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We will show how eigenvalues and eigenvectors are related to important canonical forms
that display the structure of a matrix.

1 Basic Definitions

1.1 Eigenvalues and Eigenvectors

A vector x ∈ Cn is called an eigenvector of A ∈ Cn×n if x is nonzero and Ax is a multiple of
x, that is, there is a λ ∈ C such that

Ax = λx, x 6= 0. (1)

The complex scalar λ is called the eigenvalue of A associated with the eigenvector x. The pair
(λ, x) is called an eigenpair of A. The eigenvalue associated with a given eigenvector is unique.
However, each eigenvalue has many eigenvectors associated with it since if x is an eigenvector
corresponding to the eigenvalue λ and α is a nonzero scalar then αx is also an eigenvector with
associated eigenvalue λ.

We can rewrite (1) in the form (λI − A)x = 0, x 6= 0 showing that λI − A is a singular
matrix and therefore any eigenvalue λ must satisfy the equation

det(λI − A) = 0.

By the cofactor expansion of determinants, it is easy to see that p(λ) = det(λI − A) is a
polynomial of degree n in λ. We call p(λ) the characteristic polynomial of A. By the
Fundamental Theorem of Algebra a polynomial of degree n has exactly n real or complex
zeros, counting multiplicities. Hence an n× n matrix has exactly n eigenvalues, although they
are not necessarily distinct. The set of all eigenvalues of A is called the spectrum of A and
will be denoted by

Λ(A) = {λ1, . . . , λn}.

We sometimes denote by λi(A) the ith eigenvalue of A in some (usually arbitrary) ordering.
The algebraic multiplicity of λ is its multiplicity as a zero of the characteristic polynomial
p(λ) = det(λI − A).

1.2 Invariant Subspaces

A subspace X of Cn is an invariant subspace for A if AX ⊆ X , that is, x ∈ X implies
Ax ∈ X .

Theorem 1 Let the columns of X ∈ Cn×p, p ≤ n, form a basis for a subspace X of Cn. Then
X is an invariant subspace for A if and only if AX = XB for some B ∈ Cp×p. When the latter
equation holds, the spectrum of B is contained within that of A.

Proof. Let X = [x1 . . . xp ] and Y = AX = [ y1 . . . yp ] be partitioned by columns.
If X is an invariant subspace of A then yi ∈ X and since X is a basis for X , yi can be expressed
as a linear combination of columns of X, that is, yi = Xbi, for some vector bi ∈ Cp. If we let
B = [ b1 . . . bp ] then AX = XB.
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Conversely, if AX = XB for some B ∈ Cp×p, then equating the jth column of AX with
the jth column of XB gives Axj =

∑p
i=1 xibij ∈ span{x1, . . . , xp} = X . Since Axj ∈ X ,

j = 1, . . . , p and x1, . . . , xp span X , it follows that Ax ∈ X for all x ∈ X .
Let (λ, u) be an eigenpair of B. If AX = XB for some B ∈ Cp×p then AXu = XBu = λXu

and Xu 6= 0 since the columns of X are independent, so (λ,Xu) is an eigenpair of A. Since
this is true for each eigenpair of B, we have that Λ(B) ⊂ Λ(A).

1.3 Similarity, Unitary Similarity

Let A,B ∈ Cn×n. The matrices A and B are similar if there exists a nonsingular matrix P
such that

B = P−1AP. (2)

(2) is called a similarity transformation and P is the transforming matrix.

Theorem 2 Let A and B be similar, say B = P−1AP . Then A and B have the same eigen-
values, and x is an eigenvector of A with associated eigenvalue λ if and only if P−1x is an
eigenvector of B with associated eigenvalue λ.

Proof. Ax = λx ⇐⇒ (P−1AP )(P−1x) = λ(P−1x), so (λ, x) is an eigenpair of A iff
(λ, P−1x) is an eigenpair of P−1AP = B.

