Theory of Eigensystems

Let A be a square matrix. The nonzero vector $x \in \mathbb{C}^n$ is called an **eigenvector** of $A \in \mathbb{C}^{n \times n}$ if Ax is a multiple of x,

$$Ax = \lambda x, \quad x \neq 0. \tag{1}$$

1/39

 (λ, x) is called an eigenpair.

Easy to show: Eigenvalues must satisfy

$$\det(\lambda I - A) = 0.$$

The set of all eigenvalues of *A* is called the **spectrum** of *A* and will be denoted by

$$\Lambda(\mathbf{A}) = \{\lambda_1, \ldots, \lambda_n\}.$$

Stefan Güttel Theory of eigensystems

A subspace \mathcal{X} of \mathbb{C}^n is an **invariant subspace** for A if $A\mathcal{X} \subseteq \mathcal{X}$, that is, $x \in \mathcal{X}$ implies $Ax \in \mathcal{X}$.

Theorem (Thm. 1)

Let the columns of $X \in \mathbb{C}^{n \times p}$, $p \le n$, form a basis for a subspace \mathcal{X} of \mathbb{C}^n . Then \mathcal{X} is an invariant subspace for A if and only if AX = XB for some $B \in \mathbb{C}^{p \times p}$. When the latter equation holds, the spectrum of B is contained within that of A.

Proof:

Similarity, Unitary Similarity

Let $A, B \in \mathbb{C}^{n \times n}$. The matrices A and B are similar if there exists a nonsingular matrix P such that

$$B = P^{-1}AP. (2)$$

This is called a **similarity transformation** and *P* is the **transforming matrix**.

Theorem (Thm. 2)

Let A and B be similar, say $B = P^{-1}AP$. Then A and B have the same eigenvalues, and x is an eigenvector of A with associated eigenvalue λ if and only if $P^{-1}x$ is an eigenvector of B with associated eigenvalue λ .

Stefan Güttel Theory of eigensystems 3 / 39

A and B are said to be **unitarily similar** if there is a unitary matrix U such that $B = U^*AU$. If A and B are real, then they are said to be **orthogonally similar** if there is a real, orthogonal matrix U such that $B = U^TAU$.

If a matrix A is similar to a diagonal matrix then A is said to be diagonalizable or simple.

How is Similarity Used in Solving Problems?

The **similarity method** is a strategy frequently used for solving problems. Here is an outline of the method.

- Step 1 : Choose a matrix *B* similar to *A* for which the problem is easier to solve.
- Step 2: Solve the problem using the matrix *B* instead of *A* (the *B*-problem).
- Step 3: Interpret the solution to the *B*-problem in terms of the matrix *A*.

Example

Given $A = \begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$, find each entry in A^{1010} .

Stefan Güttel Theory of eigensystems 5 / 39

Example

In certain problems in economics the state of a system is described by a matrix $S_n = I + A + A^2 + \cdots + A^n$ at time n where A is a given matrix. Use the similarity method to investigate the behaviour of the system in the "long run", i.e., when n is large.

Canonical Forms

Issai Schur (1875–1941) may have asked:

What is the simplest form a square matrix can take under similarity transformations?

Particularly important: Unitary transforms.

Theorem (Schur's theorem, Thm. 3)

Let $A \in \mathbb{C}^{n \times n}$. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$T = U^{-1}AU = U^*AU.$$

Proof:

Stefan Güttel Theory of eigensystems 7 / 39

The unitary similarity transformation $T = U^{-1}AU$ can also be written

$$A = UTU^*$$

called the **Schur decomposition** of *A*.

■ Since $det(U) det(U^*) = det(UU^*) = 1$,

$$\det(\lambda I - A) = \det(\lambda I - T) = \prod_{i=1}^{n} (\lambda - t_{ii}),$$

the diagonal elements of T are the eigenvalues of A.

- Schur decomposition is not unique.
- The columns of *U* are called **Schur vectors**.
- With the exception of u_1 , the Schur vectors are not, in general, eigenvectors of A.

Stefan Güttel Theory of eigensystems

Diagonalizable Matrices

Is any matrix A diagonalizable?

In other words can we always find a nonsingular P such that $P^{-1}AP$ is diagonal?

