MATH36001

Lecturer: Stefan Güttel (stefan.guettel@manchester.ac.uk)

Aim: Introduction to matrix analysis (analysis of linear transformations) through the development of essential tools like

- Jordan Canonical Form
- Singular Value Decomposition
- Matrix Functions
- Perron–Frobenius theory

Prerequisites: MATH10202 and 10212 (Linear Algebra).

Textbooks: see course website.

Handouts – Exercises – Solutions

- Handouts available, but missing explanations and examples.
- I will show some "real-world applications" in the lectures. Come to the lectures and don't miss the fun part!
- Each handout contains exercises; difficult solutions to be discussed in feedback session on Monday 10am.
- Website (linked from Blackboard):
 http://personalpages.manchester.ac.uk/
 staff/stefan.guettel/ma/
- Mid-term test: Wednesday, 11th November 2015.

Matrices

An $m \times n$ matrix is an array

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{C}^{m \times n}.$$

 a_{ij} is the element in position (i, j). If m = n the matrix is **square**, otherwise it is **rectangular**.

 O_{mn} : $m \times n$ zero matrix. I_n : $n \times n$ identity matrix.

Matrices

An $m \times n$ matrix is an array

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \in \mathbb{C}^{m \times n}.$$

 a_{ij} is the element in position (i, j). If m = n the matrix is **square**, otherwise it is **rectangular**.

 O_{mn} : $m \times n$ zero matrix. I_n : $n \times n$ identity matrix.

Example:
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
, 3×2 rectangular matrix, $a_{31} = 5$.

Vectors

A row vector $x = [x_1 \ x_2 \ \cdots \ x_n]$ is a $1 \times n$ matrix.

A column vector
$$y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$
 is an $m \times 1$ matrix.

 $\mathbb{R}^m \equiv \mathbb{R}^{m \times 1}$ and $\mathbb{C}^m \equiv \mathbb{C}^{m \times 1}$ denote the vector space of real and complex *m*-vectors, respectively.

The *j*th column of I_n is called *j*th unit vector:

$$I_n = \left[egin{array}{cccc} e_1 & e_2 & \cdots & e_n \end{array}
ight], \quad e_1 = \left[egin{array}{c} 1 \\ 0 \\ \vdots \\ 0 \end{array}
ight], \quad e_2 = \left[egin{array}{c} 0 \\ 1 \\ \vdots \\ 0 \end{array}
ight], \quad \ldots, \quad e_n = \left[egin{array}{c} 0 \\ 0 \\ \vdots \\ 1 \end{array}
ight]$$

Submatrices

A **submatrix** of *A* is any matrix obtained by deleting rows and columns.

A block matrix

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1q} \\ \vdots & & \vdots \\ A_{p1} & \cdots & A_{pq} \end{bmatrix}$$

is a partitioning of A into submatrices A_{ij} whose dimensions must be consistent.

A **submatrix** of *A* is any matrix obtained by deleting rows and columns.

A block matrix

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1q} \\ \vdots & & \vdots \\ A_{p1} & \cdots & A_{pq} \end{bmatrix}$$

is a partitioning of A into submatrices A_{ij} whose dimensions must be consistent.

Example:
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$
,

$$A_{11} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \ A_{12} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ A_{21} = \begin{bmatrix} 0 & 0 \end{bmatrix}, \ A_{22} = \begin{bmatrix} 3 \end{bmatrix}.$$

Householder's Notation

Generally, we use

capital letters A,B,C,Δ,Λ for matrices, lower case letters $a_{ij},b_{ij},c_{ij},\delta_{ij},\lambda_{ij}$ for matrix elements, lower case letters x,y,z,c,g,h for vectors, lower case Greek letters $\alpha,\beta,\gamma,\theta,\pi$ for scalars.

Transposition:
$$(\mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m})$$

$$C = A^T \iff c_{ii} = a_{ii}.$$

 A^T has rows and cols interchanged, so it is an $n \times m$ matrix.

