Theory of Eigensystems

Let A be a square matrix. The nonzero vector $x \in \mathbb{C}^{n}$ is called an eigenvector of $A \in \mathbb{C}^{n \times n}$ if $A x$ is a multiple of x,

$$
\begin{equation*}
A x=\lambda x, \quad x \neq 0 \tag{1}
\end{equation*}
$$

(λ, x) is called an eigenpair.
Easy to show: Eigenvalues must satisfy

$$
\operatorname{det}(\lambda I-A)=0 .
$$

The set of all eigenvalues of A is called the spectrum of A and will be denoted by

$$
\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} .
$$

A subspace \mathcal{X} of \mathbb{C}^{n} is an invariant subspace for A if $A \mathcal{X} \subseteq \mathcal{X}$, that is, $x \in \mathcal{X}$ implies $A x \in \mathcal{X}$.

Theorem (Thm. 1)

Let the columns of $X \in \mathbb{C}^{n \times p}, p \leq n$, form a basis for a subspace \mathcal{X} of \mathbb{C}^{n}. Then \mathcal{X} is an invariant subspace for A if and only if $A X=X B$ for some $B \in \mathbb{C}^{p \times p}$. When the latter equation holds, the spectrum of B is contained within that of A.

Proof:

Similarity, Unitary Similarity

Let $A, B \in \mathbb{C}^{n \times n}$. The matrices A and B are similar if there exists a nonsingular matrix P such that

$$
\begin{equation*}
B=P^{-1} A P \tag{2}
\end{equation*}
$$

This is called a similarity transformation and P is the transforming matrix.

Theorem (Thm. 2)

Let A and B be similar, say $B=P^{-1} A P$. Then A and B have the same eigenvalues, and x is an eigenvector of A with associated eigenvalue λ if and only if $P^{-1} x$ is an eigenvector of B with associated eigenvalue λ.
A and B are said to be unitarily similar if there is a unitary matrix U such that $B=U^{*} A U$. If A and B are real, then they are said to be orthogonally similar if there is a real, orthogonal matrix U such that $B=U^{\top} A U$.

If a matrix A is similar to a diagonal matrix then A is said to be diagonalizable or simple.

How is Similarity Used in Solving Problems?

The similarity method is a strategy frequently used for solving problems. Here is an outline of the method.

Step 1 : Choose a matrix B similar to A for which the problem is easier to solve.
Step 2 : Solve the problem using the matrix B instead of A (the B-problem).
Step 3 : Interpret the solution to the B-problem in terms of the matrix A.

Example
Given $A=\left[\begin{array}{ll}1 & 4 \\ 3 & 2\end{array}\right]$, find each entry in A^{1010}.

Example

In certain problems in economics the state of a system is described by a matrix $S_{n}=I+A+A^{2}+\cdots+A^{n}$ at time n where A is a given matrix. Use the similarity method to investigate the behaviour of the system in the "long run", i.e., when n is large.

Canonical Forms

Issai Schur (1875-1941) may have asked:
What is the simplest form a square matrix can take under similarity transformations?

Particularly important: Unitary transforms.

Theorem (Schur's theorem, Thm. 3)
Let $A \in \mathbb{C}^{n \times n}$. Then there exists a unitary matrix U and an upper triangular matrix T such that

$$
T=U^{-1} A U=U^{*} A U .
$$

Proof:

The unitary similarity transformation $T=U^{-1} A U$ can also be written

$$
A=U T U^{*},
$$

called the Schur decomposition of A.
■ Since $\operatorname{det}(U) \operatorname{det}\left(U^{*}\right)=\operatorname{det}\left(U U^{*}\right)=1$,

$$
\operatorname{det}(\lambda I-A)=\operatorname{det}(\lambda I-T)=\prod_{i=1}^{n}\left(\lambda-t_{i i}\right),
$$

the diagonal elements of T are the eigenvalues of A.
\square Schur decomposition is not unique.

- The columns of U are called Schur vectors.
- With the exception of u_{1}, the Schur vectors are not, in general, eigenvectors of A.

Diagonalizable Matrices

Is any matrix A diagonalizable?
In other words can we always find a nonsingular P such that $P^{-1} A P$ is diagonal?