Class of Matrices Unitarily Similar to a Diagonal Matrix:

A matrix A is **normal** if $AA^* = A^*A$.

- Contains the important subclasses of Hermitian and unitary matrices.
- Schur's theorem takes nice form: the triangular matrix T is diagonal.
- This special form of Schur's theorem is called the *spectral* theorem.

Stefan Güttel Theory of eigensystems

Theorem (Spectral theorem, Thm. 4)

Let $A \in \mathbb{C}^{n \times n}$. Then A is normal if and only if there is a unitary matrix U and a diagonal matrix Λ such that

$$A = U \Lambda U^*$$
.

Theorem (Spectral theorem, Thm. 4)

Let $A \in \mathbb{C}^{n \times n}$. Then A is normal if and only if there is a unitary matrix U and a diagonal matrix Λ such that

$$A = U \Lambda U^*$$
.

Proof: (\Rightarrow) Let $A = UTU^*$ be the Schur decomposition of A. If A is normal then T is normal (see Exercise 4). Since a normal and triangular matrix is diagonal (see Exercise 8), T is diagonal.

Stefan Güttel Theory of eigensystems 10 / 39

Theorem (Spectral theorem, Thm. 4)

Let $A \in \mathbb{C}^{n \times n}$. Then A is normal if and only if there is a unitary matrix U and a diagonal matrix Λ such that

$$A = U \Lambda U^*$$
.

Proof: (\Rightarrow) Let $A = UTU^*$ be the Schur decomposition of A. If A is normal then T is normal (see Exercise 4). Since a normal and triangular matrix is diagonal (see Exercise 8), T is diagonal.

(\Leftarrow) If $A = U \Lambda U^*$ with U unitary and Λ diagonal then, since diagonal matrices commute,

$$AA^* = (U\Lambda U^*)(U\Lambda^* U^*)$$

$$= U\Lambda \Lambda^* U^*$$

$$= U\Lambda^* \Lambda U^*$$

$$= (U\Lambda^* U^*)(U\Lambda U^*) = A^* A.$$

Stefan Güttel Theory of eigensystems

Theorem (Thm. 5)

 $A \in \mathbb{C}^{n \times n}$ is normal if and only if it has n orthogonal eigenvectors.

Theorem (Thm. 5)

 $A \in \mathbb{C}^{n \times n}$ is normal if and only if it has n orthogonal eigenvectors.

Proof: (\Rightarrow) From spectral Theorem, normal matrices have an orthonormal basis of eigenvectors.

Theorem (Thm. 5)

 $A \in \mathbb{C}^{n \times n}$ is normal if and only if it has n orthogonal eigenvectors.

Proof: (\Rightarrow) From spectral Theorem, normal matrices have an orthonormal basis of eigenvectors.

(\Leftarrow) Suppose u_1, \ldots, u_n is an orthonormal basis of \mathbb{C}^n consisting of eigenvectors of A:

$$Au_j = \lambda_j u_j, \quad j = 1, \ldots, n.$$

Let $U = [u_1 \cdots u_n]$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Then $AU = U\Lambda$ or equivalently $A = U\Lambda U^*$ and A is normal by the spectral Theorem.

Stefan Güttel Theory of eigensystems

Examples of Normal Matrices

The following matrices satisfy $AA^* = A^*A$:

- **Hermitian** matrices, i.e., $A^* = A$,
- **symmetric** matrices, i.e., $A^T = A$,
- **unitary** matrices, i.e., $AA^* = A^*A = I$,
- **orthogonal** matrices, i.e., $AA^T = A^TA = I$,
- **skew-Hermitian** matrices, i.e., $A^* = -A$,
- **skew-symmetric** matrices, i.e., $A^T = -A$.

Stefan Güttel Theory of eigensystems 12 / 39

Matrices Similar to a Diagonal Matrix

Recall: Normal matrices are unitarily diagonalizable.

Question: Which matrices are diagonalizable in general, i.e., $P^{-1}AP$ is diagonal with P not necessarily unitary?

