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If one has several vectors in Cn or several matrices in Cn×n, what might it mean to say
that some are small or that others are large? Under what circumstances might we say that two
vectors are close together or far apart?

One way to answer these questions is to study norms of vectors and matrices. The study of
norms is necessary for a proper formulation of notions such as power series of matrices. It is
essential in the analysis and assessment of algorithms for numerical computations. Bounds for
eigenvalues often involve norms, as do bounds for possible changes in the eigenvalues when a
matrix is perturbed.

1 Vector Norms

A vector norm is a function ‖ · ‖ : Cn → R satisfying

1. ‖x‖ ≥ 0 with equality iff x = 0, (positive definiteness)

2. ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn, (absolute homogeneity)

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ Cn. (triangle inequality)

The three most practically useful norms are

‖x‖1 = |x1|+ · · ·+ |xn| =
n∑
i=1

|xi|, “Manhattan” or “taxi cab” norm,

‖x‖2 = (|x1|2 + · · ·+ |xn|2)1/2 =

( n∑
i=1

|xi|2
)1/2

= (x∗x)1/2, Euclidean length,

‖x‖∞ = max
1≤i≤n

|xi|, maximum norm.

These are all special cases of the p-norm:

‖x‖p =
(
|x1|p + · · ·+ |xn|p

)1/p
=

( n∑
i=1

|xi|p
)1/p

, p ≥ 1.

An important inequality is the Hölder inequality

|x∗y| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1.

The special case with p = q = 2 is called the Cauchy–Schwarz inequality:

|x∗y| ≤ ‖x‖2‖y‖2.

Let V = [x y ] ∈ Cn×2 then V ∗V is Hermitian positive semidefinite since u∗(V ∗V )u =
‖V u‖22 ≥ 0 for all u ∈ Cn. Also, det(V ∗V ) ≥ 0 since det(V ∗V ) = product of eigenvalues
and eigenvalues of Hermitian positive semidefinite matrices are real and nonnegative. Hence

0 ≤ det(V ∗V ) = det

[
x∗x x∗y
y∗x y∗y

]
= ‖x‖22‖y‖22− |x∗y|2 and taking square roots gives the result.



MATH36001: Norms Page 2

All norms on Cn are equivalent: if ‖·‖α and ‖·‖β are norms on Cn then there exist positive
constants ν1 and ν2 such that

ν1‖x‖α ≤ ‖x‖β ≤ ν2‖x‖α, ∀x ∈ Cn.

For example, for all x ∈ Cn (see Exercise 3)

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞.

Vector norms can be used to measure the convergence of a sequence of vectors. We say that
the sequence {v(k)} of vectors in Cn converges to a vector v ∈ Cn with respect to the vector
norm ‖ · ‖ if and only if limk→∞ ‖v(k)−v‖ = 0. The choice of norms is irrelevant since all norms
on Cn are equivalent.

2 Matrix Norms

A matrix norm is a function ‖ · ‖ : Cm×n → C satisfying obvious analogues of the three vector
norm properties (1)–(3). The simplest example is the Frobenius norm

‖A‖F =

( m∑
i=1

n∑
j=1

|aij|2
)1/2

=
(
trace(A∗A)

)1/2
.

A very important class of matrix norms is those subordinate to vector norms (we also say
induced by a vector norm). Given a vector norm, the corresponding subordinate matrix norm
is defined by

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

.

When the vector norm is the p-norm then the subordinate matrix norm ‖A‖p = maxx 6=0 ‖Ax‖p/‖x‖p
is called the matrix p-norm.

Theorem 1 Let A ∈ Cm×n, then

‖A‖1 = max
x 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤n

m∑
i=1

|aij|, “max column sum”,

‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤m

n∑
j=1

|aij| = ‖AT‖1, “max row sum”,

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

=
√
λmax(A∗A), spectral norm,

where λmax denotes the largest eigenvalue.

Proof. We prove the expression for ‖ · ‖2. For the 1-norm and ∞-norm, see Exercise 7.
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Since A∗A is Hermitian positive semidefinite, there exists an eigendecomposition A∗A =
QΛQ∗ with Q unitary and Λ = diag(λ1, . . . , λn) and all λi ≥ 0. Therefore

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
x 6=0

(x∗A∗Ax)1/2

‖x‖2
= max

x 6=0

(x∗QΛQ∗x)1/2

‖x‖2

= max
x 6=0

((Q∗x)∗Λ(Q∗x)1/2)

‖Qx‖2
= max

y 6=0

(y∗Λy)1/2

‖y‖2
= max

y 6=0

√∑
λiy2i∑
y2i

≤ max
y 6=0

√
λmax

√∑
y2i∑
y2i

=
√
λmax

which is attained by choosing y to be the appropriate column of the identity matrix.

