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“In addition to saying something useful, the Perron–Frobenius theory is elegant. It
is a testament to the fact that beautiful mathematics eventually tends to be useful,
and useful mathematics eventually tends to be beautiful.”
Carl D. Meyer, Matrix Analysis and Applied Linear Algebra (2000)

1 Positive and Nonnegative Matrices

If A and B are m×n real matrices we write A ≥ B if aij ≥ bij for all i, j and A > B if aij > bij
for all i, j. If A ≥ 0 we say that A is nonnegative. A is positive if A > 0.

Thus

[
1 2
3 4

]
and

 1
2
3

 are positive, while

[
1 0
3 4

]
and

 1
0
3

 are nonnegative (but not positive).

Although a nonnegative real number which is not positive must be zero, the same is not true
for vectors and matrices.

We denote by |x| = (|xi|) or |A| = (|aij|) the vector or matrix of absolute values of the elements
of x or A; clearly |x| ≥ 0 and |A| ≥ 0. The following facts will be needed.

Fact 1 Let A ∈ Rn×n and, x, y ∈ Rn. Then

• |Ax| ≤ |A| |x|, (1)

• A > 0 and x ≥ 0, x 6= 0 ⇒ Ax > 0, (2)

• A ≥ 0 ⇒ Ak ≥ 0 for all k ≥ 1, A > 0 ⇒ Ak > 0 for all k ≥ 1, (3)

• A ≥ 0 and x > y > 0 ⇒ Ax > Ay. (4)

We will need ρ(A) = max{|λ| : λ is an eigenvalue of A}, the spectral radius of A.
Nonnegativity is a natural property of many measured quantities. As a consequence, non-

negative matrices arise in many branches of science and engineering. These include probability
theory (Markov chains), population models, iterative methods in numerical analysis, economics
(input–output models), epidemiology, stability analysis and physics.

Example 1 (Leontief’s input-output matrix) This is one of the first successes of mathe-
matical economics. Consider the consumption matrix

A =

 0.4 0 0.1
0 0.1 0.8

0.5 0.7 0.1

 (steel)
(food)
(labour)

in which aij gives the amount of product j that is needed to create one unit of product i. The
matrix A is nonnegative. Let p1 ≥ 0, p2 ≥ 0 and p3 ≥ 0 be the amount of steel, food and
labour we start with, respectively. The amount consumed is Ap, and it leaves a net production
of y = p− Ap.

Can we produce y1 ≥ 0 units of steel, y2 ≥ 0 units of food and y3 ≥ 0 units of labour?
In other words, given y ≥ 0, the problem is to find a vector p ≥ 0 such that p − Ap = y or
p = (I − A)−1y. If (I − A)−1 exists and is nonnegative then clearly p = (I − A)−1y ≥ 0 since
y ≥ 0. So the real question is: Given A ≥ 0, when is (I − A)−1 a nonnegative matrix? This
question is easily answered once we know the main fact about nonnegative matrices.
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Theorem 1 (Nonnegative eigenpairs) If A ≥ 0 then ρ(A) is an eigenvalue of A and there
exists an associated eigenvector x ≥ 0 such that Ax = ρ(A)x.

It follows from Theorem 1 that if A ≥ 0, λmax(A) = ρ(A) is real and nonnegative. Three cases
need to be considered.

1) If λmax(A) = ρ(A) > 1 with corresponding eigenvector x ≥ 0 then x is also an eigenvector
of (I − A)−1 since (I − A)−1x = x/(1 − ρ(A)). But 1/(1 − ρ(A)) < 0 so (I − A)−1 takes a
positive vector x and sends it to a nonpositive vector x/(1−ρ(A)), which means that (I−A)−1

cannot be nonnegative.
2) If λmax(A) = ρ(A) = 1 then (I − A)−1 fails to exist.
3) If λmax(A) = ρ(A) < 1, the nonnegativity of (I − A)−1 is addressed with the following

lemma.

Lemma 2 If ρ(A) < 1 then I − A is nonsingular and (I − A)−1 =
∑∞

k=0A
k.

[With a stronger assumption on A, a similar result is proved in the “Norms” handout, Ex. 9.]
It follows from Lemma 2 that (I −A)−1 =

∑∞
k=0A

k is a sum of nonnegative matrices, since
A ≥ 0 ⇒ Ak ≥ 0 for all k ≥ 1 by (3) in Fact 1. Hence (I − A)−1 is nonnegative.

For the 3 × 3 matrix A of Example 1, ρ(A) = 0.9. Hence (I − A)−1 is nonnegative and
p = (I − A)−1y ≥ 0.

2 Positive Matrices

We first concentrate on matrices whose entries are positive.

