Perron–Frobenius Theory

Oskar Perron (1880–1975)

Georg Frobenius (1849–1917)

Positive and Nonnegative Matrices

Let $A, B \in \mathbb{R}^{m \times n}$.

- ► $A \ge B$ if $a_{ij} \ge b_{ij} \forall i, j$,
- ► A > B if $a_{ij} > b_{ij} \forall i, j$,
- A is **nonnegative** if $A \ge 0$,
- A is **positive** if A > 0.

Positive and Nonnegative Matrices

Let $A, B \in \mathbb{R}^{m \times n}$.

- ► $A \ge B$ if $a_{ij} \ge b_{ij} \forall i, j$,
- ► A > B if $a_{ij} > b_{ij} \forall i, j$,
- A is **nonnegative** if $A \ge 0$,
- A is **positive** if A > 0.

What about the eigenvalues of $A \ge 0$?

Spectral radius: $\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}.$

Theorem (Nonnegative eigenpairs, Thm. 1)

If $A \ge 0$ then $\rho(A)$ is an eigenvalue of A and there exists an associated eigenvector $x \ge 0$ such that $Ax = \rho(A)x$.

What about the eigenvalues of $A \ge 0$?

Spectral radius: $\rho(A) = \max\{|\lambda| : \lambda \text{ is an eigenvalue of } A\}.$

Theorem (Nonnegative eigenpairs, Thm. 1)

If $A \ge 0$ then $\rho(A)$ is an eigenvalue of A and there exists an associated eigenvector $x \ge 0$ such that $Ax = \rho(A)x$.

The following lemma is a consequence of Theorem 1.

Lemma (Lem. 2)

Let $A \ge 0$. Then I - A is nonsingular and $(I - A)^{-1} \ge 0$ if and only if $\rho(A) < 1$.

Theorem (Perron's theorem, Thm. 3)

- If $A \in \mathbb{R}^{n \times n}$ and A > 0 then
 - (i) $\rho(A) > 0$.
 - (ii) $\rho(A)$ is an e'val of A.
- (iii) There is an e'vec x with x > 0 and $Ax = \rho(A) x$.
- (iv) The e'val $\rho(A)$ has algebraic multiplicity 1.
- (v) All the other e'vals are less than $\rho(A)$ in absolute value, *i.e.*, $\rho(A)$ is the only e'val of maximum modulus.

(Proof not examinable.)

Powers of positive matrices

Theorem (Thm. 4)

If A > 0, x is any positive e'vec of A corresponding to $\rho(A)$, and y is any positive e'vec of A^T corresponding to $\rho(A) = \rho(A^T)$ then

$$\lim_{k\to\infty}\left(\frac{A}{\rho(A)}\right)^k=\frac{xy^T}{y^Tx}>0.$$

Most properties in Perron's Thm are lost for $A \ge 0$ unless $A \in \mathbb{R}^{n \times n}$ is irreducible (i.e., not reducible).

 $A \in \mathbb{R}^{n \times n}$ is **reducible** if there exists a permutation matrix P s.t.

$$P^T A P = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix},$$

where X and Z are both square.

Most properties in Perron's Thm are lost for $A \ge 0$ unless $A \in \mathbb{R}^{n \times n}$ is irreducible (i.e., not reducible).

 $A \in \mathbb{R}^{n \times n}$ is **reducible** if there exists a permutation matrix *P* s.t.

$$P^T A P = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix},$$

where X and Z are both square.

Directed graph of $A \in \mathbb{R}^{n \times n}$: connects *n* pts P_1, \ldots, P_n by a direct link from P_i to P_j if $a_{ij} \neq 0$.

Most properties in Perron's Thm are lost for $A \ge 0$ unless $A \in \mathbb{R}^{n \times n}$ is irreducible (i.e., not reducible).

 $A \in \mathbb{R}^{n \times n}$ is **reducible** if there exists a permutation matrix *P* s.t.

$$\boldsymbol{P}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{P} = \begin{bmatrix} \boldsymbol{X} & \boldsymbol{Y} \\ \boldsymbol{0} & \boldsymbol{Z} \end{bmatrix},$$

where X and Z are both square.

Directed graph of $A \in \mathbb{R}^{n \times n}$: connects *n* pts P_1, \ldots, P_n by a direct link from P_i to P_j if $a_{ij} \neq 0$.

