Theory of Eigensystems

Let A be a square matrix. The nonzero vector x € C" is called
an eigenvector of A € C™"if Ax is a multiple of x,

Ax = x, x #0. (1)
(A, x) is called an eigenpair.
Easy to show: Eigenvalues must satisfy

det(\/ — A) = 0.

The set of all eigenvalues of A is called the spectrum of A
and will be denoted by

A(A) = {1, A}
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A subspace X of C" is an invariant subspace for A if
AX C X, thatis, x € X implies Ax € X.

Theorem (Thm. 1)

Let the columns of X € C"™P, p < n, form a basis for a
subspace X of C". Then X is an invariant subspace for A if
and only if AX = XB for some B € CP*P. When the latter
equation holds, the spectrum of B is contained within that
of A.

Proof:
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Similarity, Unitary Similarity

Let A, B € C™". The matrices A and B are similar if there
exists a nonsingular matrix P such that

B= P 'AP. 2)

This is called a similarity transformation and P is the
transforming matrix.

Theorem (Thm. 2)

Let A and B be similar, say B = P~'AP. Then A and B have
the same eigenvalues, and x is an eigenvector of A with
associated eigenvalue X if and only if P~'x is an eigenvector
of B with associated eigenvalue ).
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A and B are said to be unitarily similar if there is a unitary
matrix U such that B = U*AU. If A and B are real, then they
are said to be orthogonally similar if there is a real,
orthogonal matrix U such that B = UT AU.

If a matrix A is similar to a diagonal matrix then A is said to be
diagonalizable or simple.
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How is Similarity Used in Solving Problems?

The similarity method is a strategy frequently used for
solving problems. Here is an outline of the method.

Step 1 : Choose a matrix B similar to A for which the
problem is easier to solve.

Step 2 : Solve the problem using the matrix B instead of
A (the B-problem).

Step 3 : Interpret the solution to the B-problem in terms
of the matrix A.

Given A = [17], find each entry in A™'°.
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Example

In certain problems in economics the state of a system is
described by a matrix S, =/ + A+ A> + ... + A" attime n
where A is a given matrix. Use the similarity method to
investigate the behaviour of the system in the “long run”, i.e.,
when nis large.
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Canonical Forms

Issai Schur (1875-1941) may have asked:

What is the simplest form a square matrix
can take under similarity transformations?

Particularly important: Unitary transforms.

Theorem (Schur’s theorem, Thm. 3)

Let A € C™", Then there exists a unitary matrix U and an
upper triangular matrix T such that

T=U"TAU = U'AU.

Proof:
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The unitary similarity transformation T = U~'AU can also be
written
A=UTU",

called the Schur decomposition of A.
m Since det(U) det(U*) = det(UU*) = 1
n
det(\ — A) =det(\M — T) = JJ(A — ta).
i=1
the diagonal elements of T are the eigenvalues of A.

m Schur decomposition is not unique.
m The columns of U are called Schur vectors.

m With the exception of uy, the Schur vectors are not, in
general, eigenvectors of A.
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Diagonalizable Matrices

Is any matrix A diagonalizable?

In other words can we always find a nonsingular P such that
P-1AP is diagonal?

Class of Matrices Unitarily Similar to a Diagonal Matrix:
A matrix A is normal if AA* = A*A.
m Contains the important subclasses of Hermitian and
unitary matrices.
m Schur’s theorem takes nice form: the triangular matrix T
is diagonal.
m This special form of Schur’s theorem is called the spectral
theorem.
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Theorem (Spectral theorem, Thm. 4)

Let A € C™", Then A is normal if and only if there is a unitary
matrix U and a diagonal matrix A such that

A= UAU".
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Theorem (Spectral theorem, Thm. 4)

Let A € C™", Then A is normal if and only if there is a unitary
matrix U and a diagonal matrix A such that

A= UAU".

Proof: (=) Let A= UTU* be the Schur decomposition of A. If
Ais normal then T is normal (see Exercise 4). Since a normal
and triangular matrix is diagonal (see Exercise 8), T is
diagonal.
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Theorem (Spectral theorem, Thm. 4)

Let A€ C™". Then A is normal if and only if there is a unitary
matrix U and a diagonal matrix A such that

A= UAU".