Theorem 3 (Perron’s theorem) If A ∈ Rn×n and A > 0 then

(i) ρ(A) > 0 (positive spectral radius).

(ii) ρ(A) is an eigenvalue of A.

(iii) There is an eigenvector x with x > 0 and Ax = ρ(A)x.

(iv) The eigenvalue ρ(A) has algebraic multiplicity 1 (ρ(A) is a simple eigenvalue).

(v) All the other eigenvalues are less than ρ(A) in absolute value, i.e., ρ(A) is the only
eigenvalue of maximum modulus.

Proof. The proof is not examinable. We prove statements (i)–(iii) only.
(i) By definition ρ(A) ≥ 0 with ρ(A) = 0 only when Λ(A) = {0}, in which case A is

nilpotent, i.e, Ak = O for some k > 0 (see the “Theory of Eigensystems” handout). But when
each aij > 0, A cannot be nilpotent so ρ(A) > 0.

(ii)–(iii) If (µ, x) is an eigenpair of A such that |µ| = ρ(A) ≡ ρ, then

ρ|x| = |µ||x| = |µx| = |Ax| ≤ |A||x| = A|x| ⇒
(
A− ρI

)
|x| ≥ 0.

We have to show that equality holds. We argue by contradiction. Let y =
(
A − ρI

)
|x| and

suppose that y 6= 0. Then A > 0 and y ≥ 0 implies Ay > 0 using property (2) of Fact 1.
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Since z ≡ A|x| > 0 there exists ε > 0 such that Ay > εz, or equivalently,
(
ρ + ε

)−1
Az > z

since y = z − ρ|x|. Writing this inequality as Bz > z, where B =
(
ρ + ε

)−1
A and successively

multiplying both sides by B while using property (3) of Fact 1 produces

B2z > Bz > z, B3z > B2z > Bz > z, . . . ⇒ Bkz > z ∀ k = 1, 2, . . . .

But limk→∞B
k = 0 since ρ(B) = ρ/(ε+ ρ) < 1 so in the limit we have 0 > z which contradicts

the fact that z > 0. Consequently, 0 = y =
(
A − ρI

)
|x| thus |x| is an eigenvector for A

associated with the eigenvalue ρ.
The proof is completed by observing that |x| = ρ−1A|x| = ρ−1z > 0.

Theorem 4 (Powers of positive matrices) If A > 0, x is any positive eigenvector of A
corresponding to ρ(A), and y is any positive eigenvector of AT corresponding to ρ(A) = ρ(AT )
then

lim
k→∞

(
A

ρ(A)

)k

=
xyT

yTx
> 0.

Proof. Let B = A/ρ(A). By Perron’s theorem, ρ(B) = 1 is a simple eigenvalue and
all other eigenvalues are less than 1 in absolute value. It follows that the Jordan form of B

must be of the form

[
1 0
0 J̃

]
, where ρ(J̃) < 1. Then J̃k → 0 as k → ∞ so that Jk →

diag(1, 0, . . . , 0) as k →∞. Therefore if B = XJX−1 is the Jordan canonical decomposition
of B then

lim
k→∞

(A/ρ(A))k = lim
k→∞

Bk = X


1

0
. . .

0

X−1 = xpT ,

where x is the first column of X and pT is the first row of X−1. Let G = xpT . Now y is a
positive eigenvector of BT corresponding to the eigenvalue 1. Hence (BT )ky = y or equivalently
yTBk = yT for all k ≥ 1 and hence yTG = yT , that is, (yTx)pT = yT . But x, y > 0 so yTx > 0

and G = xpT = xyT

yT x
> 0.

3 Irreducible Nonnegative Matrices

Theorem 1 is as far as Perron’s theorem can be generalized to nonnegative matrices without
additional hypotheses. For example A =

[
0
0
1
0

]
shows that properties (i)–(iv) in Perron’s Theo-

rem are lost; and A =
[
0
1
1
0

]
shows that the property (v) is also lost. However, Frobenius showed

properties (i)–(iv) of Perron’s Theorem still hold for nonnegative matrices that are irreducible.
A ∈ Rn×n is a reducible matrix when there exists a permutation matrix P such that

P TAP =

[
X Y
0 Z

]
,

where X and Z are both square. A is said to be irreducible if it is not reducible. Clearly
positive matrices are irreducible. On the other hand, any matrix that has a zero row or column
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is reducible. A useful approach to ascertain whether a matrix is irreducible is through the
directed graph of a matrix. The directed graph of an n×n matrix is obtained by connecting
n points P1, . . . , Pn (on the real line or in the plane) by a directed link from Pi to Pj if aij 6= 0.
A directed graph is strongly connected if for any two points Pi and Pj, there is a finite
sequence of directed links from Pi to Pj.