Note: we can also show that det(A− λI) = det(P−1(A− λI)P ) = det(P−1AP − λI). Thus
A and B have the same eigenvalues, and the algebraic multiplicities are preserved.

A and B are said to be unitarily similar if there is a unitary matrix U such that B =
U∗AU . If A and B are real, then they are said to be orthogonally similar if there is a real,
orthogonal matrix U such that B = UTAU .

If a matrix A is similar to a diagonal matrix then A is said to be diagonalizable or simple.

1.4 How is Similarity Used in Solving Problems?

The similarity method is a strategy frequently used for solving problems. Here is an outline
of the method.

Step 1 : Choose a matrix B similar to A for which the problem is easier to solve.

Step 2 : Solve the problem using the matrix B instead of A (the B-problem).

Step 3 : Interpret the solution to the B-problem in terms of the matrix A.

Example 1 Given A =
[
1
3
4
2

]
, find each entry in A1010.

Step 1 (Find easier B similar to A): Choose B =
[
5
0

0
−2

]
, where P =

[
1
1
−4
3

]
; then A = PBP−1.

Step 2 (Solve B-problem): B1010 =
[
51010

0
0

(−2)1010

]
.

Step 3 (Interpret B-solution): A1010 = (PBP−1)1010 = PB1010P−1. Thus

A1010 =
1

7

[
3(51010) + 21012 4(51010)− 21012

3(51010)− 3(21010) 4(51010) + 3(21010)

]
.
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Example 2 In certain problems in economics the state of a system is described by a matrix
Sn = I +A+A2 + · · ·+An at time n where A is a given matrix. Use the similarity method to
investigate the behaviour of the system in the “long run”, i.e., when n is large.

Suppose there is a nonsingular matrix P and two scalars λ and µ such that A = P
[
λ
0
0
µ

]
P−1.

Step 1: Choose B =
[
λ
0
0
µ

]
.

Step 2: Let Tn = I +B +B2 + · · ·+Bn, then

Tn =

[
1 + λ+ λ2 + · · ·+ λn

1 + µ+ µ2 + · · ·+ µn

]
=

[ 1−λn+1

1−λ
1−µn+1

1−µ

]
for all n ≥ 0 and λ, µ 6= 1. If |λ|, |µ| < 1, Tn approximates

[ 1
1−λ
0

0
1

1−µ

]
when n is large.

Step 3: Since Sn = PTnP
−1, it follows that Sn is approximately PTP−1 for large enough n

and so, even without knowing P we can predict that in the long run the system will reach a
steady state. If we want a quantitative statement, we calculate P and can then say how large n
has to be for Sn to approximate PTP−1 (the steady state matrix) within say ‘x’ decimal place
accuracy.

2 Canonical Forms

We now consider the following question:

What is the simplest form a square matrix can take under similarity transforma-
tions?

2.1 The Schur Decomposition: a Triangularization

We start by considering unitary similarities A = UBU∗. Unitary similarity is computationally
simpler than similarity because the conjugate transpose is much easier to compute than the
inverse. Schur’s theorem asserts that we can reduce any n× n matrix to a triangular one by a
unitary similarity transformation.

Theorem 3 (Schur’s theorem) Let A ∈ Cn×n. Then there exists a unitary matrix U and
an upper triangular matrix T such that

T = U−1AU = U∗AU.

Proof. The proof is by induction on n. The result clearly holds for n = 1. Let us show
that it holds for n = k, given that it holds for n = k− 1. Let A ∈ Ck×k. Let λ be an eigenvalue
of A and x an associated eigenvector normalized such that x∗x = 1. Let U1 be any unitary
matrix having x as its first column (there are many such matrices: just take any orthonormal
basis of Ck whose first member is x and let U1 be the matrix whose columns are the members
of the basis). Write U1 = [x W ]. Since the columns of W are orthogonal to x, W ∗x = 0. Let Hojo use

Gram
Schmidt

A1 = U∗AU . Then

A1 =

[
x∗

W ∗

]
A [x W ] =

[
x∗Ax x∗AW
W ∗Ax W ∗AW

]
.
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Since Ax = λx, it follows that x∗Ax = λ and W ∗Ax = λW ∗x = 0. Let Â = W ∗AW . Then

A1 =

[
λ x∗AW
0 Â

]
.