Transposition: $(\mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m})$

$$C = A^T \iff c_{ij} = a_{ji}.$$

 A^T has rows and cols interchanged, so it is an $n \times m$ matrix.

Conjugate transposition: $(\mathbb{C}^{m \times n} \longrightarrow \mathbb{C}^{n \times m})$

$$C=A^*\Longleftrightarrow c_{ij}=\overline{a_{ji}},$$

where the bar denotes complex conjugate.

Transposition: $(\mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m})$

$$C = A^T \iff c_{ij} = a_{ji}.$$

 A^T has rows and cols interchanged, so it is an $n \times m$ matrix.

Conjugate transposition: $(\mathbb{C}^{m \times n} \longrightarrow \mathbb{C}^{n \times m})$

$$C = A^* \iff c_{ij} = \overline{a_{ji}},$$

where the bar denotes complex conjugate.

Example:
$$A = \begin{bmatrix} i & 0 \\ 0 & 2-i \\ 0 & 0 \end{bmatrix}, \quad A^* = \begin{bmatrix} -i & 0 & 0 \\ 0 & 2+i & 0 \end{bmatrix}.$$

Transposition: $(\mathbb{R}^{m \times n} \longrightarrow \mathbb{R}^{n \times m})$

$$C = A^T \iff c_{ij} = a_{ji}.$$

 A^T has rows and cols interchanged, so it is an $n \times m$ matrix.

Conjugate transposition: $(\mathbb{C}^{m \times n} \longrightarrow \mathbb{C}^{n \times m})$

$$C = A^* \iff c_{ij} = \overline{a_{ji}},$$

where the bar denotes complex conjugate.

Properties of transposition:

$$(A^T)^T = A,$$
 $(A^*)^* = A,$ $(\alpha A)^T = \alpha A^T,$ $(\alpha A)^* = \overline{\alpha} A^*,$ $(AB)^T = B^T A^T,$ $(AB)^* = B^* A^*.$

Addition:
$$(\mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n} \longrightarrow \mathbb{C}^{m \times n})$$

$$C = A + B \Longleftrightarrow c_{ij} = a_{ij} + b_{ij}.$$

Scalar-matrix multiplication: $(\mathbb{C} \times \mathbb{C}^{m \times n} \longrightarrow \mathbb{C}^{m \times n})$

$$C = \alpha A \iff c_{ij} = \alpha a_{ij}.$$

Properties of matrix addition:

$$A + B = B + A$$

 $(A + B) + C = A + (B + C)$
 $\alpha(A + B) = \alpha A + \alpha B$
 $(\alpha + \beta)A = \alpha A + \beta A$

commutativity associativity distributivity of addition distributivity of scalar mult.

Matrix-matrix multiplication: $(\mathbb{C}^{m \times r} \times \mathbb{C}^{r \times n} \longrightarrow \mathbb{C}^{m \times n})$

$$C = AB \iff c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}.$$

Properties of matrix multiplication:

$$A(BC) = (AB)C$$
 associativity
 $A(B+C) = AB+AC$ distributivity

Matrix-matrix multiplication: $(\mathbb{C}^{m \times r} \times \mathbb{C}^{r \times n} \longrightarrow \mathbb{C}^{m \times n})$

$$C = AB \iff c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}.$$

Properties of matrix multiplication:

$$A(BC) = (AB)C$$
 associativity
 $A(B+C) = AB+AC$ distributivity

Is matrix multiplication commutative, i.e., is AB = BA?

Matrix-matrix multiplication: $(\mathbb{C}^{m \times r} \times \mathbb{C}^{r \times n} \longrightarrow \mathbb{C}^{m \times n})$

$$C = AB \iff c_{ij} = \sum_{k=1}^{r} a_{ik} b_{kj}.$$

Properties of matrix multiplication:

$$A(BC) = (AB)C$$
 associativity
 $A(B+C) = AB+AC$ distributivity

Is matrix multiplication commutative, i.e., is AB = BA?

