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Positive and Nonnegative Matrices

Let A,B ∈ Rm×n.

I A ≥ B if aij ≥ bij ∀ i , j ,

I A > B if aij > bij ∀ i , j ,

I A is nonnegative if A ≥ 0,

I A is positive if A > 0.
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What about the eigenvalues of A ≥ 0?

Spectral radius: ρ(A) = max{|λ| : λ is an eigenvalue of A}.

Theorem (Nonnegative eigenpairs, Thm. 1)

If A ≥ 0 then ρ(A) is an eigenvalue of A and there exists an
associated eigenvector x ≥ 0 such that Ax = ρ(A)x.

The following lemma is a consequence of Theorem 1.

Lemma (Lem. 2)

Let A ≥ 0. Then I − A is nonsingular and (I − A)−1 ≥ 0 if and
only if ρ(A) < 1.
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Positive Matrices

Theorem (Perron’s theorem, Thm. 3)

If A ∈ Rn×n and A > 0 then
(i) ρ(A) > 0.

(ii) ρ(A) is an e’val of A.

(iii) There is an e’vec x with x > 0 and Ax = ρ(A) x.

(iv) The e’val ρ(A) has algebraic multiplicity 1.

(v) All the other e’vals are less than ρ(A) in absolute value,
i.e., ρ(A) is the only e’val of maximum modulus.

(Proof not examinable.)
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Powers of positive matrices

Theorem (Thm. 4)
If A > 0, x is any positive e’vec of A corresponding to ρ(A),
and y is any positive e’vec of AT corresponding to
ρ(A) = ρ(AT ) then

lim
k→∞

(
A
ρ(A)

)k

=
xyT

yT x
> 0.
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Irreducible Nonnegative Matrices

Most properties in Perron’s Thm are lost for A ≥ 0 unless
A ∈ Rn×n is irreducible (i.e., not reducible).

A ∈ Rn×n is reducible if there exists a permutation matrix P
s.t.

PT AP =

[
X Y
0 Z

]
,

where X and Z are both square.
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Irreducible Nonnegative Matrices

Most properties in Perron’s Thm are lost for A ≥ 0 unless
A ∈ Rn×n is irreducible (i.e., not reducible).
A ∈ Rn×n is reducible if there exists a permutation matrix P
s.t.

PT AP =

[
X Y
0 Z

]
,

where X and Z are both square.
Directed graph of A ∈ Rn×n: connects n pts P1, . . . ,Pn by a
direct link from Pi to Pj if aij 6= 0.
Strongly connected graph: for any 2 pts Pi and Pj , ∃ a finite
sequence of directed links from Pi to Pj .

Fact
A ≥ 0 is irreducible if and only if its directed graph is strongly
connected.
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Perron–Frobenius theorem

Theorem (Thm.5)
If A ≥ 0 is irreducible then

(i) ρ(A) > 0.

(ii) ρ(A) is an e’val of A.

(iii) There is an e’vec x with x > 0 and Ax = ρ(A) x.

(iv) ρ(A) is an e’val of algebraic multiplicity 1.
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Perron–Frobenius theorem

Theorem (Thm.5)
If A ≥ 0 is irreducible then

(i) ρ(A) > 0.

(ii) ρ(A) is an e’val of A.

(iii) There is an e’vec x with x > 0 and Ax = ρ(A) x.

(iv) ρ(A) is an e’val of algebraic multiplicity 1.

λmax(A) = ρ(A) is called the Perron root.

The Perron vector is the unique vector p defined by

Ap = ρ(A)p, p > 0, ‖p‖1 = 1.
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Stochastic Matrices

P ∈ Rn×n is a stochastic matrix if P ≥ 0 and each row sum is
equal to 1, i.e.,

n∑
j=1

pij = 1, i = 1,2, . . . ,n ⇔ Pe = e, e =


1
1
...
1

 .
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Stochastic Matrices

P ∈ Rn×n is a stochastic matrix if P ≥ 0 and each row sum is
equal to 1, i.e.,

n∑
j=1

pij = 1, i = 1,2, . . . ,n ⇔ Pe = e, e =


1
1
...
1

 .
Hence λ = 1 is an e’val of P.

Also, ρ(P) ≤ ‖P‖∞ = max
1≤i≤n

n∑
j=1

pij = 1 so ρ(P) = 1 .

In Markov chains P is called a transition matrix.

A probability distribution vector is a vector p ≥ 0 s.t.
eT p = 1⇔

∑n
i=1 pi = 1.
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Markov Chains

Let p(0) be a given probability distribution vector. We want to
know the behaviour of p(k) = PT p(k−1) = · · · = (PT )kp(0) as
k →∞.
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Markov Chains

Let p(0) be a given probability distribution vector. We want to
know the behaviour of p(k) = PT p(k−1) = · · · = (PT )kp(0) as
k →∞.

Theorem (Thm.7)

If P > 0 stochastic then limk→∞ p(k) = p independently of p(0),
where p ≥ 0 satisfies PT p = p, eT p = 1.
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Let p(0) be a given probability distribution vector. We want to
know the behaviour of p(k) = PT p(k−1) = · · · = (PT )kp(0) as
k →∞.

Theorem (Thm.7)

If P > 0 stochastic then limk→∞ p(k) = p independently of p(0),
where p ≥ 0 satisfies PT p = p, eT p = 1.

Proof: P stochastic⇒ ρ(P) = 1 and Pe = e. Thm.4 applied to
PT > 0 with x = p and y = e gives

lim
k→∞

p(k) = lim
k→∞

(PT )kp(0) =
peT

eT p
p(0) =

eT p(0)

eT p
p = p

since eT p(0) = eT p = 1.
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Example 3
Let Q = (qij) > 0, where qij = fraction of commodity present in
region Rj and ship to region Ri , i , j = 1, . . . ,n.

Suppose there are xi units in region Ri today with
∑n

i=1 xi = α.

Qkx = distribution of commodity k days from today.

Distribution of the commodity far in the future?
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0.1 0.2 0.1 0.1
0.7 0.6 0.1 0.1
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 > 0, QT e = e ⇒ Q stochastic.
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 > 0, QT e = e ⇒ Q stochastic.

Thm.7 with p(0) = x/α⇒ limk→∞ αQk(x/α) = αp with p ≥ 0
s.t. Qp = p, eT p = 1.
Limit depends only on α and Q and not on x .
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Q =


0.1 0.2 0.1 0.1
0.7 0.6 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 > 0, QT e = e ⇒ Q stochastic.

Thm.7 with p(0) = x/α⇒ limk→∞ αQk(x/α) = αp with p ≥ 0
s.t. Qp = p, eT p = 1.
Limit depends only on α and Q and not on x . Verify that
p = [ 6 16 11 11 ]T /44.
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