Class of Matrices Unitarily Similar to a Diagonal Matrix:
A matrix A is normal if $A A^{*}=A^{*} A$.
■ Contains the important subclasses of Hermitian and unitary matrices.

- Schur's theorem takes nice form: the triangular matrix T is diagonal.
- This special form of Schur's theorem is called the spectral theorem.

Theorem (Spectral theorem, Thm. 4)

Let $A \in \mathbb{C}^{n \times n}$. Then A is normal if and only if there is a unitary matrix U and a diagonal matrix Λ such that

$$
A=U \Lambda U^{*} .
$$

Theorem (Spectral theorem, Thm. 4)

Let $A \in \mathbb{C}^{n \times n}$. Then A is normal if and only if there is a unitary matrix U and a diagonal matrix Λ such that

$$
A=U \Lambda U^{*} .
$$

Proof: (\Rightarrow) Let $A=U T U^{*}$ be the Schur decomposition of A. If A is normal then T is normal (see Exercise 4). Since a normal and triangular matrix is diagonal (see Exercise 8), T is diagonal.

Theorem (Spectral theorem, Thm. 4)

Let $A \in \mathbb{C}^{n \times n}$. Then A is normal if and only if there is a unitary matrix U and a diagonal matrix Λ such that

$$
A=U \Lambda U^{*} .
$$

Proof: (\Rightarrow) Let $A=U T U^{*}$ be the Schur decomposition of A. If A is normal then T is normal (see Exercise 4). Since a normal and triangular matrix is diagonal (see Exercise 8), T is diagonal.
(\Leftarrow) If $A=U \Lambda U^{*}$ with U unitary and Λ diagonal then, since diagonal matrices commute,

$$
\begin{aligned}
A A^{*} & =\left(U \Lambda U^{*}\right)\left(U \Lambda^{*} U^{*}\right) \\
& =U \Lambda \Lambda^{*} U^{*} \\
& =U \Lambda^{*} \Lambda U^{*} \\
& =\left(U \Lambda^{*} U^{*}\right)\left(U \Lambda U^{*}\right)=A^{*} A .
\end{aligned}
$$

Theorem (Thm. 5)

$A \in \mathbb{C}^{n \times n}$ is normal if and only if it has n orthogonal

 eigenvectors.
Theorem (Thm. 5)

$A \in \mathbb{C}^{n \times n}$ is normal if and only if it has n orthogonal eigenvectors.

Proof: (\Rightarrow) From spectral Theorem, normal matrices have an orthonormal basis of eigenvectors.

Theorem (Thm. 5)

$A \in \mathbb{C}^{n \times n}$ is normal if and only if it has n orthogonal eigenvectors.

Proof: (\Rightarrow) From spectral Theorem, normal matrices have an orthonormal basis of eigenvectors.
(\Leftarrow) Suppose u_{1}, \ldots, u_{n} is an orthonormal basis of \mathbb{C}^{n} consisting of eigenvectors of A :

$$
A u_{j}=\lambda_{j} u_{j}, \quad j=1, \ldots, n .
$$

Let $U=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then $A U=U \Lambda$ or equivalently $A=U \Lambda U^{*}$ and A is normal by the spectral Theorem.

Examples of Normal Matrices

The following matrices satisfy $A A^{*}=A^{*} A$:

- Hermitian matrices, i.e., $A^{*}=A$,
- symmetric matrices, i.e., $A^{T}=A$,
- unitary matrices, i.e., $A A^{*}=A^{*} A=I$,
- orthogonal matrices, i.e., $A A^{T}=A^{T} A=I$,
- skew-Hermitian matrices, i.e., $A^{*}=-A$,
- skew-symmetric matrices, i.e., $A^{T}=-A$.

Matrices Similar to a Diagonal Matrix

Recall: Normal matrices are unitarily diagonalizable.
Question: Which matrices are diagonalizable in general, i.e., $P^{-1} A P$ is diagonal with P not necessarily unitary?

