mathbf{x} \|_{\beta} \le \nu_2 \| \mathbf{x} \|_{\boldsymbol{\alpha}}, \quad \forall \mathbf{x} \in \mathbb{C}^n.$$

For example, for all $x \in \mathbb{C}^n$

$$\|x\|_{\infty} \leq \|x\|_{2} \leq \|x\|_{1} \leq \sqrt{n} \|x\|_{2} \leq n \|x\|_{\infty}.$$

The sequence $\{v^{(k)}\}$ of vectors in \mathbb{C}^n converges to $v \in \mathbb{C}^n$ with respect to $\|\cdot\|$ iff $\lim_{k\to\infty} \|v^{(k)} - v\| = 0$.

Matrix norm

A matrix norm is a function $\|\cdot\| : \mathbb{C}^{m \times n} \to \mathbb{R}$ satisfying obvious analogues of the 3 vector norm properties.

Frobenius norm:

$$\|A\|_F := \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2\right)^{1/2} = (\operatorname{trace}(A^*A))^{1/2}.$$

Matrix norm

A matrix norm is a function $\|\cdot\| : \mathbb{C}^{m \times n} \to \mathbb{R}$ satisfying obvious analogues of the 3 vector norm properties.

Frobenius norm:

$$\|A\|_{F} := \left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}\right)^{1/2} = (\operatorname{trace}(A^{*}A))^{1/2}.$$

Matrix norms subordinate to vector norms:

$$||A|| := \max_{x \neq 0} \frac{||Ax||}{||x||}.$$

• matrix *p*-norm: induced by the vector *p*-norm: $||A||_p := \max_{x \neq 0} \frac{||Ax||_p}{||x||_p}.$

Matrix *p*-norms

Theorem (Thm. 1)

Let $A \in \mathbb{C}^{m \times n}$. Then

$$\begin{split} \|A\|_{1} &= \max_{x \neq 0} \frac{\|Ax\|_{1}}{\|x\|_{1}} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|, \quad \text{``max column sum",} \\ \|A\|_{\infty} &= \max_{x \neq 0} \frac{\|Ax\|_{\infty}}{\|x\|_{\infty}} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}| = \|A^{T}\|_{1}, \text{``max row sum",} \\ \|A\|_{2} &= \max_{x \neq 0} \frac{\|Ax\|_{2}}{\|x\|_{2}} = \sqrt{\lambda_{\max}(A^{*}A)}, \quad \text{spectral norm,} \end{split}$$

where λ_{max} denotes the largest eigenvalue.

Consistent norms

A norm is **consistent** if it satisfies $||AB|| \le ||A|| ||B||$.

The Frobenius norm and all subordinate norms are consistent.

Consistent norms

A norm is **consistent** if it satisfies $||AB|| \le ||A|| ||B||$.

The Frobenius norm and all subordinate norms are consistent.

The "mixed" norm

$$\|A\|_{1,\infty} := \max_{x \neq 0} \frac{\|Ax\|_1}{\|x\|_\infty} = \max_{i,j} |a_{ij}|$$

is a matrix norm but is not consistent. If $A = B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ then $\|AB\|_{1,\infty} = 2 > \|A\|_{1,\infty} \|B\|_{1,\infty} = 1 \times 1 = 1$.

Unitarily invariant norms

Let $A \in \mathbb{C}^{m \times n}$. For unitary $Q \in \mathbb{C}^{m \times m}$ and $Z \in \mathbb{C}^{n \times n}$,

$$\|QAZ\|_2 = \|A\|_2, \qquad \|QAZ\|_F = \|A\|_F.$$

 $\Rightarrow \|\cdot\|_2$ and $\|\cdot\|_F$ invariant under unitary transformations.

Unitarily invariant norms

Let $A \in \mathbb{C}^{m \times n}$. For unitary $Q \in \mathbb{C}^{m \times m}$ and $Z \in \mathbb{C}^{n \times n}$,

$$\|QAZ\|_2 = \|A\|_2, \qquad \|QAZ\|_F = \|A\|_F.$$

 $\Rightarrow \|\cdot\|_2$ and $\|\cdot\|_F$ invariant under unitary transformations.

If A is contaminated by errors E, $U(A + E)U^* = UAU^* + F$,

$$\|F\|_2 = \|UEU^*\|_2 = \|E\|_2.$$

 \Rightarrow multiplication by unitary matrices does not magnify errors.

Unitarily invariant norms

Let $A \in \mathbb{C}^{m \times n}$. For unitary $Q \in \mathbb{C}^{m \times m}$ and $Z \in \mathbb{C}^{n \times n}$, $\|QAZ\|_2 = \|A\|_2$, $\|QAZ\|_F = \|A\|_F$.

 $\Rightarrow \|\cdot\|_2$ and $\|\cdot\|_F$ invariant under unitary transformations.

If A is contaminated by errors E, $U(A + E)U^* = UAU^* + F$,

$$\|F\|_2 = \|UEU^*\|_2 = \|E\|_2.$$

 \Rightarrow multiplication by unitary matrices does not magnify errors.

For a general, nonsingular similarity transformation

$$X(A+E)X^{-1}=XAX^{-1}+G,$$

 $||G||_2 = ||XEX^{-1}||_2 \le \kappa_2(X) ||E||_2$, where $\kappa_2(X) = ||X||_2 ||X^{-1}||_2$ is the **condition number** of *X* and can be arbitrarily large.

Semyon Aranovich Gershgorin (1901–1933)

Theorem (Thm. 4, Gershgorin (1931))

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ lie in the union of the n discs in the complex plane

$$D_i = \Big\{ z \in \mathbb{C} : |z - a_{ii}| \leq \sum_{j=1 \atop j \neq i}^n |a_{ij}| \Big\}, \qquad i = 1, \ldots, n.$$

Example

Let $A = \begin{bmatrix} 8 & 1 & 0 \\ 1 & 10 & 1 \\ 0 & 1 & 12 \end{bmatrix}$. What can be said about the location of *A*'s eigenvalues?