A norm is consistent if it satisfies ‖AB‖ ≤ ‖A‖‖B‖ whenever the product AB is defined.
The Frobenius norm and all subordinate norms are consistent.

For example the “mixed” norm

‖A‖∞,1 := max
x 6=0

‖Ax‖∞
‖x‖1

= max
i,j
|aij|

is a matrix norm but is not consistent. If A = B =
[
1
1
1
1

]
then ‖AB‖∞,1 > ‖A‖∞,1‖B‖∞,1.

Both the 2-norm and the Frobenius norm are invariant under unitary transformations: for
unitary Q ∈ Cm×m and Z ∈ Cn×n,

‖QAZ‖2 = ‖A‖2, ‖QAZ‖F = ‖A‖F .

This property has implications for error analysis, for it means that multiplication by unitary
matrices does not magnify errors. For example, if A ∈ Cn×n is contaminated by errors E and
U is unitary (i.e., U∗ = U−1), then

U(A+ E)U∗ = UAU∗ + F,

and ‖F‖2 = ‖UEU∗‖2 = ‖E‖2. In contrast, if we do a general, nonsingular similarity transfor-
mation

X(A+ E)X−1 = XAX−1 +G,

then ‖G‖2 = ‖XEX−1‖2 ≤ κ2(X)‖E‖2, where κ2(X) = ‖X‖2‖X−1‖2 ≥ 1 is the condition
number of X and can be arbitrarily large.

The spectral radius ρ(A) of a matrix A is ρ(A) = max{|λ| : λ is an eigenvalue of A}.

Theorem 2 Let A ∈ Cn×n. For any consistent matrix norm ‖ · ‖,

ρ(A) ≤ ‖A‖.

Proof. If Ax = λx, x 6= 0 and if |λ| = ρ(A), then form the matrix X = [x, . . . , x ] and
observe that AX = λX. For any consistent matrix norm ‖ · ‖,

|λ|‖X‖ = ‖λX‖ = ‖AX‖ ≤ ‖A‖‖X‖
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and therefore |λ| = ρ(A) ≤ ‖A‖.
A sequence {A(k)} ∈ Cn×n converges to a matrix A if limk→∞ ‖A(k) − A‖ = 0. The choice

of norms is irrelevant since all norms on Cn×n are equivalent.
The next theorem characterizes matrices A such that Ak → O as k →∞.

Theorem 3 Let A ∈ Cn×n. Then

lim
k→∞

Ak = O ⇔ ρ(A) < 1.

Proof. Let Q∗AQ = D + N be a Schur decomposition of A, where Q is unitary, D is
diagonal and N is strictly upper triangular. For θ ≥ 1, define the matrix

∆ = diag(1, θ, θ2, . . . , θn−1),

for which κ2(∆) = ‖∆‖2‖∆−1‖2 = θn−1. Since N is strictly upper triangular it is easy to show
that ‖∆N∆−1‖F ≤ ‖N‖F/θ. Thus

‖Ak‖2 = ‖(D +N)k‖2
= ‖∆−1(D +∆N∆−1)k∆‖2
≤ κ2(∆)

(
‖D‖2 + ‖∆N∆−1‖2

)k
≤ θn−1

(
ρ(A) +

‖N‖F
θ

)k
,

where we used the fact that ‖B‖2 ≤ ‖B‖F (see Exercise 6). Since ρ(A) < 1, we can choose θ
so that ρ(A) + ‖N‖F/θ < 1; then, letting k → ∞ and noting that n is fixed, it follows that
‖Ak‖2 → 0 and hence that Ak → O.

Conversely, if Ak → O and if x 6= 0 is a vector such that Ax = λx then Akx = λkx→ 0 only
if |λ| < 1. Since this inequality must hold for every eigenvalue of A we conclude that ρ(A) < 1.

3 Bounds for Eigenvalues

One important area of application of matrix norms is in giving bounds for the spectrum of a
matrix. We already know from Theorem 2 that

|λ| ≤ ‖A‖

for any consistent norm. This means that all the eigenvalues lie in a disk centered at the origin
with radius ‖A‖. A more powerful result is:

Theorem 4 (Gershgorin’s theorem, 1931) The eigenvalues of A ∈ Cn×n lie in the union
of the n discs in the complex plane

Di =
{
z ∈ C : |z − aii| ≤

n∑
j=1
j 6=i

|aij|
}
, i = 1, . . . , n.
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Proof. Let λ be an eigenvalue of A and x a corresponding eigenvector, and let |xk| = ‖x‖∞.
From the kth equation in Ax = λx we have

n∑
j=1
j 6=k

akjxj = (λ− akk)xk.

Hence

|λ− akk| ≤
n∑

j=1
j 6=k

|akj||xj|/|xk|,

and since |xj|/|xk| ≤ 1 it follows that λ belongs to the kth disk, Dk.

Example 1 Let A =

 8 1 0
1 10 1
0 1 12

 . What can be said about the location of A’s eigenvalues?

