Text Mining for Biomedicine

Sophia Ananiadou
Sophia.Ananiadou@manchester.ac.uk
Yoshimasa Tsuruoka
tsuruoka@is.s.u-tokyo.ac.jp
Outline

- Challenges of text mining in biomedicine
- Resources for text mining in biomedicine
- Terminology processing
- Information Extraction
- Levels of linguistic analysis
Challenges of TM in biomedicine

• Why biomedicine?
 – Consider just MEDLINE: 16,000,000 references, 40,000 added per month
 – Dynamic nature of the domain: new terms (genes, proteins, chemical compounds, drugs) constantly created
 – Impossible to manage such an information overload
Information deluge

• Bio-databases, controlled vocabularies and bio-ontologies encode only small fraction of information

• **Linking** text to databases and ontologies
 – Curators struggling to process scientific literature
 – Discovery of facts and events crucial for gaining insights in biosciences: need for text mining
Gaining New Insights

Integration

New insights, new knowledge

Curated DBs, experimental data
Aims

- **Text mining**: discover & extract unstructured knowledge hidden in text
 - Hearst (1999)

- Text mining aids to **construct hypotheses** from associations derived from text
 - protein-protein interactions
 - associations of genes – phenotypes
 - functional relationships among genes…etc

Swanson, D.
Text mining steps

• **Information Retrieval** yields all relevant texts
 – Gathers, selects, filters documents that may prove useful
 – Finds what is known

• **Information Extraction** extracts facts & events of interest to user
 – Finds relevant concepts, facts about concepts
 – Finds only what we are looking for

• **Data Mining** discovers unsuspected associations
 – Combines & links facts and events
 – Discovers *new* knowledge, finds new associations
Challenge: the resource bottleneck

• Lack of large-scale, richly annotated corpora
 – Support training of ML algorithms
 – Development of computational grammars
 – Evaluation of text mining components

• Lack of knowledge resources: lexica, terminologies, ontologies.
What about existing resources?

- Ontologies important for knowledge discovery
 - They form the link between terms in texts and biological databases
 - Can be used to add meaning, semantic annotation of texts
Link between text and ontologies

Ontological resources

- UMLs
- GO
- GENIA

Adding new knowledge

Supporting semantics

Text
Resources for Bio-Text Mining

• Lexical / terminological resources
 – SPECIALIST lexicon, Metathesaurus (UMLS)
 – Lists of terms / lexical entries (hierarchical relations)

• Ontological resources
 – Metathesaurus, Semantic Network, GO, SNOMED CT, etc
 – Encode relations among entities

Bodenreider, O. “Lexical, Terminological, and Ontological Resources for Biological Text Mining”, Chapter 3, Text Mining for Biology and Biomedicine, pp.43-66
SPECIALIST lexicon

– UMLS specialist lexicon
http://SPECIALIST.nlm.nih.gov

• Each lexical entry contains morphological (e.g. cauterize, cauterizes, cauterized, cauterizing), syntactic (e.g. complementation patterns for verbs, nouns, adjectives), orthographic information (e.g. esophagus – oesophagus)

• General language lexicon with many biomedical terms (over 180,000 records)

• Lexical programs include variation (spelling), base form, inflection, acronyms
Lexicon record

{base=Kaposi's sarcoma
 spelling_variant=Kaposi sarcoma
 entry=E0003576
 cat=noun
 variants=uncount
 variants=reg
 variants=glreg}

Kaposi’s sarcoma
Kaposi’s sarcomas
Kaposi’s sarcomata
Kaposi sarcoma
Kaposi sarcomas
Kaposi sarcomata

The SPECIALIST Lexicon and Lexical Tools
Allen C. Browne, Guy Divita, and Chris Lu PhD
2002 NLM Associates Presentation, 12/03/2002, Bethesda, MD
Normalisation (lexical tools)

Hodgkin Disease
HODGKIN DISEASE
Hodgkin’s Disease
Hodgkin’s disease disease hodgkin
Disease, Hodgkin ...
Steps of Norm

Remove genitive

Hodgkin’s Diseases

Replace punctuation with spaces

Hodgkin Diseases

Remove stop words

Hodgkin Diseases

Lowercase

hodgkin diseases

Uninflect each word

hodgkin disease

Word order sort

disease hodgkin

Lexical tools of the UMLS

The Gene Ontology (GO)

- Controlled vocabulary for the annotation of gene products
 - 19,468 terms. 95.3% with definitions (as of 4/2/2006)
 - 10,391 biological_process
 - 1,681 cellular_component
 - 7,396 molecular_function
Gene Ontology

• GOA database (http://www.ebi.ac.uk/GOA/) assigns gene products to the Gene Ontology

• GO terms follow certain conventions of creation, have synonyms such as:
 – ornithine cycle is an exact synonym of urea cycle
 – cell division is a broad synonym of cytokinesis
 – cytochrome bc1 complex is a related synonym of ubiquinol-cytochrome-c reductase activity
GO terms, definitions and ontologies in OBO

id: GO:0000002
name: mitochondrial genome maintenance
namespace: biological_process
def: "The maintenance of the structure and integrity of the mitochondrial genome."