Answer: No!

$$\begin{bmatrix}1&1\\2&3\end{bmatrix}\begin{bmatrix}0&1\\1&2\end{bmatrix}=\begin{bmatrix}1&3\\3&8\end{bmatrix}\neq\begin{bmatrix}0&1\\1&2\end{bmatrix}\begin{bmatrix}1&1\\2&3\end{bmatrix}=\begin{bmatrix}2&3\\5&7\end{bmatrix}.$$

Block-matrix-matrix multiplication: The formula

$$C = AB \iff C_{ij} = \sum_{k=1}^{r} A_{ik} B_{kj}$$

generalizes to block matrices

$$C = \left[egin{array}{ccc} C_{11} & \cdots & C_{1n} \ dots & & dots \ C_{m1} & \cdots & C_{mn} \end{array}
ight],$$

$$A = \begin{bmatrix} A_{11} & \cdots & A_{1r} \\ \vdots & & \vdots \\ A_{m1} & \cdots & A_{mr} \end{bmatrix}, B = \begin{bmatrix} B_{11} & \cdots & B_{1n} \\ \vdots & & \vdots \\ B_{r1} & \cdots & B_{rn} \end{bmatrix},$$

provided the blocks are consistent: $A_{ik} \in \mathbb{C}^{m_i \times r_k}, B_{kj} \in \mathbb{C}^{r_k \times n_j}$.

Matrix Powers

If $A \neq O_{nn}$, $A^0 \equiv I$, and for any positive integer,

$$A^k = \overbrace{A \cdots A}^{k \text{ times}} = A^{k-1}A = AA^{k-1}.$$

If
$$p(z)=c_0+c_1z+\cdots+c_kz^k$$
, then given $A\in\mathbb{C}^{n\times n}$,
$$p(A)=c_0I+c_1A+\cdots+c_kA^k\in\mathbb{C}^{n\times n}.$$

Matrix Powers

If $A \neq O_{nn}$, $A^0 \equiv I$, and for any positive integer,

$$A^k = \overbrace{A \cdots A}^{k \text{ times}} = A^{k-1}A = AA^{k-1}.$$

If
$$p(z)=c_0+c_1z+\cdots+c_kz^k$$
, then given $A\in\mathbb{C}^{n\times n}$,
$$p(A)=c_0I+c_1A+\cdots+c_kA^k\in\mathbb{C}^{n\times n}.$$

A square matrix is

- **involutory** if $A^2 = I$,
- **Idempotent** if $A^2 = A$,
- **nilpotent** if $A^k = O$ for some integer k > 0.

Inner and Outer Products

Inner product of
$$x, y \in \mathbb{C}^n$$
: $x^*y = \sum_{i=1}^n \overline{x_i} y_i \in \mathbb{C}$.

- $\sqrt{x^*x}$ is the **length** of x.
- $x^*y = 0$ and $x, y \neq 0 \Longrightarrow x, y$ are orthogonal.
- $\blacksquare x^*y = 0$ and $x^*x = y^*y = 1 \Longrightarrow x, y$ are orthonormal.

Inner and Outer Products

Inner product of
$$x, y \in \mathbb{C}^n$$
: $x^*y = \sum_{i=1}^n \overline{x_i} y_i \in \mathbb{C}$.

- $\sqrt{x^*x}$ is the **length** of x.
- $\blacksquare x^*y = 0$ and $x, y \neq 0 \Longrightarrow x, y$ are orthogonal.
- $x^*y = 0$ and $x^*x = y^*y = 1 \Longrightarrow x, y$ are orthonormal.

Outer product of $x \in \mathbb{C}^m$ and $y \in \mathbb{C}^n$:

$$xy^* = \begin{bmatrix} x_1\overline{y_1} & \dots & x_1\overline{y_n} \\ \vdots & & \vdots \\ x_m\overline{y_1} & \dots & x_m\overline{y_n} \end{bmatrix} \in \mathbb{C}^{m \times n}.$$

Orthogonal and Unitary matrices

$$Q \in \mathbb{R}^{n \times n}$$
 is **orthogonal** if $QQ^T = I$ and $Q^TQ = I$.

$$U \in \mathbb{C}^{n \times n}$$
 is unitary if $UU^* = U^*U = I$.

