Class Test

■ 140 students registered for the course,

Class Test

■ 140 students registered for the course,

- 140 written tests received,

Class Test

■ 140 students registered for the course,

- 140 written tests received,

■ 2 groups, 7 questions,

Class Test

■ 140 students registered for the course,
■ 140 written tests received,
■ 2 groups, 7 questions,

- good average of 14.2/20 points,

Class Test

- 140 students registered for the course,

■ 140 written tests received,
■ 2 groups, 7 questions,

- good average of 14.2/20 points,
- 15 students scored 19 or 20 points,

Class Test

- 140 students registered for the course,
- 140 written tests received,
- 2 groups, 7 questions,
- good average of 14.2/20 points,
- 15 students scored 19 or 20 points,

■ 72 students better than the average.
■ 2 tests received without name.
■ Student 9023503 not registered?

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.
■ Should write $\operatorname{null}(A)=\{0\}$ because it is a set.

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.
■ Should write null $(A)=\{0\}$ because it is a set.
■ Geom. multiplicity of $\lambda=$ number of Jordan blocks for λ $=\mathrm{nr}$ of linearly independent eigenvectors for λ.

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.
■ Should write $\operatorname{null}(A)=\{0\}$ because it is a set.
■ Geom. multiplicity of $\lambda=$ number of Jordan blocks for λ $=\mathrm{nr}$ of linearly independent eigenvectors for λ.
$\square \operatorname{trace}(A B)=\operatorname{trace}(B A)$: showing it for 2×2 matrices is not a general proof. Show you used the swapping $i-j$ trick.
$\square\left(e_{1} e_{1}^{T}\right)^{T}=e_{1} e_{1}^{T}$, not $e_{1}^{T} e_{1}$ which is a number.

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.
- Should write null $(A)=\{0\}$ because it is a set.

■ Geom. multiplicity of $\lambda=$ number of Jordan blocks for λ $=\mathrm{nr}$ of linearly independent eigenvectors for λ.
$\square \operatorname{trace}(A B)=\operatorname{trace}(B A)$: showing it for 2×2 matrices is not a general proof. Show you used the swapping $i-j$ trick.
$\square\left(e_{1} e_{1}^{T}\right)^{T}=e_{1} e_{1}^{T}$, not $e_{1}^{T} e_{1}$ which is a number.
■ Multiple eigenvalues are eigenvalues with multiplicity greater than 1. (See discussion after Thm. 7.)
■ A matrix with multiple eigenvalues may be diagonalizable.

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.
■ Should write $\operatorname{null}(A)=\{0\}$ because it is a set.
■ Geom. multiplicity of $\lambda=$ number of Jordan blocks for λ $=\mathrm{nr}$ of linearly independent eigenvectors for λ.
- trace $(A B)=\operatorname{trace}(B A)$: showing it for 2×2 matrices is not a general proof. Show you used the swapping $i-j$ trick.
$\square\left(e_{1} e_{1}^{T}\right)^{T}=e_{1} e_{1}^{T}$, not $e_{1}^{T} e_{1}$ which is a number.
- Multiple eigenvalues are eigenvalues with multiplicity greater than 1. (See discussion after Thm. 7.)
- A matrix with multiple eigenvalues may be diagonalizable.

■ A matrix Q is orthogonal if $Q^{T} Q=I=Q Q^{T}$. Equivalently: All the columns q_{i} are orthogonal, $q_{i}^{T} q_{j}=0$ when $i \neq j$, and $q_{i}^{\top} q_{i}=\left\|q_{i}\right\|_{2}^{2}=1$.

Some remarks

- Conditions for A being nonsingular (same as invertible) were asked for.
- Should write $\operatorname{null}(A)=\{0\}$ because it is a set.

■ Geom. multiplicity of $\lambda=$ number of Jordan blocks for λ $=\mathrm{nr}$ of linearly independent eigenvectors for λ.

- trace $(A B)=\operatorname{trace}(B A)$: showing it for 2×2 matrices is not a general proof. Show you used the swapping $i-j$ trick.
$\square\left(e_{1} e_{1}^{T}\right)^{T}=e_{1} e_{1}^{T}$, not $e_{1}^{T} e_{1}$ which is a number.
- Multiple eigenvalues are eigenvalues with multiplicity greater than 1. (See discussion after Thm. 7.)
- A matrix with multiple eigenvalues may be diagonalizable.

■ A matrix Q is orthogonal if $Q^{\top} Q=I=Q Q^{\top}$. Equivalently: All the columns q_{i} are orthogonal, $q_{i}^{\top} q_{j}=0$ when $i \neq j$, and $q_{i}^{T} q_{i}=\left\|q_{i}\right\|_{2}^{2}=1$.
$\square(A+B)^{2} \neq A^{2}+2 A B+B^{2}$ in general.