Since A is symmetric its eigenvalues are real. Since ‖A‖∞ = ‖A‖1 = 13 we know that
λ ∈ [−13, 13]. Gershgorin theorem gives a sharper lower bound: all eigenvalues lie in the interval
[7, 13]. Actually we can obtain a smaller interval by doing the following. Let D = diag(d, 1, 1).
Then

DAD−1 =

 8 d
d−1 10 1

1 12


is similar to A and has the same eigenvalues. If we apply Gershgorin’s theorem to DAD−1 we
obtain min{8− d, 10− 1− d−1} as the lower bound of the eigenvalues. Thus the lower bounds
will be as large as possible when 8 − d = 10 − 1 − d−1 or when d = (−1 +

√
5)/2. Hence all

the eigenvalues are larger than 7.38. A similar improvement of the upper bound limit can be
made. Note that Λ(A) = {7.55, 10, 12.45}.

Exercises

1. Let ‖·‖ be a vector norm on Rm and let A ∈ Rm×n. Show that if rank(A) = n then ‖x‖A = ‖Ax‖
is a vector norm.

2. Define the function ν : Cn → R by ν(x) =
∑n

i=1

(
|Rexi|+ | Imxi|

)
. Is ν a vector norm on Cn?

3. Show that for all x ∈ Cn, ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 ≤ n‖x‖∞. Show that each inequality

is attained for a particular vector.

4. Show that the vector 2-norm ‖ · ‖2 is unitarily invariant but that ‖ · ‖1 and ‖ · ‖∞ are not.

5. Verify that ‖xy∗‖F = ‖xy∗‖2 = ‖x‖2‖y‖2 for any x, y ∈ Cn.

6. Let A ∈ Cn×m. Show that ‖A‖2 ≤ ‖A‖F . (Recall that trace(B) =
∑

i λi(B)).
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7. For A ∈ Cm×n, show that

‖A‖1 = max
x 6=0

‖Ax‖1
‖x‖1

= max
1≤j≤n

m∑
i=1

|aij|, ‖A‖∞ = max
x 6=0

‖Ax‖∞
‖x‖∞

= max
1≤i≤m

n∑
j=1

|aij|.

8.? Let A ∈ Cm×n. Show that ‖A‖2 ≤
√
‖A‖1‖A‖∞.

9. Let A ∈ Cn×n and ‖ · ‖ be any consistent matrix norm. Prove that if ‖A‖ < 1 then I − A is
nonsingular and (I − A)−1 =

∑∞
k=0A

k.

10. (i) Show that a Hermitian matrix A is positive definite (i.e. x∗Ax > 0 for all nonzero vector x)
if and only if all its eigenvalues are real and positive.

(ii) Use Gershgorin’s theorem to show that the tridiagonal matrix

A =


3 i
−i 3 i

−i . . . . . .
. . . . . . i

−i 3

 ∈ Cn×n

is Hermitian positive definite.

11. Consider the monic scalar polynomial p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 with a0 6= 0.

(i) Show that p is the characteristic polynomial of the companion matrix

C(p) =


−an−1 −an−2 · · · −a1 −a0

1 0 · · · · · · 0
0 1 0 0
...

. . .
...

0 · · · 1 0

 .
(ii) Show that if z̃ is a root of p(z) = 0 and if ‖ · ‖ is any consistent matrix norm on Cn×n

then |z̃| ≤ ‖C(p)‖.
(iii) Using ‖ · ‖1 and ‖ · ‖∞, derive Cauchy’s bound

|z̃| ≤ 1 + max
0≤i≤n−1

|ai|,

and Montel’s bound

|z̃| ≤ 1 +
n−1∑
i=0

|ai|.

12.? A magic square Mn is an n × n matrix containing the integers from 1 to n2 whose row and
column sums are all the same. For example

M4 =


16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

 .
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Figure 1: Left: Albrecht Durer’s Melancolia. Can you find the matrix? Right: Details of
Dürer’s magic square. Dürer slipped the date of the painting, 1514, into the bottom row!

This magic square appears in the Renaissance engraving Melencolia I by the German painter,
engraver and amateur mathematician Albrecht Dürer (1471–1528); see Figure 1.

Let µn denote the magic constant of Mn, so that µn = n(n2 + 1)/2. Let e denote the vector
of all 1s.

(i) Determine Mne and eTMn. Conclude that µn is an eigenvalue of Mn.

(ii) Show that the row and column sums of M2
n are all the same. Is M2

n a magic square?

(iii) Determine ‖Mn‖1, ‖Mn‖∞, ‖Mn‖2 and ρ(Mn).

(iv) Assume that Mn has distinct eigenvalues. Show that limk→∞M
k
n/µ

k
n = eeT/n, that is,

the powers of Mn converge to a rank-one matrix.