But Â ∈ C(k−1)×(k−1), so by the induction hypothesis there exists a unitary matrix Û2 and an
upper triangular matrix T̂ such that T̂ = Û∗

2 ÂÛ2. Define

U2 =

[
1 01×(k−1)

0(k−1)×1 Û2

]
=

[
1

Û2

]
.

Then U2 is unitary and

U∗
2A1U2 =

[
λ x∗AWÛ2

0 Û∗
2 ÂÛ2

]
=

[
λ x∗AWÛ2

0 T̂

]
,

which is upper triangular. Let us call this matrix T , and let U = U1U2. Then T = U∗
2A1U2 =

U∗
2U

∗
1AU1U2 = U∗AU .

The unitary similarity transformation T = U−1AU can also be written

A = UTU∗.

Written in this way, we call it a Schur decomposition of A. Note that since det(U) det(U∗) =
det(UU∗) = 1,

det(λI − A) = det(λI − T ) =
n∏
i=1

(λ− tii),

the diagonal elements of T are the eigenvalues of A. The Schur decomposition is not unique
(the eigenvalues can be made to appear in any order on the diagonal of T ). The columns of
U are called Schur vectors. With the exception of u1, the Schur vectors are not, in general,
eigenvectors of A.

The most widely used methods for numerically computing the eigenvalues of a matrix consist
of approximating a Schur decomposition of that matrix; the QR algorithm is an example of
such method.

2.2 Diagonalizable Matrices

Is any matrix A diagonalizable?

In other words can we always find a nonsingular P such that P−1AP is diagonal?

2.2.1 The Class of Matrices Unitary Similar to a Diagonal Matrix

A matrix A is normal if AA∗ = A∗A. The class of normal matrices contains the important
subclasses of Hermitian and unitary matrices. For normal matrices Schur’s theorem takes a
particularly nice form: the triangular matrix T turns out to be diagonal. This special form of
Schur’s theorem is called the spectral theorem.
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Theorem 4 (spectral theorem) Let A ∈ Cn×n. Then A is normal if and only if there is a
unitary matrix U and a diagonal matrix Λ such that

A = UΛU∗.

Proof. Let A = UTU∗ be the Schur decomposition of A. If A is normal then it is easy to
show that T is normal (see Exercise 4). Since a normal and triangular matrix is diagonal (see
Exercise 8), T is diagonal.

Conversely, if A admits the decomposition A = UΛU∗ with U unitary and Λ diagonal then,
since diagonal matrices commute,

AA∗ = (UΛU∗)(UΛ∗U∗) = UΛΛ∗U∗ = UΛ∗ΛU∗ = (UΛ∗U∗)(UΛU)∗ = A∗A.

The next theorem gives another characterization of normal matrices.

Theorem 5 A ∈ Cn×n is normal if and only if it has n orthogonal eigenvectors.

Proof. From Theorem 4 we have that normal matrices have an orthonormal basis of eigen-
vectors. Conversely, suppose u1, . . . , un is an orthonormal basis of Cn consisting of eigenvectors
of A: Auj = λjuj, j = 1, . . . , n. Let U = [u1 · · · un ] and Λ = diag(λ1, . . . , λn). Then
AU = UΛ or equivalently A = UΛU∗ and A is normal by Theorem 4.

2.2.2 Matrices Similar to a Diagonal Matrix

We now consider similarity transformations P−1AP where P is not necessarily unitary. The
next theorem identifies the large class of diagonalizable matrices.

Theorem 6 Let A be an n×n matrix. Then A is diagonalizable if and only if A has n linearly
independent eigenvectors.

