
Theory of Eigensystems

Let A be a square matrix. The nonzero vector x ∈ Cn is called
an eigenvector of A ∈ Cn×n if Ax is a multiple of x ,

Ax = λx , x 6= 0. (1)

(λ, x) is called an eigenpair.

Easy to show: Eigenvalues must satisfy

det(λI − A) = 0.

The set of all eigenvalues of A is called the spectrum of A
and will be denoted by

Λ(A) = {λ1, . . . , λn}.
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A subspace X of Cn is an invariant subspace for A if
AX ⊆ X , that is, x ∈ X implies Ax ∈ X .

Theorem (Thm. 1)

Let the columns of X ∈ Cn×p, p ≤ n, form a basis for a
subspace X of Cn. Then X is an invariant subspace for A if
and only if AX = XB for some B ∈ Cp×p. When the latter
equation holds, the spectrum of B is contained within that
of A.

Proof:
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Similarity, Unitary Similarity

Let A,B ∈ Cn×n. The matrices A and B are similar if there
exists a nonsingular matrix P such that

B = P−1AP. (2)

This is called a similarity transformation and P is the
transforming matrix.

Theorem (Thm. 2)

Let A and B be similar, say B = P−1AP. Then A and B have
the same eigenvalues, and x is an eigenvector of A with
associated eigenvalue λ if and only if P−1x is an eigenvector
of B with associated eigenvalue λ.
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A and B are said to be unitarily similar if there is a unitary
matrix U such that B = U∗AU. If A and B are real, then they
are said to be orthogonally similar if there is a real,
orthogonal matrix U such that B = UT AU.

If a matrix A is similar to a diagonal matrix then A is said to be
diagonalizable or simple.
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How is Similarity Used in Solving Problems?

The similarity method is a strategy frequently used for
solving problems. Here is an outline of the method.

Step 1 : Choose a matrix B similar to A for which the
problem is easier to solve.

Step 2 : Solve the problem using the matrix B instead of
A (the B-problem).

Step 3 : Interpret the solution to the B-problem in terms
of the matrix A.

Example

Given A =
[1

3
4
2

]
, find each entry in A1010.
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Example
In certain problems in economics the state of a system is
described by a matrix Sn = I + A + A2 + · · ·+ An at time n
where A is a given matrix. Use the similarity method to
investigate the behaviour of the system in the “long run”, i.e.,
when n is large.
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Canonical Forms

Issai Schur (1875–1941) may have asked:

What is the simplest form a square matrix
can take under similarity transformations?

Particularly important: Unitary transforms.

Theorem (Schur’s theorem, Thm. 3)
Let A ∈ Cn×n. Then there exists a unitary matrix U and an
upper triangular matrix T such that

T = U−1AU = U∗AU.

Proof:
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The unitary similarity transformation T = U−1AU can also be
written

A = UTU∗,

called the Schur decomposition of A.

Since det(U) det(U∗) = det(UU∗) = 1,

det(λI − A) = det(λI − T ) =
n∏

i=1

(λ− tii),

the diagonal elements of T are the eigenvalues of A.
Schur decomposition is not unique.
The columns of U are called Schur vectors.
With the exception of u1, the Schur vectors are not, in
general, eigenvectors of A.
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Diagonalizable Matrices

Is any matrix A diagonalizable?

In other words can we always find a nonsingular P such that
P−1AP is diagonal?

Class of Matrices Unitarily Similar to a Diagonal Matrix:

A matrix A is normal if AA∗ = A∗A.

Contains the important subclasses of Hermitian and
unitary matrices.
Schur’s theorem takes nice form: the triangular matrix T
is diagonal.
This special form of Schur’s theorem is called the spectral
theorem.
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Theorem (Spectral theorem, Thm. 4)

Let A ∈ Cn×n. Then A is normal if and only if there is a unitary
matrix U and a diagonal matrix Λ such that

A = UΛU∗.
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Theorem (Spectral theorem, Thm. 4)

Let A ∈ Cn×n. Then A is normal if and only if there is a unitary
matrix U and a diagonal matrix Λ such that

A = UΛU∗.

Proof: (⇒) Let A = UTU∗ be the Schur decomposition of A. If
A is normal then T is normal (see Exercise 4). Since a normal
and triangular matrix is diagonal (see Exercise 8), T is
diagonal.
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Theorem (Spectral theorem, Thm. 4)

Let A ∈ Cn×n. Then A is normal if and only if there is a unitary
matrix U and a diagonal matrix Λ such that

A = UΛU∗.