Theorem (Thm. 6)

A matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof:

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume *A*'s e'vals $\lambda_1, \ldots, \lambda_n$ are distinct and assume e'vecs x_1, \ldots, x_n are linearly dependent so that $\sum_{i=1}^n \alpha_i x_i = 0$ with $\alpha_k \neq 0$ for some k. We may assume $\alpha_n \neq 0$. Then

$$0 = (A - \lambda_1 I) \sum_{i=1}^n \alpha_i x_i = \sum_{i=2}^n \alpha_i (\lambda_i - \lambda_1) x_i.$$

Stefan Güttel Theory of eigensystems 14 / 39

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume *A*'s e'vals $\lambda_1, \ldots, \lambda_n$ are distinct and assume e'vecs x_1, \ldots, x_n are linearly dependent so that $\sum_{i=1}^n \alpha_i x_i = 0$ with $\alpha_k \neq 0$ for some k. We may assume $\alpha_n \neq 0$. Then

$$0 = (A - \lambda_1 I) \sum_{i=1}^n \alpha_i x_i = \sum_{i=2}^n \alpha_i (\lambda_i - \lambda_1) x_i.$$

$$0 = (A - \lambda_2 I) \sum_{i=2}^n \alpha_i (\lambda_i - \lambda_1) x_i = \sum_{i=3}^n \alpha_i (\lambda_i - \lambda_1) (\lambda_i - \lambda_2) x_i.$$

Stefan Güttel Theory of eigensystems 14 / 39

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume *A*'s e'vals $\lambda_1, \ldots, \lambda_n$ are distinct and assume e'vecs x_1, \ldots, x_n are linearly dependent so that $\sum_{i=1}^n \alpha_i x_i = 0$ with $\alpha_k \neq 0$ for some k. We may assume $\alpha_n \neq 0$. Then

$$0 = (A - \lambda_1 I) \sum_{i=1}^n \alpha_i x_i = \sum_{i=2}^n \alpha_i (\lambda_i - \lambda_1) x_i.$$

$$0 = (A - \lambda_2 I) \sum_{i=2}^{n} \alpha_i (\lambda_i - \lambda_1) x_i = \sum_{i=3}^{n} \alpha_i (\lambda_i - \lambda_1) (\lambda_i - \lambda_2) x_i.$$

Continuing similar multiplications we obtain that

$$0 = \alpha_n(\lambda_n - \lambda_{n-1})(\lambda_n - \lambda_{n-2}) \dots (\lambda_n - \lambda_1) x_n.$$

Contradiction since the $\lambda_i \neq \lambda_j$, $\alpha_n \neq 0$ and $x_n \neq 0$. Hence *A* has *n* I. i. eigenvectors and it is diagonalizable by Thm. 6.

Stefan Güttel Theory of eigensystems 14 / 39

Recap

Stefan Güttel Theory of eigensystems 15 / 39

Application: Principal Component Analysis

Assume that one makes m measurements for each of n objects, and collect these data in columns $b_1, \ldots, b_n \in \mathbb{R}^m$.

Example: m = 3 measurements, n = 8 people

	P1	P2	P3	P4	P5	P6	P7	P8
age							22	
weight	10.4	12.2	10.5	10.9	9.0	12.5	11.5	10.2
shoe size	7	8	7	7	8	8	9	7

Question: If one wanted to distinguish these 8 people by a linear combination of the 3 measurements, what would be a best possible combination?

Stefan Güttel Theory of eigensystems 16 / 39

Application: Principal Component Analysis

11 Form the data matrix $B \in \mathbb{R}^{m \times n}$:

2 Substract the mean for each row, $\widehat{B} = B - B[1, ..., 1]^T/n$:

$$\widehat{B} = \begin{bmatrix} -1 & 7 & 0 & 0 & -1 & -2 & -1 & -2 \\ -0.5 & 1.3 & -0.4 & 0 & -1.9 & 1.6 & 0.6 & -0.7 \\ -0.5 & 0.5 & -0.5 & -0.5 & 0.5 & -0.5 & 1.5 & -0.5 \end{bmatrix}$$

3 Form the symmetric covariance matrix $\widehat{C} = \frac{1}{n-1} \widehat{B} \widehat{B}^T$:

$$\widehat{C} = \begin{bmatrix} 8.571 & 1.300 & 0.571 \\ 1.300 & 1.303 & 0.085 \\ 0.571 & 0.085 & 0.571 \end{bmatrix}$$

Stefan Güttel Theory of eigensystems 17 / 39

 $f ext{4}$ Compute the eigenvectors and eigenvalues of \hat{C} :

$$\widehat{C}U = UD$$
, $U^TU = I$, $D = \operatorname{diag}(\lambda_1, \ldots, \lambda_m)$, $\lambda_j \geq \lambda_{j+1}$.