Strongly connected graph: for any 2 pts P_i and P_j , \exists a finite sequence of directed links from P_i to P_j .

Most properties in Perron's Thm are lost for $A \ge 0$ unless $A \in \mathbb{R}^{n \times n}$ is irreducible (i.e., not reducible).

 $A \in \mathbb{R}^{n \times n}$ is **reducible** if there exists a permutation matrix P s.t.

$$P^T A P = \begin{bmatrix} X & Y \\ 0 & Z \end{bmatrix},$$

where X and Z are both square.

Directed graph of $A \in \mathbb{R}^{n \times n}$: connects *n* pts P_1, \ldots, P_n by a direct link from P_i to P_j if $a_{ij} \neq 0$.

Strongly connected graph: for any 2 pts P_i and P_j , \exists a finite sequence of directed links from P_i to P_j .

Fact

 $A \ge 0$ is irreducible if and only if its directed graph is strongly connected.

Perron–Frobenius theorem

Theorem (Thm.5)

- If $A \ge 0$ is irreducible then
 - (i) $\rho(A) > 0$.
 - (ii) $\rho(A)$ is an e'val of A.
- (iii) There is an e'vec x with x > 0 and $Ax = \rho(A) x$.

(iv) $\rho(A)$ is an e'val of algebraic multiplicity 1.

Perron–Frobenius theorem

Theorem (Thm.5)

- If $A \ge 0$ is irreducible then
 - (i) $\rho(A) > 0$.
- (ii) $\rho(A)$ is an e'val of A.
- (iii) There is an e'vec x with x > 0 and $Ax = \rho(A) x$.

(iv) $\rho(A)$ is an e'val of algebraic multiplicity 1.

 $\lambda_{\max}(A) = \rho(A)$ is called the **Perron root**.

The **Perron vector** is the unique vector *p* defined by

$$A p = \rho(A) p, \quad p > 0, \quad \|p\|_1 = 1.$$

 $P \in \mathbb{R}^{n \times n}$ is a **stochastic matrix** if $P \ge 0$ and each row sum is equal to 1, i.e.,

$$\sum_{j=1}^{n} p_{ij} = 1, \quad i = 1, 2, \dots, n \Leftrightarrow Pe = e, e = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$$

٠

 $P \in \mathbb{R}^{n \times n}$ is a **stochastic matrix** if $P \ge 0$ and each row sum is equal to 1, i.e.,

$$\sum_{j=1}^{n} p_{ij} = 1, \quad i = 1, 2, \dots, n \Leftrightarrow Pe = e, e = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$$

Hence $\lambda = 1$ is an e'val of *P*.

٠

 $P \in \mathbb{R}^{n \times n}$ is a **stochastic matrix** if $P \ge 0$ and each row sum is equal to 1, i.e.,

$$\sum_{j=1}^{n} p_{ij} = 1, \quad i = 1, 2, \dots, n \Leftrightarrow Pe = e, e = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}.$$

Hence $\lambda = 1$ is an e'val of *P*.

Also,
$$ho(\mathcal{P}) \leq \|\mathcal{P}\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^n p_{ij} = 1 \text{ so } \frac{
ho(\mathcal{P}) = 1}{
ho(\mathcal{P}) = 1}.$$

 $P \in \mathbb{R}^{n \times n}$ is a **stochastic matrix** if $P \ge 0$ and each row sum is equal to 1, i.e.,

$$\sum_{j=1}^{n} p_{ij} = 1, \quad i = 1, 2, \dots, n \Leftrightarrow Pe = e, e = \begin{bmatrix} 1\\ 1\\ \vdots\\ 1 \end{bmatrix}$$

Hence $\lambda = 1$ is an e'val of *P*.

Also,
$$\rho(P) \leq \|P\|_{\infty} = \max_{1 \leq i \leq n} \sum_{j=1}^{n} p_{ij} = 1$$
 so $\rho(P) = 1$.

In Markov chains *P* is called a transition matrix.

A probability distribution vector is a vector $p \ge 0$ s.t. $e^{T}p = 1 \Leftrightarrow \sum_{i=1}^{n} p_i = 1$.

Markov Chains

Let $p^{(0)}$ be a given probability distribution vector. We want to know the behaviour of $p^{(k)} = P^T p^{(k-1)} = \cdots = (P^T)^k p^{(0)}$ as $k \to \infty$.