Proof: (⇒) Let A = UTU∗ be the Schur decomposition of A. If
A is normal then T is normal (see Exercise 4). Since a normal
and triangular matrix is diagonal (see Exercise 8), T is
diagonal.
(⇐) If A = UΛU∗ with U unitary and Λ diagonal then, since
diagonal matrices commute,

AA∗ = (UΛU∗)(UΛ∗U∗)

= UΛΛ∗U∗

= UΛ∗ΛU∗

= (UΛ∗U∗)(UΛU∗) = A∗A.
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Theorem (Thm. 5)
A ∈ Cn×n is normal if and only if it has n orthogonal
eigenvectors.
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Theorem (Thm. 5)
A ∈ Cn×n is normal if and only if it has n orthogonal
eigenvectors.

Proof: (⇒) From spectral Theorem, normal matrices have an
orthonormal basis of eigenvectors.
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Theorem (Thm. 5)
A ∈ Cn×n is normal if and only if it has n orthogonal
eigenvectors.

Proof: (⇒) From spectral Theorem, normal matrices have an
orthonormal basis of eigenvectors.

(⇐) Suppose u1, . . . ,un is an orthonormal basis of Cn

consisting of eigenvectors of A:

Auj = λjuj , j = 1, . . . ,n.

Let U = [ u1 · · · un ] and Λ = diag(λ1, . . . , λn). Then
AU = UΛ or equivalently A = UΛU∗ and A is normal by the
spectral Theorem.
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Examples of Normal Matrices

The following matrices satisfy AA∗ = A∗A:

I Hermitian matrices, i.e., A∗ = A,

I symmetric matrices, i.e., AT = A,

I unitary matrices, i.e., AA∗ = A∗A = I,

I orthogonal matrices, i.e., AAT = AT A = I,

I skew-Hermitian matrices, i.e., A∗ = −A,

I skew-symmetric matrices, i.e., AT = −A.
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Matrices Similar to a Diagonal Matrix

Recall: Normal matrices are unitarily diagonalizable.

Question: Which matrices are diagonalizable in general, i.e.,
P−1AP is diagonal with P not necessarily unitary?

Theorem (Thm. 6)
A matrix A ∈ Cn×n is diagonalizable if and only if A has n
linearly independent eigenvectors.

Proof:
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Matrices with distinct eigenvalues
Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.
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Matrices with distinct eigenvalues
Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A’s e’vals λ1, . . . , λn are distinct and assume
e’vecs x1, . . . , xn are linearly dependent so that

∑n
i=1 αixi = 0

with αk 6= 0 for some k . We may assume αn 6= 0. Then

0 = (A− λ1I)
n∑

i=1

αixi =
n∑

i=2

αi(λi − λ1)xi .
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Matrices with distinct eigenvalues
Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A’s e’vals λ1, . . . , λn are distinct and assume
e’vecs x1, . . . , xn are linearly dependent so that

∑n
i=1 αixi = 0

with αk 6= 0 for some k . We may assume αn 6= 0. Then

0 = (A− λ1I)
n∑

i=1

αixi =
n∑

i=2

αi(λi − λ1)xi .

0 = (A− λ2I)
n∑

i=2

αi(λi − λ1)xi =
n∑

i=3

αi(λi − λ1)(λi − λ2)xi .
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Matrices with distinct eigenvalues
Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A’s e’vals λ1, . . . , λn are distinct and assume
e’vecs x1, . . . , xn are linearly dependent so that

∑n
i=1 αixi = 0

with αk 6= 0 for some k . We may assume αn 6= 0. Then

0 = (A− λ1I)
n∑

i=1

αixi =
n∑

i=2

αi(λi − λ1)xi .

0 = (A− λ2I)
n∑

i=2

αi(λi − λ1)xi =
n∑

i=3

αi(λi − λ1)(λi − λ2)xi .

Continuing similar multiplications we obtain that

0 = αn(λn − λn−1)(λn − λn−2) . . . (λn − λ1)xn.

Contradiction since the λi 6= λj , αn 6= 0 and xn 6= 0. Hence A
has n l. i. eigenvectors and it is diagonalizable by Thm. 6.
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Recap

complex nxn matrices real nxn matrices

diagonalizable matrices

normal matrices

Hermitian symmetric

unitary orthogonal

(n linearly independent eigenvectors)

(orthogonal eigenvectors)
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Application: Principal Component Analysis

Assume that one makes m measurements for each of n
objects, and collect these data in columns b1, . . . ,bn ∈ Rm.