In our example (age, weight, shoe size):

$$U = \begin{bmatrix} 0.982 & 0.169 & -0.073 \\ 0.170 & -0.985 & 0.012 \\ 0.070 & 0.024 & 0.997 \end{bmatrix} \text{ and } D = \begin{bmatrix} 8.84 \\ & 1.08 \\ & & 0.53 \end{bmatrix}.$$

The columns of $U = [u_1, ..., u_m]$ are orthogonal directions in which the **principal components** $u_j^T b$ have the largest possible variance for all data columns b of B, with the **variance** given by λ_i .

Stefan Güttel Theory of eigensystems 18 / 39

 $0.982 \times age + 0.170 \times weight + 0.070 \times shoe$ size

has a largest possible variance of $\lambda_1 = 8.84$.

Stefan Güttel Theory of eigensystems

 $0.982 \times age + 0.170 \times weight + 0.070 \times shoe$ size

has a largest possible variance of $\lambda_1 = 8.84$.

Stefan Güttel Theory of eigensystems

 $0.982 \times age + 0.170 \times weight + 0.070 \times shoe$ size

has a largest possible variance of $\lambda_1 = 8.84$.

Stefan Güttel Theory of eigensystems

 $0.982 \times age + 0.170 \times weight + 0.070 \times shoe$ size

has a largest possible variance of $\lambda_1 = 8.84$.

Stefan Güttel Theory of eigensystems

 $0.982 \times age + 0.170 \times weight + 0.070 \times shoe$ size

has a largest possible variance of $\lambda_1 = 8.84$.

Stefan Güttel Theory of eigensystems

Application: Face Recognition

The eigenface method by L. Sirovich and M. Kirby (1987) and M. Turk and A. Pentland (1991) is based on principal component analysis.

The (long) vectors b_1, \ldots, b_n correspond to n different images, and the entries correspond to gray-scale values of pixels:

Stefan Güttel Theory of eigensystems 24 / 39

The eigenface method then proceeds as explained before:

- **1** Form data matrix $B = [b_1, \dots, b_n]$ of images.
- Substract the mean image (average face)

$$\widehat{B} = B - B[1,\ldots,1]^T/n.$$

3 Form the symmetric covariance matrix

$$\widehat{C} = \frac{1}{n-1}\widehat{B}\widehat{B}^T.$$

- Compute orthogonal eigenvectors $u_1, u_2, ...$ of \widehat{C} . These are called **eigenfaces**. The principal component $u_1^T b_j$ has the largest variance for all images $b_1, ..., b_n$.
- This can be used for face recognition: find an image b_j "closest" to a **test image** t by comparing $u_1^T t$ and $u_1^T b_j$.

Stefan Güttel Theory of eigensystems 25 / 39

Nondiagonalizable matrices

Recall:

Theorem (Thm. 6)

 $A \in \mathbb{C}^{n \times n}$ is diagonalizable iff A has n linearly independent eigenvectors.

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal matrices?

Stefan Güttel Theory of eigensystems 26 / 39

Nondiagonalizable matrices

Recall:

Theorem (Thm. 6)

 $A \in \mathbb{C}^{n \times n}$ is diagonalizable iff A has n linearly independent eigenvectors.

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal matrices?

- ▶ have less than *n* linearly independent eigenvectors,
- have multiple eigenvalues.

Example:
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
.

Stefan Güttel Theory of eigensystems 26 / 39

Jordan Canonical Form

What is the simplest form any matrix can take under similarity transform?