Theorem (Thm. 6)
 A matrix $A \in \mathbb{C}^{n \times n}$ is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof:

Matrices with distinct eigenvalues

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

Matrices with distinct eigenvalues

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.
Proof: Assume A's e'vals $\lambda_{1}, \ldots, \lambda_{n}$ are distinct and assume e'vecs x_{1}, \ldots, x_{n} are linearly dependent so that $\sum_{i=1}^{n} \alpha_{i} x_{i}=0$ with $\alpha_{k} \neq 0$ for some k. We may assume $\alpha_{n} \neq 0$. Then

$$
0=\left(\boldsymbol{A}-\lambda_{1} /\right) \sum_{i=1}^{n} \alpha_{i} x_{i}=\sum_{i=2}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right) x_{i} .
$$

Matrices with distinct eigenvalues

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.
Proof: Assume A's e'vals $\lambda_{1}, \ldots, \lambda_{n}$ are distinct and assume e'vecs x_{1}, \ldots, x_{n} are linearly dependent so that $\sum_{i=1}^{n} \alpha_{i} x_{i}=0$ with $\alpha_{k} \neq 0$ for some k. We may assume $\alpha_{n} \neq 0$. Then

$$
\begin{gathered}
0=\left(\boldsymbol{A}-\lambda_{1} I\right) \sum_{i=1}^{n} \alpha_{i} x_{i}=\sum_{i=2}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right) x_{i} \\
0=\left(\boldsymbol{A}-\lambda_{2} I\right) \sum_{i=2}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right) x_{i}=\sum_{i=3}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}-\lambda_{2}\right) x_{i}
\end{gathered}
$$

Matrices with distinct eigenvalues

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A's e'vals $\lambda_{1}, \ldots, \lambda_{n}$ are distinct and assume e'vecs x_{1}, \ldots, x_{n} are linearly dependent so that $\sum_{i=1}^{n} \alpha_{i} x_{i}=0$ with $\alpha_{k} \neq 0$ for some k. We may assume $\alpha_{n} \neq 0$. Then

$$
\begin{gathered}
0=\left(\boldsymbol{A}-\lambda_{1} I\right) \sum_{i=1}^{n} \alpha_{i} x_{i}=\sum_{i=2}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right) x_{i} \\
0=\left(\boldsymbol{A}-\lambda_{2} I\right) \sum_{i=2}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right) x_{i}=\sum_{i=3}^{n} \alpha_{i}\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}-\lambda_{2}\right) x_{i}
\end{gathered}
$$

Continuing similar multiplications we obtain that

$$
0=\alpha_{n}\left(\lambda_{n}-\lambda_{n-1}\right)\left(\lambda_{n}-\lambda_{n-2}\right) \ldots\left(\lambda_{n}-\lambda_{1}\right) x_{n} .
$$

Contradiction since the $\lambda_{i} \neq \lambda_{j}, \alpha_{n} \neq 0$ and $x_{n} \neq 0$. Hence A has n I. i. eigenvectors and it is diagonalizable by Thm. 6.

Recap

complex nxn matrices

real nxn matrices

diagonalizable matrices

(n linearly independent eigenvectors)

normal matrices

(orthogonal eigenvectors)

Application: Principal Component Analysis

Assume that one makes m measurements for each of n objects, and collect these data in columns $b_{1}, \ldots, b_{n} \in \mathbb{R}^{m}$.

Example: $m=3$ measurements, $n=8$ people

	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8
age	22	30	23	23	22	21	22	21
weight	10.4	12.2	10.5	10.9	9.0	12.5	11.5	10.2
shoe size	7	8	7	7	8	8	9	7

Question: If one wanted to distinguish these 8 people by a linear combination of the 3 measurements, what would be a best possible combination?

Application: Principal Component Analysis

1 Form the data matrix $B \in \mathbb{R}^{m \times n}$:

$$
B=\left[\begin{array}{cccccccc}
22 & 30 & 23 & 23 & 22 & 21 & 22 & 21 \\
10.4 & 12.2 & 10.5 & 10.9 & 9.0 & 12.5 & 11.5 & 10.2 \\
7 & 8 & 7 & 7 & 8 & 7 & 9 & 7
\end{array}\right]
$$

2 Substract the mean for each row, $\widehat{B}=B-B[1, \ldots, 1]^{T} / n$:

$$
\widehat{B}=\left[\begin{array}{cccccccc}
-1 & 7 & 0 & 0 & -1 & -2 & -1 & -2 \\
-0.5 & 1.3 & -0.4 & 0 & -1.9 & 1.6 & 0.6 & -0.7 \\
-0.5 & 0.5 & -0.5 & -0.5 & 0.5 & -0.5 & 1.5 & -0.5
\end{array}\right]
$$