Example 2 Draw the directed graphs of

A1 =

 2 1 0
1 2 1
0 1 2

 , A2 =

 1 0 1
1 0 2
1 0 0

 , A3 =

 0 0 0
1 1 1
2 2 2

 .

The graph of A1 is strongly connected. Neither of the graphs of A2 or A3 are strongly connected.

Fact 2 A ≥ 0 is irreducible if and only if its directed graph is strongly connected.

Theorem 5 (Perron–Frobenius theorem) If A ≥ 0 is irreducible then

(i) ρ(A) > 0.

(ii) ρ(A) is an eigenvalue of A.

(iii) There is an eigenvector x with x > 0 and Ax = ρ(A)x.

(iv) ρ(A) is an eigenvalue of algebraic multiplicity 1.

λmax(A) = ρ(A) is called the Perron root. The Perron vector is the unique vector p
defined by Explain

unique-
ness

Ap = ρ(A)p, p > 0, ‖p‖1 = 1.

4 Stochastic Matrices and Markov Chains

One of the most elegant applications of Perron–Frobenius theory is the algebraic development
of the theory of finite Markov chains. A stochastic matrix is a nonnegative matrix P ∈ Rn×n see

MATH
30017:
Markov
Processes

in which each row sum is equal to 1:

n∑
j=1

pij = 1, i = 1, 2, . . . , n.

Theorem 6 P ≥ 0 is stochastic if and only if P has eigenvalue 1 with associated eigenvector
e = [ 1 1 . . . 1 ]T . Furthermore ρ(P ) = 1 for a stochastic matrix P .
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Proof. If P is stochastic then the condition
∑n

j=1 pij = 1, i = 1, 2, . . . , n can be rewritten as
Pe = e. Hence 1 is an eigenvalue with eigenvector e. Conversely, Pe = e implies

∑n
j=1 pij = 1,

i = 1, 2, . . . , n and hence P is stochastic.
For the last part of the theorem we use ρ(P ) ≤ ‖P‖∞ = 1 so ρ(P ) = 1 since 1 is an

eigenvalue.

A Markov chain is a probabilistic process in which the future development of the process
is completely determined by the present state and not at all in the way it arose. Markov chains
serve as models for describing systems that can be in a number of different states s1, s2, s3, . . ..
The Markov chain is finite if the number of states is finite. At each time step the system moves
from state si to state sj with probability pij ≥ 0. The matrix P = [pij] is called a transition
matrix. Clearly P ≥ 0 and since

∑n
j=1 pij = 1 (i = 1, 2, . . . , n), P is stochastic. It can be

shown that every Markov chain defines a stochastic matrix and conversely.
A probability distribution vector is a vector p ≥ 0 such that eTp = 1. To a Markov chain

with n states is associated an initial probability distribution vector p(0) =
[
p
(0)
1 . . . p

(0)
n

]
,

where p
(0)
i is the probability that the chain starts in state i. Then the jth component of

p(1) = P Tp(0) gives the probability of being in state j after one step. Note that eTp(1) =
eTP Tp(0) = eTp(0) = 1 so p(1) is again a probability distribution vector. The vector p(k) =
P Tp(k−1) = (P T )kp(0) is called the kth step probability distribution vector.

An important problem is to find the stationary probability distribution vector p of a
Markov chain defined by

P Tp = p, eTp = 1.

Theorem 7 Assume that a Markov chain has a positive transition matrix P . Then independent
of the initial probability distribution vector p(0),

lim
k→∞

p(k) = p,

where p(k) = (P T )kp(0) and p is the stationary probability distribution vector.

Proof. Since P is stochastic, ρ(P ) = 1 and Pe = e, where e = [ 1 . . . 1 ]T . The stationary
probability distribution vector p satisfies P Tp = p, eTp = 1. Theorem 4 applied to P T > 0
(with (x = p and y = e) gives

lim
k→∞

p(k) = lim
k→∞

(P T )kp(0) =
peT

eTp
p(0) =

eTp(0)

eTp
p = p

since, by definition, eTp(0) = 1.

Example 3 An association of four regions R1, R2, R3 and R4 trade in a certain nonrenewable
commodity. Assume that α units of the commodity are shipped between and within the regions
according to the following matrix of fractions

Q =


0.1 0.2 0.1 0.1
0.7 0.6 0.1 0.1
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

 ,
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where qij is the fraction of the commodity present in Rj which is shipped each day to Ri.
Suppose that the α units of the commodity are distributed so that there are x1, x2, x3, x4 units
in regions R1, R2, R3, R4, respectively, today. This is an example of a Markov chain. Since qijxj
is the amount shipped today from Rj to Ri,

∑4
j=1 qijxj is the amount present at Ri tomorrow.