Example: m = 3 measurements, n = 8 people

P1 P2 P3 P4 P5 P6 P7 P8
age 22 30 23 23 22 21 22 21
weight 10.4 12.2 10.5 10.9 9.0 12.5 11.5 10.2
shoe size 7 8 7 7 8 8 9 7

Question: If one wanted to distinguish these 8 people by a
linear combination of the 3 measurements, what would be a
best possible combination?
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Application: Principal Component Analysis

1 Form the data matrix B ∈ Rm×n:

B =

 22 30 23 23 22 21 22 21
10.4 12.2 10.5 10.9 9.0 12.5 11.5 10.2

7 8 7 7 8 7 9 7


2 Substract the mean for each row, B̂ = B−B[1, . . . ,1]T/n:

B̂ =

 −1 7 0 0 −1 −2 −1 −2
−0.5 1.3 −0.4 0 −1.9 1.6 0.6 −0.7
−0.5 0.5 −0.5 −0.5 0.5 −0.5 1.5 −0.5


3 Form the symmetric covariance matrix Ĉ = 1

n−1B̂B̂T :

Ĉ =

 8.571 1.300 0.571
1.300 1.303 0.085
0.571 0.085 0.571
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4 Compute the eigenvectors and eigenvalues of Ĉ:

ĈU = UD, UT U = I, D = diag(λ1, . . . , λm), λj ≥ λj+1.

In our example (age, weight, shoe size):

U =

 0.982 0.169 −0.073
0.170 −0.985 0.012
0.070 0.024 0.997

 and D =

 8.84
1.08

0.53

 .
The columns of U = [u1, . . . ,um] are orthogonal directions
in which the principal components uT

j b have the largest
possible variance for all data columns b of B,
with the variance given by λj .
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With u1 = [0.982,0.170,0.070]T we find that “age” is the best
separator for our 8 people, and the artificial variable

0.982× age + 0.170× weight + 0.070× shoe size

has a largest possible variance of λ1 = 8.84.
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Application: Face Recognition

The eigenface method by L. Sirovich and M. Kirby (1987)
and M. Turk and A. Pentland (1991) is based on principal
component analysis.

The (long) vectors b1, . . . ,bn correspond to n different images,
and the entries correspond to gray-scale values of pixels:

=⇒



0.9
0.3
0.5
0.6
0.3

...


.
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The eigenface method then proceeds as explained before:
1 Form data matrix B = [b1, . . . ,bn] of images.
2 Substract the mean image (average face)

B̂ = B − B[1, . . . ,1]T/n.

3 Form the symmetric covariance matrix

Ĉ =
1

n − 1
B̂B̂T .

4 Compute orthogonal eigenvectors u1,u2, . . . of Ĉ. These
are called eigenfaces. The principal component uT

1 bj has
the largest variance for all images b1, . . . ,bn.

5 This can be used for face recognition: find an image bj

“closest” to a test image t by comparing uT
1 t and uT

1 bj .
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Nondiagonalizable matrices

Recall:

Theorem (Thm. 6)
A ∈ Cn×n is diagonalizable iff A has n linearly independent
eigenvectors.

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal
matrices?
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Nondiagonalizable matrices

Recall:
Theorem (Thm. 6)
A ∈ Cn×n is diagonalizable iff A has n linearly independent
eigenvectors.

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal
matrices?

I have less than n linearly independent eigenvectors,
I have multiple eigenvalues.

Example: A =

[
0 1
0 0

]
.
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Jordan Canonical Form

What is the simplest form any matrix
can take under similarity transform?

Marie Ennemond Camille Jordan
(1838–1922)
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Jordan Canonical Form
Theorem (Jordan canonical form, Thm. 8)
Any matrix A ∈ Cn×n can be expressed in the Jordan
canonical form

X−1AX = J =


J1(λ1)

J2(λ2)
. . .