3 Form the symmetric covariance matrix $\widehat{C}=\frac{1}{n-1} \widehat{B} \widehat{B}^{T}$:

$$
\widehat{C}=\left[\begin{array}{lll}
8.571 & 1.300 & 0.571 \\
1.300 & 1.303 & 0.085 \\
0.571 & 0.085 & 0.571
\end{array}\right]
$$

4 Compute the eigenvectors and eigenvalues of \widehat{C} :

$$
\widehat{C} U=U D, \quad U^{\top} U=I, \quad D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right), \quad \lambda_{j} \geq \lambda_{j+1} .
$$

In our example (age, weight, shoe size):
$U=\left[\begin{array}{ccc}0.982 & 0.169 & -0.073 \\ 0.170 & -0.985 & 0.012 \\ 0.070 & 0.024 & 0.997\end{array}\right]$ and $D=\left[\begin{array}{ccc}8.84 & & \\ & 1.08 & \\ & & 0.53\end{array}\right]$.
The columns of $U=\left[u_{1}, \ldots, u_{m}\right]$ are orthogonal directions in which the principal components $u_{j}^{\top} b$ have the largest possible variance for all data columns b of B, with the variance given by λ_{j}.

With $u_{1}=[0.982,0.170,0.070]^{\top}$ we find that "age" is the best separator for our 8 people, and the artificial variable

$$
0.982 \times \text { age }+0.170 \times \text { weight }+0.070 \times \text { shoe size }
$$ has a largest possible variance of $\lambda_{1}=8.84$.

With $u_{1}=[0.982,0.170,0.070]^{\top}$ we find that "age" is the best separator for our 8 people, and the artificial variable

$$
0.982 \times \text { age }+0.170 \times \text { weight }+0.070 \times \text { shoe size }
$$ has a largest possible variance of $\lambda_{1}=8.84$.

With $u_{1}=[0.982,0.170,0.070]^{\top}$ we find that "age" is the best separator for our 8 people, and the artificial variable

$$
0.982 \times \text { age }+0.170 \times \text { weight }+0.070 \times \text { shoe size }
$$ has a largest possible variance of $\lambda_{1}=8.84$.

With $u_{1}=[0.982,0.170,0.070]^{\top}$ we find that "age" is the best separator for our 8 people, and the artificial variable

$$
0.982 \times \text { age }+0.170 \times \text { weight }+0.070 \times \text { shoe size }
$$ has a largest possible variance of $\lambda_{1}=8.84$.

With $u_{1}=[0.982,0.170,0.070]^{\top}$ we find that "age" is the best separator for our 8 people, and the artificial variable

$$
0.982 \times \text { age }+0.170 \times \text { weight }+0.070 \times \text { shoe size }
$$ has a largest possible variance of $\lambda_{1}=8.84$.

Application: Face Recognition

The eigenface method by L. Sirovich and M. Kirby (1987) and M. Turk and A. Pentland (1991) is based on principal component analysis.
The (long) vectors b_{1}, \ldots, b_{n} correspond to n different images, and the entries correspond to gray-scale values of pixels:

The eigenface method then proceeds as explained before:
1 Form data matrix $B=\left[b_{1}, \ldots, b_{n}\right]$ of images.
$\boxed{2}$ Substract the mean image (average face)

$$
\widehat{B}=B-B[1, \ldots, 1]^{T} / n
$$

3 Form the symmetric covariance matrix

$$
\widehat{C}=\frac{1}{n-1} \widehat{B} \widehat{B}^{T} .
$$

4 Compute orthogonal eigenvectors u_{1}, u_{2}, \ldots of \widehat{C}. These are called eigenfaces. The principal component $u_{1}^{\top} b_{j}$ has the largest variance for all images b_{1}, \ldots, b_{n}.
5 This can be used for face recognition: find an image b_{j} "closest" to a test image t by comparing $u_{1}^{T} t$ and $u_{1}^{T} b_{j}$.