In general, Qkx gives the distribution of the commodity in each region k days from today.
What will the distribution of the commodity be like far into the future?
Clearly Q is positive and since QT e = e with e = [ 1 1 . . . 1 ]T , QT is stochastic.

So by Theorem 6, λ = 1 is the largest eigenvalue of QT (and Q). As you may verify p =
[ 6 16 11 11 ]T /44 is the stationary probability distribution vector (Qp = p and eTp = 1).
Now applying Theorem 7 with p(0) = x/α so that eTp(0) = 1 gives

lim
k→∞

αQk(x/α) = αp =
α

44
[ 6 16 11 11 ]T .

Notice that this limit depends only on Q and α and not at all on x. This tells us that regardless
of how the α units were distributed among the four regions initially, in the long run region Ri

will have αpi of them, i = 1, . . . , 4.
Suppose now that the commodity is shipped between and within the regions according to

the following matrix of fractions:

Q =

[
X 0
Y I

]
, where X =

[
0.1 0.3
0.7 0.6

]
, Y =

[
0.1 0
0.1 0.1

]
, I =

[
1 0
0 1

]
.

Note that Q ≥ 0 is reducible and QT e = e so QT is stochastic. Moreover,

Qk =

[
Xk 0

Y
∑k−1

j=0 X
j I

]
, k ≥ 1.

But ρ(X) ≤ ‖X‖1 = 0.9 so limk→∞X
k = O. Also by Lemma 2, I −X is nonsingular and

∞∑
j=0

Xj = (I −X)−1 =

[
0.9 −0.3
−0.7 0.4

]−1
=

[
8/3 3
14/3 6

]
.

Consequently, limk→∞ Y
∑k−1

j=0 X
j =

[
4/15 1/5
11/15 4/5

]
and

lim
k→∞

Qkx =


0 0 0 0
0 0 0 0

4/15 1/5 1 0
11/15 4/5 0 1



x1
x2
x3
x4

 =
1

15


0
0

4x1 + 3x2 + 15x3
11x1 + 12x2 + 15x4

 .
So eventually R3 and R4 will have all the commodity and how many units they have depends
on the initial distribution vector x.

Example 4 (Google’s PageRank) The web search engine Google uses a so-called PageRank
vector to determine the order in which web pages are displayed. The limiting probability that
an infinitely dedicated random surfer visits any particular web page is its PageRank. The
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PageRank vector depends only on the hyper-link structure of the web graph, but it does not
depend on the contents of the web pages. A page has high rank if other pages with high
rank link to it. Computing PageRank amounts to computing the stationary distribution of a
stochastic matrix, the “Google matrix”.

The Google matrix G is a convex combination of two stochastic matrices:

G = αS + (1− α)evT , 0 < α < 1,

where S ≥ 0, stochastic, represents the hyper-link structure of the web graph and v > 0 such
that eTv = 1 is the so-called personalization vector.

The Google matrix G is positive since (1 − α)evT > 0 and stochastic since Ge = e. The
Perron–Frobenius theory tells us that 1 is the largest eigenvalue of G. The PageRank vector p is
the Perron vector (or stationary probability distribution vector) of GT i.e., p satisfies GTp = p,
p > 0, eTp = 1. It is the only eigenvector with nonnegative components and for any initial
probability distribution vector p(0), limk→∞(GT )kp(0) = p. The components of p are the Google
PageRanks.

Due to the huge dimension of the Google matrix (close to 50 billion), efficiently computing
the stationary distribution vector p is a challenge.

Exercises

1. (a) If 0 6= x ≥ 0 and A > 0, show that Ax > 0.

(b) Find an example of a nonzero, nonnegative, 2 × 2 matrix A and a nonzero, nonnegative,
2× 1 vector x such that Ax = 0.

(c) If A > 0 and z ≥ w, show that Az ≥ Aw, with equality iff z = w.

2. Let A be any 2× 2 positive stochastic matrix. Show that A has the form

[
1− α α
β 1− β

]
for

some α, β such that 0 < α, β < 1. Find the Perron root and Perron vector of AT .

3. Let A =

 0 1 0
3 0 3
0 2 0

. Show that A ≥ 0 is irreducible. Find its Perron root and Perron vector.

4. Let A ≥ 0 be irreducible. Show that there are no nonnegative eigenvectors for A other than
the Perron vector and its positive multiples.

5. Explain why rank(I − P ) = n− 1 for every irreducible stochastic matrix P ∈ Rn×n.

6. Let A ∈ Rn×n be nonnegative. Show that if there is x > 0 such that Ax = ρ(A)x then
P =

(
1/ρ(A)

)
D−1AD is stochastic, where D = diag(x1, x2, . . . , xn).