If
$$U = [u_1, \dots, u_n]$$
 is unitary (or orthogonal) then

$$u_i^* u_j = \delta_{ij}$$
 (Kronecker delta).

The columns of *U* are mutually orthogonal and of unit length.

Special Matrices

Diagonal matrix:
$$D = \operatorname{diag}(\alpha_i) = \begin{bmatrix} \alpha_1 & & & \\ & \alpha_2 & & \\ & & \ddots & \\ & & & \alpha_n \end{bmatrix}$$
.

$$U = \begin{bmatrix} \times & \times & \times \\ & \times & \times \\ & & \times \end{bmatrix}$$
 is upper triangular, U^T lower triangular.

$$A = \begin{bmatrix} A_{11} \\ A_{21} & A_{22} \\ \vdots & & \ddots \\ A_{n1} & \cdots & \cdots & A_{nn} \end{bmatrix}$$
 is block lower triangular.

Here the A_{ii} are all square but not necessarily of the same size.

Symmetric and Hermitian Matrices

 $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix if $A^T = A$;

 $A \in \mathbb{C}^{n \times n}$ is a Hermitian matrix if $A^* = A$.

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. Then A is

- **positive definite** if $x^*Ax > 0$ for all $0 \neq x \in \mathbb{C}^n$,
- indefinite if $(x^*Ax)(y^*Ay) < 0$ for some $x, y \in \mathbb{C}^n$.

Basic Linear Algebra Definitions

A set of vectors $\{v_i\}$ is **linearly dependent** if $\sum_i \alpha_i v_i = 0$ for some α_i not all zero.

Let $A \in \mathbb{C}^{m \times n}$ then

- Arrank(A) is the maximum number of linearly independent rows or columns of A,
- range(A) = $\{y \in \mathbb{C}^m : y = Ax \text{ for some } x \in \mathbb{C}^n\}$,

Basic Linear Algebra Definitions

A set of vectors $\{v_i\}$ is **linearly dependent** if $\sum_i \alpha_i v_i = 0$ for some α_i not all zero.

Let $A \in \mathbb{C}^{m \times n}$ then

- rank(A) is the maximum number of linearly independent rows or columns of A,
- range(A) = $\{y \in \mathbb{C}^m : y = Ax \text{ for some } x \in \mathbb{C}^n\}$,

If
$$A = [a_1, a_2, \dots, a_n]$$
,

$$\operatorname{range}(A) = \operatorname{span}\{a_1, a_2, \dots, a_n\},$$

$$\operatorname{rank}(A) = \dim(\operatorname{range}(A)).$$

For any
$$A \in \mathbb{C}^{m \times n}$$
, $\operatorname{rank}(A) + \operatorname{dim}(\operatorname{null}(A)) = n$.

Determinants

If $A = [\alpha] \in \mathbb{C}^{1 \times 1}$ then $\det(A) = \alpha$. Expansion in cofactors of $\det(A) \in \mathbb{C}^{n \times n}$:

$$\det(A) = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} \det(\widehat{A}_{ij}) \quad \text{for any } i,$$

where $\widehat{A}_{ij} \in \mathbb{C}^{(n-1)\times (n-1)}$ is a submatrix of A obtained by deleting the ith row and jth column.

Useful properties:

$$\det(AB) = \det(A)\det(B), \quad \det(\alpha A) = \alpha^n \det(A) \quad (\alpha \in \mathbb{C}).$$

$$A = \left[egin{array}{cc} A_{11} & A_{12} \ O & A_{22} \end{array}
ight]$$
 block triangular, $\det(A) = \det(A_{11})\det(A_{22})$.

Inverses

If $A, B \in \mathbb{C}^{n \times n}$ satisfy AB = I then B is the **inverse** of A, written $B = A^{-1}$.