Nondiagonalizable matrices

Recall:

```
Theorem (Thm. 6)
\(A \in \mathbb{C}^{n \times n}\) is diagonalizable iff \(A\) has \(n\) linearly independent eigenvectors.
```


Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal matrices?

Nondiagonalizable matrices

Recall:

Theorem (Thm. 6)
$A \in \mathbb{C}^{n \times n}$ is diagonalizable iff A has n linearly independent eigenvectors.

Theorem (Thm. 7)

A matrix with distinct eigenvalues is diagonalizable.
What can we say about matrices not similar to diagonal matrices?

- have less than n linearly independent eigenvectors,
- have multiple eigenvalues.

Example: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$.

Jordan Canonical Form

What is the simplest form any matrix can take under similarity transform?

Marie Ennemond Camille Jordan (1838-1922)

Jordan Canonical Form

Theorem (Jordan canonical form, Thm. 8)
Any matrix $A \in \mathbb{C}^{n \times n}$ can be expressed in the Jordan canonical form

$$
\begin{aligned}
X^{-1} A X & =J=\left[\begin{array}{lllll}
J_{1}\left(\lambda_{1}\right) & & & \\
& J_{2}\left(\lambda_{2}\right) & & \\
& & & \ddots & \\
& & \\
J_{k} & =J_{k}\left(\lambda_{k}\right)=\left[\begin{array}{ccccc}
\lambda_{k} & 1 & & \\
& \lambda_{k} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{k}
\end{array}\right] \in \mathbb{C}^{m_{k} \times m_{k}},
\end{array},\right.
\end{aligned}
$$

where X is nonsingular and $m_{1}+m_{2}+\cdots+m_{p}=n$.

Jordan Blocks

$$
J_{k}=J_{k}\left(\lambda_{k}\right)=\left[\begin{array}{cccc}
\lambda_{k} & 1 & & \\
& \lambda_{k} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{k}
\end{array}\right] \in \mathbb{C}^{m_{k} \times m_{k}}
$$

For example for $m_{k}=3$,

$$
\left(J_{k}\left(\lambda_{k}\right)-\lambda_{k} l\right) x=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0 \Rightarrow x_{2}=x_{3}=0
$$

so that x is a multiple of $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$.

Properties

(i) J has p Jordan blocks $\Leftrightarrow A$ has p lin. indep. eigenvectors.
(ii) The algebraic multiplicity of a given e'val λ is the sum of the dimensions of the Jordan blocks in which λ appears.
(iii) The geometric multiplicity of λ is

■ the number of Jordan blocks associated with λ, or
■ the number of linearly independent eigenvectors associated with λ or,
■ $\operatorname{dim}(\operatorname{null}(A-\lambda I))$.
(iv) An eigenvalue λ is defective if it appears in a Jordan block of size greater than 1.
A is defective if it has a defective e'val $\Leftrightarrow A$ does not have a complete set of lin. indep. eigenvectors.
(v) The order of the largest Jordan block corresponding to λ is called index of λ.

Example 3

Find a Jordan matrix J of a matrix A such that
(a) $p(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-1)^{3}(\lambda-2)^{4}$,
(b) $\operatorname{dim}(\operatorname{null}(A-I))=2$ and $\operatorname{dim}(\operatorname{null}(A-2 I))=3$.

Example 4

Find the Jordan canonical form of

$$
A=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-3 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right] .
$$

Example 5

Determine the Jordan canonical form of a 14×14 matrix A having the following eigenvalues and sequences of ranks:

	$\operatorname{rank}(A-\lambda I)^{k}$				
k	1	2	3	4	5
$\lambda=1$	11	10	9	9	9
$\lambda=2$	12	10	10	10	10
$\lambda=3$	12	11	10	9	9

Example 5

Determine the Jordan canonical form of a 14×14 matrix A having the following eigenvalues and sequences of ranks:

	$\operatorname{rank}(A-\lambda I)^{k}$				
k	1	2	3	4	5
$\lambda=1$	11	10	9	9	9
$\lambda=2$	12	10	10	10	10
$\lambda=3$	12	11	10	9	9

Example 5

Determine the Jordan canonical form of a 14×14 matrix A having the following eigenvalues and sequences of ranks:

	$\operatorname{rank}(A-\lambda I)^{k}$				
k	1	2	3	4	5
$\lambda=1$	11	10	9	9	9
$\lambda=2$	12	10	10	10	10
$\lambda=3$	12	11	10	9	9

Eigenvectors and Generalized Eigenvectors

$$
\begin{align*}
& X^{-1} A X=J \Leftrightarrow A X=X J \tag{5}\\
& J=\left[\begin{array}{lll}
J_{1}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & J_{p}\left(\lambda_{p}\right)
\end{array}\right], J_{1}\left(\lambda_{1}\right)=\left[\begin{array}{ccc}
\lambda_{1} & 1 & \\
& \ddots & 1 \\
& & \lambda_{1}
\end{array}\right] \in \mathbb{C}^{m_{1} \times m_{1}},
\end{align*}
$$

Equating 1st m_{1} cols of (5) yields

$$
A x_{1}=\lambda_{1} x_{1}, \quad A x_{i}=\lambda_{1} x_{i}+x_{i-1}, i=2, \ldots, m_{1}
$$

Eigenvectors and Generalized Eigenvectors

$$
\begin{align*}
& X^{-1} A X=J \Leftrightarrow A X=X J \tag{5}\\
& J=\left[\begin{array}{ccc}
J_{1}\left(\lambda_{1}\right) & & \\
& \ddots & \\
& & J_{p}\left(\lambda_{p}\right)
\end{array}\right], J_{1}\left(\lambda_{1}\right)=\left[\begin{array}{ccc}
\lambda_{1} & 1 & \\
& \ddots & 1 \\
& & \lambda_{1}
\end{array}\right] \in \mathbb{C}^{m_{1} \times m_{1}},
\end{align*}
$$

Equating 1st m_{1} cols of (5) yields

$$
A x_{1}=\lambda_{1} x_{1}, \quad A x_{i}=\lambda_{1} x_{i}+x_{i-1}, i=2, \ldots, m_{1} .
$$

- Cols $1, m_{1}+1, \ldots, m_{1}+m_{2}+\cdots+m_{p-1}+1$ of X are eigenvectors of A and are linearly independent since X is nonsingular.
- The other cols of X are generalized eigenvectors.

Eigenvectors and Generalized Eigenvectors

$X^{-1} A X=J \Leftrightarrow A X=X J$
$J=\left[\begin{array}{ll}J_{1}\left(\lambda_{1}\right) & \\ & \ddots\end{array}\right.$

Equating 1st m_{1} cols of (5) yields

$$
A x_{1}=\lambda_{1} x_{1}, \quad A x_{i}=\lambda_{1} x_{i}+x_{i-1}, i=2, \ldots, m_{1}
$$

- Cols $1, m_{1}+1, \ldots, m_{1}+m_{2}+\cdots+m_{p-1}+1$ of X are eigenvectors of A and are linearly independent since X is nonsingular.
- The other cols of X are generalized eigenvectors.

The vectors $x_{1}, x_{2}, \ldots, x_{m_{1}}$ are called a Jordan chain. The columns of X form p Jordan chains

$$
\left\{x_{1}, \ldots, x_{m_{1}}\right\},\left\{x_{m_{1}+1}, \ldots, x_{m_{1}+m_{2}}\right\}, \ldots,\left\{x_{n-m_{p}+1}, \ldots, x_{n}\right\}
$$

Example 6

Determine the Jordan canonical form, the eigenvectors and generalized eigenvectors of

$$
A=\left[\begin{array}{ccc}
6 & 2 & 2 \\
-2 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Cayley-Hamilton Theorem

Arthur Cayley FRS (1821-1895)
Sir William Rowan Hamilton (1805-1865)

Theorem (Thm. 9)

Let p be the characteristic polynomial of an $n \times n$ matrix A. Then $p(A)=0$.

Proof:

The unique monic (leading coeff. $=1$) polynomial q such that $q(A)=O$ is called the minimal polynomial of A.

Theorem (Thm. 10)

Let A be an $n \times n$ matrix with s distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$. The minimal polynomial of A is

$$
q(t)=\prod_{i=1}^{s}\left(t-\lambda_{i}\right)^{n_{i}},
$$

where n_{i} is the dimension of the largest Jordan block in which λ_{i} appears ($=$ the index of λ_{i}).