Proof: (=) Let A= UTU* be the Schur decomposition of A. If
Ais normal then T is normal (see Exercise 4). Since a normal
and triangular matrix is diagonal (see Exercise 8), T is
diagonal.

(<) If A= UAU* with U unitary and A diagonal then, since
diagonal matrices commute,
AA* = (UAU)(UAUY)
= yarrur
= UA AU”
= (UAU")(UAU") = A*A. O
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Theorem (Thm. 5)

A € C™" js normal if and only if it has n orthogonal
eigenvectors.
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Theorem (Thm. 5)

A € C™" js normal if and only if it has n orthogonal
eigenvectors.

Proof: (=) From spectral Theorem, normal matrices have an
orthonormal basis of eigenvectors.
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Theorem (Thm. 5)

A € C™" js normal if and only if it has n orthogonal
eigenvectors.

Proof: (=) From spectral Theorem, normal matrices have an
orthonormal basis of eigenvectors.

(<) Suppose uy, ..., U, is an orthonormal basis of C”
consisting of eigenvectors of A:

AU/I)\/U/, j:1,...,n.
LetU=[u; --- up]and A=diag(\,...,\s). Then

AU = UA or equivalently A= UAU* and A is normal by the
spectral Theorem. O

Stefan Gdittel Theory of eigensystems 11/39



Examples of Normal Matrices

The following matrices satisfy AA* = A*A:
Hermitian matrices, i.e., A* = A,
symmetric matrices, i.e., AT = A,

unitary matrices, i.e., AA* = A*A =1,
orthogonal matrices, i.e., AAT = ATA= |,

skew-Hermitian matrices, i.e., A* = —A,

vV v v v v Vv

skew-symmetric matrices, i.e., AT = —A.
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Matrices Similar to a Diagonal Matrix

Recall: Normal matrices are unitarily diagonalizable.

Question: Which matrices are diagonalizable in general, i.e.,
P~1AP is diagonal with P not necessarily unitary?

Theorem (Thm. 6)

A matrix A € C"™" js diagonalizable if and only if A has n
linearly independent eigenvectors.

Proof:
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Matrices with distinct eigenvalues

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.
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Matrices with distinct eigenvalues

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A’s e'vals A1, ..., \, are distinct and assume
e'vecs xi, ..., X, are linearly dependent so that 7, a;x; = 0
with ay # 0 for some k. We may assume «, # 0. Then

n

n
0= (A — M\ /) Z aiXi = Z Oé,'()\,' — M )X,'.
i=1

=2

Stefan Gdittel Theory of eigensystems 14 /39



Matrices with distinct eigenvalues

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A’s e'vals A1, ..., \, are distinct and assume
e'vecs xi, ..., X, are linearly dependent so that 7, a;x; = 0
with ay # 0 for some k. We may assume «, # 0. Then
n n
0= (A — M\ /) Z aiXi = Z Oé,'()\,' — M )X,'.

i=1 i=2
n n

0= (A — )\2/) Z Oé,'()\,' — M )X,' = Z Oé,'()\,‘ — )\1)()\, — )\Z)X,‘.

i=2 i=3
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Matrices with distinct eigenvalues

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

Proof: Assume A's e'vals )y, ..., \, are distinct and assume
e'vecs xi, ..., X, are linearly dependent so that 7 | a;x; = 0
with a # 0 for some K. We may assume anp # 0. Then

= (A=) Zax,_za, (A — A1)Xi.
i=2

n n
0=(A= X)) ailhi—M)x =D ai(hi— M)\ — Xa)x;.
i=2 i=3
Continuing similar multiplications we obtain that
0= Oén()\n — )\n—1)(>\n — )\n_g) ce ()\n — )\1)Xn

Contradiction since the \; # \;, o, # 0 and x, # 0. Hence A
has n . i. eigenvectors and it is diagonalizable by Thm. 6.