If A^{-1} exists A is **nonsingular**; otherwise A is **singular**.

Also,
$$(AB)^{-1} = B^{-1}A^{-1}$$
, $(A^{-1})^T = (A^T)^{-1} = A^{-T}$.

Inverses

If $A, B \in \mathbb{C}^{n \times n}$ satisfy AB = I then B is the **inverse** of A, written $B = A^{-1}$.

If A^{-1} exists A is **nonsingular**; otherwise A is **singular**.

Also,
$$(AB)^{-1} = B^{-1}A^{-1}$$
, $(A^{-1})^T = (A^T)^{-1} = A^{-T}$.

Theorem

For $A \in \mathbb{C}^{n \times n}$ the following conditions are equivalent to A being nonsingular:

- **1** null(*A*) = {0} (*i.e.*, there is no 0 ≠ $y \in \mathbb{C}^n$ s.t. Ay = 0).
- 2 rank(A) = n (i.e., the rows or cols. of A are l.i.).
- $3 \det(A) \neq 0.$
- 4 None of A's eigenvalues is zero.

Beam Problem

Aluminium beam simply supported at both ends:

Transversal displacement u(x, t) governed by a pde

$$\mu \frac{\partial^2 u(\mathbf{x},t)}{\partial t^2} + \kappa \frac{\partial^4 u(\mathbf{x},t)}{\partial \mathbf{x}^4} = 0, \quad u(\mathbf{x},t) = u''(\mathbf{x},t) = 0, \ \mathbf{x} = 0, L.$$

 μ : mass per unit length, κ : bending stiffness.

Beam Problem

Aluminium beam simply supported at both ends:

Transversal displacement u(x, t) governed by a pde

$$\mu \frac{\partial^2 u(\mathbf{x},t)}{\partial t^2} + \kappa \frac{\partial^4 u(\mathbf{x},t)}{\partial \mathbf{x}^4} = 0, \quad u(\mathbf{x},t) = u''(\mathbf{x},t) = 0, \ \mathbf{x} = 0, L.$$

 μ : mass per unit length, κ : bending stiffness.

Separation hypothesis $u(x, t) = e^{i\omega t}v(x)$ yields

$$-\omega^2 \mu \, v(x) + \kappa \frac{\partial^4}{\partial x^4} v(x) = 0, \quad v(0) = v''(0) = v(L) = v''(L) = 0.$$

Boundary-value problem for the free vibrations.

Discretized Beam Problem

Finite-difference discretization of $\kappa \frac{\partial^4}{\partial x^4}$ leads to

$$\lambda \mathbf{v} = \mathbf{A}\mathbf{v}.$$
 (*)

- $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite (spd) matrix.
- (*) is an eigenvalue problem: λ is an eigenvalue and ν a corresponding eigenvector.

Discretized Beam Problem

Finite-difference discretization of $\kappa \frac{\partial^4}{\partial x^4}$ leads to

$$\lambda \mathbf{v} = \mathbf{A}\mathbf{v}.\tag{*}$$

- $A \in \mathbb{R}^{n \times n}$ is a symmetric positive definite (spd) matrix.
- (*) is an eigenvalue problem: λ is an eigenvalue and v a corresponding eigenvector.
- \blacksquare A is spd \Longrightarrow A is orthogonally diagonalizable:

$$A = V \Lambda V^T$$
, with Λ real > 0 diagonal, V orth.

- The diagonal elements of Λ are the eigenvalues λ_j and from $\lambda_j = \omega_i^2 \mu$ we calculate the vibration frequencies.
- The columns v_i of V are the corresponding eigenmodes.

First Goals

To study

- **■** Theory of eigensystems:
 - eigenvalues, eigenvectors, and invariant subspaces;
 - Schur decomposition, Jordan canonical decomposition;
 - Cayley–Hamilton Theorem;
 - Sylvester's inertia theorem.

Norms:

- Vector norms and matrix norms,
- bounds for eigenvalues, Gershgorin theorem.