Jp(λp)

 ,

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk ,

where X is nonsingular and m1 + m2 + · · ·+ mp = n.
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Jordan Blocks

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk

For example for mk = 3,

(Jk(λk)− λk I)x =

0 1 0
0 0 1
0 0 0

 x1

x2

x3

 = 0 ⇒ x2 = x3 = 0

so that x is a multiple of e1 =

1
0
0

.
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Properties

(i) J has p Jordan blocks⇔ A has p lin. indep. eigenvectors.
(ii) The algebraic multiplicity of a given e’val λ is the sum of

the dimensions of the Jordan blocks in which λ appears.
(iii) The geometric multiplicity of λ is

the number of Jordan blocks associated with λ, or

the number of linearly independent eigenvectors
associated with λ or,

dim(null(A− λI)).
(iv) An eigenvalue λ is defective if it appears in a Jordan

block of size greater than 1.
A is defective if it has a defective e’val⇔ A does not
have a complete set of lin. indep. eigenvectors.

(v) The order of the largest Jordan block corresponding to λ
is called index of λ.
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Example 3

Find a Jordan matrix J of a matrix A such that
(a) p(λ) = det(λI − A) = (λ− 1)3(λ− 2)4,
(b) dim(null(A− I)) = 2 and dim(null(A− 2I)) = 3.
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Example 4

Find the Jordan canonical form of

A =


2 0 0 0
−3 2 0 1
0 0 2 1
0 0 0 2

 .
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Example 5

Determine the Jordan canonical form of a 14× 14 matrix A
having the following eigenvalues and sequences of ranks:

rank(A− λI)k

k 1 2 3 4 5
λ = 1 11 10 9 9 9
λ = 2 12 10 10 10 10
λ = 3 12 11 10 9 9
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Example 5

Determine the Jordan canonical form of a 14× 14 matrix A
having the following eigenvalues and sequences of ranks:

rank(A− λI)k

k 1 2 3 4 5
λ = 1 11 10 9 9 9
λ = 2 12 10 10 10 10
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Eigenvectors and Generalized Eigenvectors

X−1AX = J ⇔ AX = XJ (5)

J =

 J1(λ1)
. . .

Jp(λp)

 , J1(λ1) =

λ1 1
. . . 1

λ1

 ∈ Cm1×m1 ,

Equating 1st m1 cols of (5) yields

Ax1 = λ1x1, Axi = λ1xi + xi−1, i = 2, . . . ,m1.
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Eigenvectors and Generalized Eigenvectors

X−1AX = J ⇔ AX = XJ (5)

J =

 J1(λ1)
. . .

Jp(λp)

 , J1(λ1) =

λ1 1
. . . 1

λ1

 ∈ Cm1×m1 ,

Equating 1st m1 cols of (5) yields

Ax1 = λ1x1, Axi = λ1xi + xi−1, i = 2, . . . ,m1.

I Cols 1,m1 + 1, . . . ,m1 + m2 + · · ·+ mp−1 + 1 of X are
eigenvectors of A and are linearly independent since X is
nonsingular.

I The other cols of X are generalized eigenvectors.
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Eigenvectors and Generalized Eigenvectors

X−1AX = J ⇔ AX = XJ (5)

J =

 J1(λ1)
. . .

Jp(λp)

 , J1(λ1) =

λ1 1
. . . 1

λ1

 ∈ Cm1×m1 ,

Equating 1st m1 cols of (5) yields

Ax1 = λ1x1, Axi = λ1xi + xi−1, i = 2, . . . ,m1.

I Cols 1,m1 + 1, . . . ,m1 + m2 + · · ·+ mp−1 + 1 of X are
eigenvectors of A and are linearly independent since X is
nonsingular.

I The other cols of X are generalized eigenvectors.
The vectors x1, x2, . . . , xm1 are called a Jordan chain. The
columns of X form p Jordan chains

{x1, . . . , xm1}, {xm1+1, . . . , xm1+m2}, . . . , {xn−mp+1, . . . , xn}.
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Example 6

Determine the Jordan canonical form, the eigenvectors and
generalized eigenvectors of

A =

 6 2 2
−2 2 0
0 0 2

 .
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Cayley–Hamilton Theorem

Arthur Cayley FRS
(1821–1895)

Sir William Rowan Hamilton
(1805–1865)

Theorem (Thm. 9)
Let p be the characteristic polynomial of an n × n matrix A.
Then p(A) = O.

Proof:
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The unique monic (leading coeff. = 1) polynomial q such that
q(A) = O is called the minimal polynomial of A.

Theorem (Thm. 10)
Let A be an n × n matrix with s distinct eigenvalues λ1, . . . , λs.
The minimal polynomial of A is

q(t) =
s∏

i=1

(t − λi)
ni ,

where ni is the dimension of the largest Jordan block in which
λi appears (= the index of λi).
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