Stefan Gdittel Theory of eigensystems 14 /39



complex nxn matrices real nxn matrices

unitary
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Application: Principal Component Analysis

Assume that one makes m measurements for each of n
objects, and collect these data in columns by, ..., b, € R™.

Example: m = 3 measurements, n = 8 people
| Pt | P2 | P3| P4 |P5| P6 | P7 | P8

age 22 30 23 23 | 22 | 21 22 21
weight 104 | 1221051109 | 9.0| 125 | 11.5| 10.2
shoe size 7 8 7 7 8 8 9 7

Question: If one wanted to distinguish these 8 people by a
linear combination of the 3 measurements, what would be a
best possible combination?
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Application: Principal Component Analysis

Form the data matrix B € R™*":

104 122 105 109 9.0 125 115 102

2 30 23 23 22 21 22 21
B =
7 8 7 7 8 7 9 7

Substract the mean for each row, B= B—B[1,...,1]7/n:
~ -1 7 0 o -1 -2 -1 -2
B=| -05 13 04 0 -19 16 06 -07
05 05 -05 -05 05 -05 15 -05

Form the symmetric covariance matrix C = ,ﬂjE?E?T:

1.300 1.303 0.085

N 8.571 1.300 0.571
C =
0.571 0.085 0.571
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Compute the eigenvectors and eigenvalues of C:
CU=UD, UTU=I D=diag(\, ..., \n), A >\.
In our example (age, weight, shoe size):

0.982 0.169 —0.073 8.84
U= | 0170 -0.985 0.012 | andD = 1.08 :

0.070 0.024  0.997 0.53
The columns of U = [uy, ..., un] are orthogonal directions
in which the principal components uij have the largest

possible variance for all data columns b of B,
with the variance given by \;.
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With vy = [0.982,0.170,0.070]" we find that “age” is the best
separator for our 8 people, and the artificial variable

0.982 x age + 0.170 x weight + 0.070 x shoe size

has a largest possible variance of A\ = 8.84.

1.54

shoe size

weight age
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With vy = [0.982,0.170,0.070]" we find that “age” is the best
separator for our 8 people, and the artificial variable
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Application: Face Recognition

The eigenface method by L. Sirovich and M. Kirby (1987)
and M. Turk and A. Pentland (1991) is based on principal
component analysis.

The (long) vectors by, ..., b, correspond to n different images,
and the entries correspond to gray-scale values of pixels:
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The eigenface method then proceeds as explained before:
Form data matrix B = [by, ..., by] of images.
Substract the mean image (average face)

B=B-B[1,....17/n.
Form the symmetric covariance matrix

C:n—1

Compute orthogonal eigenvectors uy, U, . .. of C. These
are called eigenfaces. The principal component u/ b; has
the largest variance for all images by, .. ., b,.

This can be used for face recognition: find an image b;
“closest” to a test image t by comparing u/ t and u/ b;.
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Nondiagonalizable matrices

Recall:
Theorem (Thm. 6)

A € C™7" js diagonalizable iff A has n linearly independent
eigenvectors.

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal
matrices?
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Nondiagonalizable matrices

Recall:

Theorem (Thm. 6)

A € C™" js diagonalizable iff A has n linearly independent
eigenvectors.

Theorem (Thm. 7)
A matrix with distinct eigenvalues is diagonalizable.

What can we say about matrices not similar to diagonal
matrices?

» have less than n linearly independent eigenvectors,

» have multiple eigenvalues.

N
Example.A_[0 0}.
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Jordan Canonical Form

What is the simplest form any matrix
can take under similarity transform?