Proof. Suppose A is diagonalizable, that is, there exist P = [ p1, . . . , pn ] nonsingular and
Λ = diag(λ1, . . . , λn) such that Λ = P−1AP or equivalently,

AP = PΛ⇐⇒ [Ap1, . . . , Apn ] = [λ1p1, . . . , λnpn ]⇐⇒ Api = λipi, i = 1, . . . , n.

Thus the columns of P are eigenvectors of A and are linearly independent since P is nonsingular.
Conversely, if A has n linearly independent eigenvectors p1, . . . , pn corresponding to the

eigenvalues λ1, . . . , λn, then with the notation above the matrix P is nonsingular and we have
that AP = PΛ which shows that A is similar to Λ.

We now show that when A’s eigenvalues λ1, . . . , λn are distinct the corresponding eigenvec-
tors x1, . . . , xn are linearly independent. Suppose the eigenvectors xi, i = 1, . . . , n are linearly
dependent so that

∑n
i=1 αixi = 0 with not all the constants α1, . . . , αn equal to zero. We may

assume that αn 6= 0 by renumbering the eigenvalues if necessary. Multiplying
∑n

i=1 αixi = 0
by (A− λ1I) gives

0 = (A− λ1I)
n∑
i=1

αixi =
n∑
i=2

αi(λi − λ1)xi.



MATH36001: Theory of Eigensystems Page 6

Multiplying the above expression by A− λ2I gives

0 = (A− λ2I)
n∑
i=2

αi(λi − λ1)xi =
n∑
i=3

αi(λi − λ1)(λi − λ2)xi.

Continuing similar multiplications with A− λ3I, then A− λ4I and so on, we obtain that

0 = αn(λn − λn−1)(λn − λn−2) . . . (λn − λ1)xn.

But this is a contradiction when the λi are distinct, since αn 6= 0 and xn 6= 0. Hence a
sufficient condition for A ∈ Cn×n to have n linearly independent eigenvectors is to have n
distinct eigenvalues. We conclude from Theorem 6 that A is diagonalizable.

Theorem 7 A matrix with distinct eigenvalues is diagonalizable.

Theorems 6 and 7 show that matrices not similar to a diagonal matrix necessarily have
multiple eigenvalues and less than n linearly independent eigenvectors. Note that the matrix[
0
0
1
0

]
has 0 as an eigenvalue of multiplicity 2 and that there is only one eigenvector (any multiple

of
[
1
0

]
) associated with 0. Hence

[
0
0
1
0

]
is not diagonalizable.

2.3 The Jordan Canonical Form

If not all matrices are diagonalizable, what is the simplest form that a matrix, in
general, can take under a similarity transformation?

Theorem 8 (Jordan canonical form) Any matrix A ∈ Cn×n can be expressed in the Jordan
canonical form

X−1AX = J =


J1(λ1)

J2(λ2)
. . .

Jp(λp)

 , (3a)

Jk = Jk(λk) =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk×mk , (3b)

where X is nonsingular and m1 +m2 + · · ·+mp = n.

Proof. For a proof of this theorem (which is not easy) see [1], [2] or [3].

The mk ×mk matrices Jk are called Jordan blocks. The Jordan matrix J is unique up to
the ordering of the blocks Jk, but the transforming matrix X is not unique. The Jordan block
Jk has only one linearly independent eigenvector. For example for mk = 3,

(Jk(λk)− λkI)x =

 0 1 0
0 0 1
0 0 0

x1x2
x3

 = 0 ⇒ x2 = x3 = 0

so that x is a multiple of e1.
The Jordan matrix J displays several important properties.
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(i) The number p of Jordan blocks is the number of linearly independent eigenvectors of A
(or equivalently of J). Thus the matrix A is diagonalizable if and only if p = n.

(ii) The algebraic multiplicity (defined in section 1.1) of a given eigenvalue λ is the sum of
the dimensions of the Jordan blocks in which λ appears.