Marie Ennemond Camille Jordan (1838–1922)

Stefan Güttel Theory of eigensystems 27 / 39

Jordan Canonical Form

Theorem (Jordan canonical form, Thm. 8)

Any matrix $A \in \mathbb{C}^{n \times n}$ can be expressed in the Jordan canonical form

$$X^{-1}AX = J = \begin{bmatrix} J_1(\lambda_1) & & & & & \\ & J_2(\lambda_2) & & & & \\ & & \ddots & & \\ & & J_p(\lambda_p) \end{bmatrix},$$
 $J_k = J_k(\lambda_k) = \begin{bmatrix} \lambda_k & 1 & & & \\ & \lambda_k & \ddots & & \\ & & \ddots & 1 & \\ & & & \lambda_k \end{bmatrix} \in \mathbb{C}^{m_k \times m_k},$

where X is nonsingular and $m_1 + m_2 + \cdots + m_p = n$.

Stefan Güttel Theory of eigensystems 28 / 39

Jordan Blocks

$$J_k = J_k(\lambda_k) = egin{bmatrix} \lambda_k & 1 & & & & \ & \lambda_k & \ddots & & \ & & \ddots & 1 & \ & & & \lambda_k \end{bmatrix} \in \mathbb{C}^{m_k imes m_k}$$

For example for $m_k = 3$,

$$(J_k(\lambda_k) - \lambda_k I)x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \implies x_2 = x_3 = 0$$

so that x is a multiple of $e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

Stefan Güttel Theory of eigensystems 29 / 39

Properties

- (i) J has p Jordan blocks $\Leftrightarrow A$ has p lin. indep. eigenvectors.
- (ii) The **algebraic multiplicity** of a given e'val λ is the sum of the dimensions of the Jordan blocks in which λ appears.
- (iii) The **geometric multiplicity** of λ is
 - the number of Jordan blocks associated with λ , or
 - the number of linearly independent eigenvectors associated with λ or,
 - dim(null($A \lambda I$)).
- (iv) An eigenvalue λ is **defective** if it appears in a Jordan block of size greater than 1.
 - A is **defective** if it has a defective e'val \Leftrightarrow A does not have a complete set of lin. indep. eigenvectors.
- (v) The order of the largest Jordan block corresponding to λ is called **index** of λ .

Stefan Güttel Theory of eigensystems 30 / 39

Find a Jordan matrix *J* of a matrix *A* such that

(a)
$$p(\lambda) = \det(\lambda I - A) = (\lambda - 1)^3 (\lambda - 2)^4$$
,

(b) $\dim(\text{null}(A - I)) = 2$ and $\dim(\text{null}(A - 2I)) = 3$.

31 / 39

Find the Jordan canonical form of

$$A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ -3 & 2 & 0 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix}.$$

Stefan Güttel Theory of eigensystems 32 / 39

Determine the Jordan canonical form of a 14×14 matrix A having the following eigenvalues and sequences of ranks:

	$\operatorname{rank}(\boldsymbol{A}-\lambda \boldsymbol{I})^k$						
	1	_	•	4	5		
$\lambda = 1$	11	10	9	9	9		
$\lambda = 2$	12	10	10	10	10		
$\lambda = 1$ $\lambda = 2$ $\lambda = 3$	12	11	10	9	9		

Stefan Güttel Theory of eigensystems 33 / 39

Determine the Jordan canonical form of a 14×14 matrix A having the following eigenvalues and sequences of ranks:

	$\operatorname{rank}(\boldsymbol{A} - \lambda \boldsymbol{I})^k$					
k	1	2	3	4	5	
$\lambda = 1$	11	10	9	9	9	
$\lambda=$ 2	12	10	10	10	10	
$\lambda = 3$	12	11	10	9	9	

Stefan Güttel Theory of eigensystems 34 / 39

Determine the Jordan canonical form of a 14×14 matrix A having the following eigenvalues and sequences of ranks:

	$\operatorname{rank}(\mathbf{A}-\lambda\mathbf{I})^k$					
k	1	2		4	5	
$\lambda = 1$	11	10	9	9	9	
$\lambda = 1$ $\lambda = 2$	12	10	10	10	10	
$\lambda = 3$	12	11	10	9	9	