[GOC:ai]
is_a: GO:0007005 ! mitochondrion organization and biogenesis
id: GO:0000024
name: maltose biosynthesis
namespace: biological_process
subset: gosubset_prok
exact_synonym: "malt sugar biosynthesis" []
exact_synonym: "maltose anabolism" []
exact_synonym: "maltose formation" []
exact_synonym: "maltose synthesis" []
is_a: GO:0000023 ! maltose metabolism
is_a: GO:0046351 ! disaccharide biosynthesis
Metathesaurus

• organised by concept
 – 5M names, 1M concepts, 16M relations

• built from 134 electronic versions of many different thesauri, classifications, code sets, and lists of controlled terms

• "source vocabularies"

• common representation
Are existing knowledge resources sufficient for TM?

1. Limited lexical & terminological coverage of biological sub-domains
2. Resources focused on human specialists
 GO, UMLS, UniProt ontology concept names frequently confused with terms

Occurrences of GO 'terms' in text
53,000 abstracts (baker’s yeast) contained only 8,000 occurrences of 739 distinct GO terms
Naming conventions

3. Update and curation of resources
 – FlyBase gene name coverage 31% (abstracts) to 84% (full texts)

4. Naming conventions and representation in heterogeneous resources
 – Term formation guidelines from formal bodies e.g. HUGO, IPI not uniformly used
 – Problems with integration of resources
dystrophin used for 18 gene products
 “Dystrophin (muscular dystrophy, Duchenne and Becker types), included DXS143, DXS164, DXS206, ...” HUGO
5. Terminological variation and complexity of names

- High correlation between degree of term variation and dynamic nature of biomedicine
- Variation occurs in controlled vocabularies and texts but discrepancy between the two
- Exact match methods fail to associate term occurrences in texts with databases
- Mouse gene names, variations accounted for 79% missing gene occurrences (Tuason, 2004)
Term ambiguity

- Neurofibromatosis 2 [disease]
 - NF2
 - Neurofibromin 2 [protein]
 - Neurofibromatosis 2 gene [gene]

O. Bodenreider, MIE 2005 tutorial

http://www.nactem.ac.uk/
Term ambiguity

– Gene terms may be also common English words
 • BAD human gene encoding BCL-2 family of proteins (bad news, bad prediction)

– Gene names are often used to denote gene products (proteins)
 • suppressor of sable is used ambiguously to refer to either genes and proteins

– Existing resources lack information that can support term disambiguation

– Difficult to establish equivalences between termforms and concepts
Homologues

- **Cycline-dependent kinase inhibitor** first introduced to represent a protein family **p27**
 - But it is used interchangeably with **p27** or **p27kip1**, as the name of the individual protein and not as the name of the protein family (Morgan 2003).

- **NFKB2** denotes the name of a family of 2 individual proteins with separate IDs in Swiss-Prot.
 - These proteins are homologues belonging to different species, homo sapiens & chicken.
Terms

- **Term**: linguistic realisation of specialised concepts, e.g. genes, proteins, diseases
- **Terminology**: collection of terms structured (hierarchy) denoting relationships among concepts, part-whole, is-a, specific, generic, etc.
- Terms link text and ontologies
- Mapping is not trivial (main challenge)
Term variation and ambiguity
Term mining steps

- Term recognition
 - Tp53

- Term classification
 - Gene

- Term mapping
 - Genome Database,
 - IARC TP53 Mutation Database
Term recognition techniques

- **ATR** extracts terms (variants) from a collection of documents.
- Distinguishes terms vs non-terms.
- In **NER** the steps of recognition and classification are merged; a classified terminological instance is a named entity.
- The tasks of ATR and NER share techniques but their ultimate goals are different:
 - ATR for resource building, lexica & ontologies.
 - NER first step of IE, text mining.
Overview papers

Detailed bibliography in Bio-Text Mining

1. BLIMPHttp://blimp.cs.queensu.ca/

2. Http://www.ccs.neu.edu/home/futrelle/bionlp/

Book on BioText Mining

Main ATR approaches

- Dictionary based
- Rule based
- Machine learning
Dictionary NER (1)

- Use terminological resources to locate term occurrences in text
 - EBI http://www.ebi.ac.uk/
 - neologisms, variations, ambiguity problematic for simple dictionary look-up
 - Ambiguous words e.g. *an*, *for*, *can* ...
 - spelling variants, punctuation, word order variations
 - *estrogen oestrogen*
 - *NF kappa B / NF kB*
Dictionary NER (2)

– Hirschman (2002) used FlyBase for gene name recognition, results disappointing due to homonymy, spelling variations
 • Precision, 7% abstracts, 2% full papers
 • Recall, 31% -- 84%

– Tuason (2004) reports term variation as main problem of mismatch
 • \textit{bmp-4} \hspace{1cm} \textit{bmp4}
 • \textit{syt4} \hspace{1cm} syt iv
 • \textit{integrin alpha 4} \hspace{1cm} alpha4 integrin
Dictionary NER (3)