(iii) The geometric multiplicity of λ is the number of Jordan blocks associated with λ.
Thus the geometric multiplicity of λ is the number of linearly independent eigenvectors
associated with λ or, equivalently, dim(null(A− λI)).

(iv) An eigenvalue λ is defective if it appears in a Jordan block of size greater than 1, or,
equivalently, if its algebraic multiplicity exceeds its geometric multiplicity. A matrix is
defective if it has a defective eigenvalue, or, equivalently, if it does not have a complete
set of linearly independent eigenvectors.

Example 3 Find a Jordan matrix J of a matrix A having as characteristic polynomial p(λ) =
(λ − 1)3(λ − 2)4 if the geometric multiplicities are also known: dim(null(A − I)) = 2 and
dim(null(A− 2I)) = 3.

dim(null(A− I)) = 2 implies that there are two Jordan blocks associated with λ1 = 1 and since
λ1 has algebraic multiplicity 3, one of the block is of order 2, the other is of order 1. Reasoning
in a similar way for the second eigenvalue we obtain

J = diag

([
1 1
0 1

]
, [ 1 ] ,

[
2 1
0 2

]
, [ 2 ] , [ 2 ]

)
.

2.3.1 The Structure of a Jordan Matrix

A Jordan matrix is not completely determined in general by the knowledge of the eigenvalues
and their algebraic and geometric multiplicities. (E.g. an eigenvalue λ of algebraic multiplicity
6 and geometric multiplicity 3 could appear in Jordan blocks of sizes 2, 2, 2 or 4, 1, 1 or 3, 2, 1.)
One must also know the sizes of the Jordan blocks corresponding to each eigenvalue. For a
given matrix A ∈ Cn×n, the Jordan canonical form of A (but not the similarity that transforms
A to Jordan canonical form) can be determined by the following procedure:

1. Find all the distinct eigenvalues of A, perhaps by finding the roots of the characteristic
polynomial.

2. For each distinct eigenvalue λi of A form (A − λiI), (A − λiI)2, . . . , and analyse the
sequence of ranks of these matrices as follows:

• the smallest value of ki for which rank(A − λiI)ki attains its minimum value is the
order of the largest Jordan block corresponding to λi. This minimum value is called
the index of the eigenvalue λi.

• The number of Jordan blocks of size k in J with eigenvalue λi is

rank(A− λiI)k−1 + rank(A− λiI)k+1 − 2 rank(A− λiI)k. (4)
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Example 4 Determine the Jordan canonical form of the matrix

A =


2 0 0 0
−3 2 0 1
0 0 2 1
0 0 0 2

 .
The characteristic polynomial is p(λ) = (λ − 2)4 so λ = 2 is an eigenvalue of multiplicity 4.
Since dim(null(A− 2I)) = 2, the Jordan form consists of two blocks. To determine their order
(2 and 2 or 3 and 1), we find that (A− 2I)2 = O and therefore k1 = k2 = 2 so that the order
of the largest Jordan block corresponding to λ = 2 is 2. Consequently,

J = diag

([
2 1
0 2

]
,

[
2 1
0 2

])
.

Example 5 Determine the Jordan canonical form of a 14× 14 matrix A having the following
eigenvalues and sequences of ranks:

rank(A− λI)k

k 1 2 3 4 5
λ = 1 11 10 9 9 9
λ = 2 12 10 10 10 10
λ = 3 12 11 10 9 9

λ = 1: dim(null(A − I)) = n − rank(A − I) = 14 − 11 = 3 so there are 3 Jordan blocks with
eigenvalue λ = 1. Also since rank(A− I)3 = rank(A− I)4, the index of λ = 1 is 3 and therefore
the size of the largest Jordan block with eigenvalue λ = 1 is 3. The formula in (4) gives

number of blocks of size 1: 14 + 10− 2× 11 = 2.

number of blocks of size 2: 11 + 9− 2× 10 = 0.

number of blocks of size 3: 10 + 9− 2× 9 = 1.