Marie Ennemond Camille Jordan
(1838-1922)
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Jordan Canonical Form

Theorem (Jordan canonical form, Thm. 8)

Any matrix A € C™" can be expressed in the Jordan
canonical form

Ji(\)
XTAX = J = b ,
Jp(Ap)
SV
Jo=del)=| e Cmm,
Ak

where X is nonsingular and my + m + - - - + mp = n.
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Jordan Blocks

A1

Ak

Jk = Jk()\k) = € CMx Mk

For example for my = 3,

0O 1 0 X1
(Jk()\k) — )\kI)X =10 0 1 Xo | = 0 = Xo = X3 = 0
0O 0O

.
so that x is a multiple of e; = {O :
0
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(i) J has p Jordan blocks < A has p lin. indep. eigenvectors.
(i) The algebraic multiplicity of a given e'val A is the sum of
the dimensions of the Jordan blocks in which \ appears.
(iii) The geometric multiplicity of \ is

m the number of Jordan blocks associated with )\, or

m the number of linearly independent eigenvectors
associated with \ or,

m dim(null(A — \/)).
(iv) An eigenvalue X is defective if it appears in a Jordan
block of size greater than 1.
Ais defective if it has a defective e’val & A does not
have a complete set of lin. indep. eigenvectors.
(v) The order of the largest Jordan block corresponding to A
is called index of \.
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Example 3

Find a Jordan matrix J of a matrix A such that
(@) p(\) =det(M — A) = (A —1)3(\ —2)4,
(b) dim(null(A — /)) = 2 and dim(null(A — 2/)) = 3.
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Example 4

Find the Jordan canonical form of

2 0
-3 2
A= 0 O
0 O

oM OO
N = = 0O
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Example 5

Determine the Jordan canonical form of a 14 x 14 matrix A
having the following eigenvalues and sequences of ranks:

rank(A — \/)

Stefan Guittel

k 1 2 3 4 5
A=1]11 10 9 9 9
A=2|12 10 10 10 10
A=3(12 11 10 9 9
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Example 5

Determine the Jordan canonical form of a 14 x 14 matrix A
having the following eigenvalues and sequences of ranks:

rank(A — \/)
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Eigenvectors and Generalized Eigenvectors

X AX=JeAX=XJ (5

Ji(\) Ao 1
],J1(>\1) [ IR
Jp(Ap) A1

Equating 1st m; cols of (5) yields

J =

Axy = MiXy, AXi=MXi+Xi_1, 1=2,...,my.
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Eigenvectors and Generalized Eigenvectors

X AX=JeAX=XJ (5

Ji(\) Ao 1
],J1(>\1) [ IR
Jp(Ap) A1

Equating 1st m; cols of (5) yields

J =

Axy = MiXy, AXi=MXi+Xi_1, 1=2,...,my.

» Cols1,m+1,....m +my+---+my_4+10f Xare
eigenvectors of A and are linearly independent since X is
nonsingular.

» The other cols of X are generalized eigenvectors.
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Eigenvectors and Generalized Eigenvectors

X AX=JeAX=XJ (5

Ji(\1) Ao 1
],J1()\1) [ IR
Jp(/\p) At

Equating 1st m; cols of (5) yields

J:

Axy = \iXxy, AXi=MXi+ X1, i=2,...,my.

» Cols1,m+1,....m+my+---+my_4+10f Xare
eigenvectors of A and are linearly independent since X is
nonsingular.

» The other cols of X are generalized eigenvectors.

The vectors X1, Xo, . . ., Xm, are called a Jordan chain. The
columns of X form p Jordan chains

{X17 tee 7Xm1}7 {Xm1+17 tee 7Xm1+m2}7 R {Xn—mp+1, tee 7Xn}-
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Example 6

Determine the Jordan canonical form, the eigenvectors and
generalized eigenvectors of

6 2 2
A=|-2 2 0
0 0 2

Stefan Gdittel Theory of eigensystems 37/39



Cayley—Hamilton Theorem

Arthur Cayley FRS
(1821-1895)

Sir William Rowan Hamilton
(1805—1865)

Theorem (Thm. 9)

Let p be the characteristic polynomial of an n x n matrix A.

Then p(A) = O.

Proof:
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The unique monic (leading coeff. = 1) polynomial g such that
g(A) = O s called the minimal polynomial of A.

Theorem (Thm. 10)

Let A be an n x n matrix with s distinct eigenvalues )1, ..., As.
The minimal polynomial of A is

S

q(t) = [ [t =)™,

i=1

where n; is the dimension of the largest Jordan block in which
\i appears (= the index of \;).
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