Markov Chains

Let $p^{(0)}$ be a given probability distribution vector. We want to know the behaviour of $p^{(k)} = P^T p^{(k-1)} = \cdots = (P^T)^k p^{(0)}$ as $k \to \infty$.

Theorem (Thm.7)

If P > 0 stochastic then $\lim_{k\to\infty} p^{(k)} = p$ independently of $p^{(0)}$, where $p \ge 0$ satisfies $P^T p = p$, $e^T p = 1$.

Markov Chains

Let $p^{(0)}$ be a given probability distribution vector. We want to know the behaviour of $p^{(k)} = P^T p^{(k-1)} = \cdots = (P^T)^k p^{(0)}$ as $k \to \infty$.

Theorem (Thm.7)

If P > 0 stochastic then $\lim_{k\to\infty} p^{(k)} = p$ independently of $p^{(0)}$, where $p \ge 0$ satisfies $P^T p = p$, $e^T p = 1$.

Proof: *P* stochastic $\Rightarrow \rho(P) = 1$ and Pe = e. Thm.4 applied to $P^T > 0$ with x = p and y = e gives

$$\lim_{k \to \infty} p^{(k)} = \lim_{k \to \infty} (P^T)^k p^{(0)} = \frac{p e^T}{e^T p} p^{(0)} = \frac{e^T p^{(0)}}{e^T p} p = p$$

since $e^{T}p^{(0)} = e^{T}p = 1$.

Let $Q = (q_{ij}) > 0$, where q_{ij} = fraction of commodity present in region R_j and ship to region R_i , i, j = 1, ..., n.

Suppose there are x_i units in region R_i today with $\sum_{i=1}^n x_i = \alpha$.

 $Q^k x$ = distribution of commodity *k* days from today.

Distribution of the commodity far in the future?

Let $Q = (q_{ij}) > 0$, where q_{ij} = fraction of commodity present in region R_j and ship to region R_i , i, j = 1, ..., n.

Suppose there are x_i units in region R_i today with $\sum_{i=1}^n x_i = \alpha$.

 $Q^k x$ = distribution of commodity *k* days from today.

Distribution of the commodity far in the future?

$$Q = \begin{bmatrix} 0.1 & 0.2 & 0.1 & 0.1 \\ 0.7 & 0.6 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.7 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.7 \end{bmatrix} > 0, \quad Q^T e = e \Rightarrow Q \text{ stochastic.}$$

Let $Q = (q_{ij}) > 0$, where q_{ij} = fraction of commodity present in region R_i and ship to region R_i , i, j = 1, ..., n.

Suppose there are x_i units in region R_i today with $\sum_{i=1}^n x_i = \alpha$.

 $Q^k x$ = distribution of commodity *k* days from today.

Distribution of the commodity far in the future?

$$Q = \begin{bmatrix} 0.1 & 0.2 & 0.1 & 0.1 \\ 0.7 & 0.6 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.7 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.7 \end{bmatrix} > 0, \quad Q^{T}e = e \Rightarrow Q \text{ stochastic.}$$

Thm.7 with $p^{(0)} = x/\alpha \Rightarrow \lim_{k\to\infty} \alpha Q^k(x/\alpha) = \alpha p$ with $p \ge 0$ s.t. Qp = p, $e^T p = 1$. Limit depends only on α and Q and not on x.

Let $Q = (q_{ij}) > 0$, where q_{ij} = fraction of commodity present in region R_j and ship to region R_i , i, j = 1, ..., n.

Suppose there are x_i units in region R_i today with $\sum_{i=1}^n x_i = \alpha$.

 $Q^k x$ = distribution of commodity *k* days from today.

Distribution of the commodity far in the future?

$$Q = \begin{bmatrix} 0.1 & 0.2 & 0.1 & 0.1 \\ 0.7 & 0.6 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.7 & 0.1 \\ 0.1 & 0.1 & 0.1 & 0.7 \end{bmatrix} > 0, \quad Q^{T}e = e \Rightarrow Q \text{ stochastic.}$$

Thm.7 with $p^{(0)} = x/\alpha \Rightarrow \lim_{k\to\infty} \alpha Q^k(x/\alpha) = \alpha p$ with $p \ge 0$ s.t. Qp = p, $e^T p = 1$. Limit depends only on α and Q and not on x. Verify that $p = \begin{bmatrix} 6 & 16 & 11 & 11 \end{bmatrix}^T / 44$.