Hence λ = 1 has algebraic multiplicity 2× 1 + 1× 3 = 5.

λ = 2: dim(null(A− 2I)) = n− rank(A− 2I) = 14− 12 = 2 so there are 2 Jordan blocks with
eigenvalue λ = 2. Also since rank(A− I)2 = rank(A− I)3, the index of λ = 2 is 2 and therefore
the size of the largest Jordan block with eigenvalue λ = 2 is 2. The formula in (4) gives

number of blocks of size 1: 14 + 10− 2× 12 = 0.

number of blocks of size 2: 12 + 10− 2× 10 = 2.

Hence λ = 2 has algebraic multiplicity 2× 2 = 4.

λ = 3: dim(null(A− I)) = n− rank(A− 3I) = 14− 12 = 2 so there are 3 Jordan blocks with
eigenvalue λ = 3. Also since rank(A− I)4 = rank(A− I)5, the size of the largest Jordan block
with eigenvalue λ = 3 is 4. The formula in (4) gives

number of blocks of size 1: 14 + 11− 2× 12 = 1.
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number of blocks of size 2: 12 + 10− 2× 11 = 0.

number of blocks of size 3: 11 + 9− 2× 10 = 0.

number of blocks of size 4: 10 + 9− 2× 9 = 1.

Hence λ = 1 has algebraic multiplicity 1× 1 + 1× 4 = 5.
From this information,

J = diag


 1 1

1 1
1

 , [ 1 ] , [ 1 ] ,

[
2 1

2

]
,

[
2 1

2

]
,


3 1

3 1
3 1

3

 , [ 3 ]

 .

2.3.2 Eigenvectors and Generalized Eigenvectors

Let X−1AX = J be the Jordan canonical form of A ∈ Cn×n. Then

AX = XJ (5)

and the columns of X in positions 1,m1 + 1,m1 + m2 + 1, . . . ,m1 + m2 + · · · + mp−1 + 1 are
eigenvectors of A and these are linearly independent since X is nonsingular. The other columns
of X are called generalized eigenvectors. Equating the first m1 columns of (5) corresponding
to the first Jordan block J1 yields

Ax1 = λ1x1, Axi = λ1xi + xi−1, i = 2, . . . ,m1. (6)

The vectors x1, x2, . . . , xm1 are called a Jordan chain. The columns of X form p Jordan chains

{x1, . . . , xm1}, {xm1+1, . . . , xm1+m2}, . . . , {xn−mp+1, . . . , xn}.

Setting i = 2 in (6) gives (A− λ1I)x2 = x1 so that

(A− λ1I)2x2 = (A− λ1I)x1 = 0. (7)

Also, (6) with i = 3 and (7) yield (A− λ1I)3x3 = (A− λ1I)2x2 = 0. More generally,

(A− λ1I)jxj = 0, j = 1, . . . ,m1.

If λ1 is distinct from the other eigenvalues, this shows that the linearly independent vectors
x1, . . . , xi, i ≤ m1 form a basis for null

(
(A − λ1I)i

)
. If several Jordan blocks have the same

eigenvalue, then the corresponding chains must be combined to obtain the basis for the null
spaces.

Example 6 Determine the Jordan canonical form, the eigenvectors and generalized eigenvec-
tors of

A =

 6 2 2
−2 2 0
0 0 2

 .
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Since det(A − λI) = (2 − λ)(λ − 4)2, it follows that Λ(A) = {2, 4}. It is easily seen that
the matrix A has one (linearly independent) eigenvector say x1 = [ 0 −1 1 ]T , corresponding
to λ = 2 and one (linearly independent) eigenvector say x2 = [ 2 −2 0 ]T associated with
λ2 = 4. From the equation (A− 4I)x3 = x2, it is found that x3 = [ 1 0 0 ]T is a generalized
eigenvector of A associated with λ2 = 4. Hence a Jordan basis for A is {x1, x2, x3} and the
matrix

X = [x1 x2 x3 ] =

 0 2 1
−1 −2 0
1 0 0


transforms A in to the Jordan form

A = X

 2 0 0
0 4 1
0 0 4

X−1.