Stefan Güttel Theory of eigensystems 35 / 39

Eigenvectors and Generalized Eigenvectors

$$X^{-1}AX = J \Leftrightarrow AX = XJ$$
 (5)

$$J = egin{bmatrix} J_1(\lambda_1) & & & & \ & \ddots & & \ & & J_p(\lambda_p) \end{bmatrix}, \ J_1(\lambda_1) = egin{bmatrix} \lambda_1 & 1 & & \ & \ddots & 1 \ & & \lambda_1 \end{bmatrix} \in \mathbb{C}^{m_1 imes m_1},$$

Equating 1st m_1 cols of (5) yields

$$Ax_1 = \lambda_1 x_1, \quad Ax_i = \lambda_1 x_i + x_{i-1}, \ i = 2, \dots, m_1.$$

Stefan Güttel Theory of eigensystems 36 / 39

Eigenvectors and Generalized Eigenvectors

$$X^{-1}AX = J \Leftrightarrow AX = XJ$$
 (5)

$$J = egin{bmatrix} J_1(\lambda_1) & & & & \ & \ddots & & \ & & J_p(\lambda_p) \end{bmatrix}, \ J_1(\lambda_1) = egin{bmatrix} \lambda_1 & 1 & & \ & \ddots & 1 \ & & \lambda_1 \end{bmatrix} \in \mathbb{C}^{m_1 imes m_1},$$

Equating 1st m_1 cols of (5) yields

$$Ax_1 = \lambda_1 x_1, \quad Ax_i = \lambda_1 x_i + x_{i-1}, \ i = 2, \dots, m_1.$$

- ▶ Cols 1, $m_1 + 1, ..., m_1 + m_2 + ... + m_{p-1} + 1$ of X are eigenvectors of A and are linearly independent since X is nonsingular.
- ▶ The other cols of *X* are **generalized eigenvectors**.

Stefan Güttel Theory of eigensystems 36 / 39

Eigenvectors and Generalized Eigenvectors

$$X^{-1}AX = J \Leftrightarrow AX = XJ$$

$$J = \begin{bmatrix} J_1(\lambda_1) & & & \\ & \ddots & & \\ & & J_p(\lambda_p) \end{bmatrix}, J_1(\lambda_1) = \begin{bmatrix} \lambda_1 & 1 & & \\ & \ddots & 1 \\ & & \lambda_1 \end{bmatrix} \in \mathbb{C}^{m_1 \times m_1},$$

Equating 1st m_1 cols of (5) yields

$$Ax_1 = \lambda_1 x_1, \quad Ax_i = \lambda_1 x_i + x_{i-1}, \ i = 2, ..., m_1.$$

- ▶ Cols 1, $m_1 + 1, ..., m_1 + m_2 + ... + m_{p-1} + 1$ of X are eigenvectors of A and are linearly independent since X is nonsingular.
- ▶ The other cols of *X* are **generalized eigenvectors**.

The vectors x_1, x_2, \dots, x_{m_1} are called a **Jordan chain**. The columns of X form p Jordan chains

$$\{X_1,\ldots,X_{m_1}\},\{X_{m_1+1},\ldots,X_{m_1+m_2}\},\ldots,\{X_{n-m_p+1},\ldots,X_n\}.$$

Stefan Güttel Theory of eigensystems

36/39

Determine the Jordan canonical form, the eigenvectors and generalized eigenvectors of

$$A = \begin{bmatrix} 6 & 2 & 2 \\ -2 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

Cayley-Hamilton Theorem

Arthur Cayley FRS (1821–1895) Sir William Rowan Hamilton (1805–1865)

Theorem (Thm. 9)

Let p be the characteristic polynomial of an $n \times n$ matrix A. Then p(A) = O.

Proof:

Stefan Güttel Theory of eigensystems 38 / 39

The unique monic (leading coeff. = 1) polynomial q such that q(A) = O is called the **minimal polynomial** of A.

Theorem (Thm. 10)

Let A be an $n \times n$ matrix with s distinct eigenvalues $\lambda_1, \dots, \lambda_s$. The minimal polynomial of A is

$$q(t) = \prod_{i=1}^{s} (t - \lambda_i)^{n_i},$$

where n_i is the dimension of the largest Jordan block in which λ_i appears (= the index of λ_i).

Stefan Güttel Theory of eigensystems 39 / 39