There is no numerically stable way to compute Jordan canonical forms. A simple example
makes this clear. If Aε =

[
ε
1
0
0

]
and ε 6= 0, then Aε has the Jordan form Jε =

[
0
0
0
ε

]
with

Xε =
[
0
1
ε
1

]
. Then Jε →

[
0
0
0
0

]
as ε→ 0, which cannot be the Jordan form of the nonzero matrix

A0 =
[
0
1
0
0

]
. In fact, A0 has

[
0
0
1
0

]
as its Jordan form. Since the Jordan form of a matrix need

not be a continuous function of the entries of the matrix, small variations in the entries of the
matrix can result in large variations in the Jordan form. There is no hope of computing such
an object in a stable way.

3 Polynomials and Matrices

As an application of the similarity method we shall prove the Cayley–Hamilton theorem.

Theorem 9 (Cayley–Hamilton theorem) If p is the characteristic polynomial of an n× n
matrix A, then p(A) = O.

Proof. Let A = XJX−1 be the Jordan canonical decomposition of A as in (3) and let
p(λ) = (λ− λ1)m1(λ− λ2)m2 · · · (λ− λp)mp be its characteristic polynomial. Then,

p(A) = p(XJX−1) = Xp(J)X−1 = X


p(J1)

p(J2)
. . .

p(Jp)

X−1

with p(Jk) = (Jk − λ1I)m1(Jk − λ2I)m2 · · · (Jk − λpI)mp , k = 1, . . . , p. Now

(Jk − λkI)mk =


0 1

0
. . .
. . . 1

0


mk

= 0
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since Jk − λkI is an mk ×mk nilpotent matrix with index of nilpotency mk. Hence p(Jk) = O,
k = 1, . . . , p and the theorem is proved.

For example p(λ) = (λ − 1)n is the characteristic polynomial of the n × n identity matrix In
and clearly p satisfies p(I) = O. Notice that the polynomials qk(λ) = (λ− 1)k of degree k less
than n also satisfy qk(I) = (I − I)k = O. We call the monic (leading coefficient equal to one)
polynomial q of lowest degree such that q(A) = O, the minimal polynomial of A ∈ Cn×n .
The following result follows from the proof of the Cayley–Hamilton theorem.

Theorem 10 (Minimal polynomial) Let A be an n × n matrix with s distinct eigenvalues
λ1, . . . , λs. The minimal polynomial of A is

q(λ) =
s∏
i=1

(λ− λi)ni ,

where ni is the dimension of the largest Jordan block in which λi appears.

A key property is that the minimal polynomial divides any other polynomial p for which
p(A) = O (see Exercise 15).

One important use of the Cayley–Hamilton theorem is to write powers Ak of A ∈ Cn×n, for
k ≥ n, as linear combinations of I, A,A2, . . . , An−1 (see Exercise 13).

Exercises

1. Let λ1, λ2, . . . , λn be the eigenvalues of A. Show that

det(A) = λ1λ2 . . . λn,

trace(A) = λ1 + λ2 + · · ·+ λn,

trace(Ak) = λk1 + λk2 + · · ·+ λkn, k = 1, 2, . . . .

2. (a) Let x1, x2, . . . , xk be eigenvectors of A. Show that S = span{x1, x2, . . . , xk} is invariant
under A.

(b) Let A =

 2 1 0
0 2 0
0 0 1

. Show that the space S = span{e1, e2} is invariant under A and is

not spanned by eigenvectors of A. Here e1 =

 1
0
0

 and e2 =

 0
1
0

.

3. Let A = UTU∗ be the Schur decomposition of A ∈ Cn×n. Let u1, . . . , un denote the columns
of U and let Sj = span{u1, . . . , uj} for j = 1, . . . , n. Show that each Sj is invariant under A.
[Hint: Use Theorem 1].

4. Suppose B = U∗AU , where U is unitary.
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(a) Prove that B is normal if A is and that B is Hermitian if A is.

(b) Show by example that neither of the properties in (a) is preserved under arbitrary similarity
transformation B = S−1AS, where S is nonsingular.

5. Let A ∈ Cn×n be normal. Use the spectral theorem to prove the following.

(a) A is Hermitian (A∗ = A) if and only if the eigenvalues of A are real.

(b) A is skew-Hermitian (A∗ = −A) if and only if the eigenvalues of A are purely imaginary.

(c) A is unitary (A∗ = A−1) if and only if the eigenvalues of A lie on the unit circle in the
complex plane.

6. This exercise shows that a matrix is nilpotent if and only if its eigenvalues are all zero.

(a) Show that if N is nilpotent then all its eigenvalues are zero.

(b) Show that a strictly upper or lower triangular matrix (the main diagonal is zero) is nilpo-
tent.

(c) Show that if N is a matrix whose eigenvalues are all zero, then N is unitarily similar to a
strictly upper triangular matrix. Deduce that N is nilpotent.

7. Let A ∈ Cn×n be normal and let λ1, λ2, . . . , λn denotes its eigenvalues with corresponding
eigenvectors u1, u2, . . . un normalized such that u∗iui = 1. Show that

A =
n∑
i=1

λiuiu
∗
i .

This is called the spectral representation of A. Illustrate with the matrix A =

[
2 1
1 2

]
.

8. Show that a normal and triangular matrix is diagonal.

9. Find the number of linearly independent eigenvectors for each of the following matrices:

(a)


1 1

1
2 1

2

 , (b)


1 1

1
2

2

 , (c)


1

1
2

2

 .
10. Ascertain if the following matrices are similar to a diagonal matrix:

(a)

[
2 1
1 2

]
, (b)

[
2 1
0 2

]
, (c)

[
1 2
3 4

]
, (d)

[
0 1
−1 2

]
.

11. Let A be a 4× 4 matrix with an eigenvalue λ = 2 of algebraic multiplicity 4.

(a) List all the possible Jordan forms for this matrix up to permutations of the Jordan blocks.

(b) What is the geometric multiplicity of λ = 2 for each of the Jordan forms listed in (a).
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(c) Compute eigenvectors for each of the Jordan forms in (a).

(d) Determine the minimal polynomials of the matrices in (a). The Jordan form of a matrix
determines its minimal polynomial. Show that the converse is in general not true.

12. Determine the Jordan canonical form, the eigenvectors and generalized eigenvectors of

A =

 3 2 1
0 3 0
0 0 3

 .
13. Let A =

[
3

−2
1
0

]
. Use the Cayley–Hamilton theorem to express A4 as a linear combination of I

and A.

14. Let A be an n× n nonsingular matrix. Use the Cayley–Hamilton theorem to express A−1 as a
polynomial in A.

15. Show that the minimal polynomial q of a matrix A divides any other polynomial p for which
p(A) = 0.

16. Show that if A ∈ Cn×n has minimal polynomial q(A) = A2−A−I then (I− 1
3
A)−1 = 3

5
(A+2I).

17. Find the characteristic polynomial and the minimal polynomial of the rank-1 matrix uv∗ ∈
Cn×n.

18.? Let p be a polynomial and A ∈ Cn×n. Show that p(A) = O if and only if p(t)(tI − A)−1 is a
polynomial in t. Deduce the Cayley–Hamilton theorem.

19. Let A ∈ Cn×n and B ∈ Cm×m be given and suppose A and B have no eigenvalues in common,
that is, Λ(A) ∩ Λ(B) = ∅. Consider the matrix equation

AX −XB = O, X ∈ Cn×m. (8)

(a) Show inductively that if (8) holds then AkX = XBk for all k = 1, 2, . . ..

(b) Use the Cayley–Hamilton theorem to show that (8) has only the solution X = O.
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