- Krauthammer (2000) use string comparison for gene & protein name recognition
- Uses nucleotide combination \{A, C, G, T\} to convert text
- Applies BLAST (Basic Local Alignment Search Tools), a set of sequence comparison algorithms, to text to identify similarities of gene and protein names
- Recall 78.8% and precision 71%
Dictionary NER (4)

– Tsuruoka & Tsujii (2003) suggest a probabilistic generator of spelling variants, edit distance operations (delete, substitute, insert)
 • Terms with ED ≤ 1 considered spelling variants
 • Used a dictionary of protein terms
– Support query expansion
– Augment dictionaries with variation
Dictionary NER (5)

- TERMINO (Harkema 2004) stores biomedical terminological information, collected from various resources (e.g. UMLS, GOA, etc)
- attempts to establish and maintain links between resources of various types (ontology concept names, terms, controlled vocabularies, nomenclatures, classification descriptors)
- uses an external analyser to handle regular morphology
 - does not account for special morphological behaviour of terms
Rule NER (2)

Rule based

4-level morphology
Neoclassical elements
Ananiadou (1994)

EMPATHIE, PASTA
Gaizauskas, 2000

PROPER,
Fukuda, 1998

Yapex, Franzen 2002
Rule based (1)

- Use orphographic, morpho-syntactic features of terms
 - Rules that make use of internal term formation patterns (tagging, morphological analysers) e.g. affixes, combining forms
 - Do not take into account contextual features
 - Dictionaries of constituents e.g. affixes, neoclassical forms included
- Portability to different domains?
Rule based (2)

- Ananiadou, S. (1994) recognised single-word terms based on morphological analysis of term formation patterns (internal term make up)
- based on analysis of neoclassical and hybrid elements
 - ‘alphafetoprotein’ ‘immunoosmoelectrophoresis’
 - ‘radioimmunoassay’
- some elements are used for creating terms
 - \(\text{term} \rightarrow \text{word + term_suffix} \)
 - \(\text{term} \rightarrow \text{term + word_suffix} \)
- neoclassical combining forms (electro- adeno-),
- prefixes (auto-, hypo-)
- suffixes (-osis, -itis)
Rule-based (3)

- Fukuda (1998) used lexical, orthographic features for protein name recognition e.g. upper case character, numerals etc.
- PROPER: core and feature elements
 - Core: meaning bearing elements
 - Feature: function elements

Core elements extended to feature based on concatenation rules (based on POS tags)
Rule-based (4)

- Gaizauskas (2000) CFG for protein name recognition (PASTA, EMPATHIE)
- Based on morphological and lexical characteristics of terms
 - biochemical suffixes (-ase enzyme name)
 - dictionary look-up (protein names, chemical compounds, etc)
 - deduction of term grammar rules from Protein Data Bank

Protein -> protein_modifier, protein_head, numeral
Rule-based (5)

• Inspired by PROPER, Yapex uses Swiss-Prot to add core term elements

http://www.sics.se/humle/projects/prothalt/yapex.cgi

• Hou (2003) used Yapex with context information (collocations) appearing with protein names

• Rule based approaches construct rule and patterns manually or automatically

• Difficult to tune to different domains
Machine learning systems

• Learn features from training data for term recognition and classification
• Most ML systems combine recognition and classification

Challenges

– Feature selection and optimisation
– Availability of training data
– detection of term boundaries
• Collier (2000) used HMM, orthographic features for term recognition
 – HMM looks for most likely sequence of classes corresponding to a word sequence e.g. interleukin-2 protein/DNA
 – To find similarities between known words (training set) and unknown words, use character features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>GreekLetter</td>
<td>[alpha]protein</td>
</tr>
<tr>
<td>Two Caps</td>
<td>[RelB]protein[TAR]RNA</td>
</tr>
</tbody>
</table>
ML (2)

• Use of GENIA resources as training data
 – Results depend on training data
• Morgan (2004) used FlyBase to construct automatically training corpus
 – Pattern matching for gene name recognition, noisy corpus annotated
 – HMM was trained on that corpus for gene name recognition
Support Vector Machines (1)

- Kazama trained multi-class SVMs on Genia corpus
- Corpus annotated with B-I-O tags
 - B tags denote words at beginning of term
 - I tags inside term
 - O tags outside term
 - B-protein-tag: word in the beginning of a protein name
SVMs for NER (2)

- Yamamoto used a combination of features for protein name recognition:
 - Morphological, lexical, boundary, syntactic (head noun), *domain specific* (if term exists in biomedical database).
- Lee use different features for **recognition** and **classification**.
 - Orthographic, prefix, suffix
 - Contextual information
Hybrid approaches

- Combine rules, statistics, resources

Hybrid ATR / NER

- ABGene (Tanabe & Wilbur)
- ARBITER (Rindflesch)
- C/NC-value (Frantzi & Ananiadou)
Hybrid (1)

- **ABGene**: protein and gene name tagger
 - Combines ML, transformation rules, dictionaries with statistics
 - Protein tagger trained on MEDLINE abstracts by adapting Brill’s tagger
 - Transformation rules for recognition of gene, protein names
 - Used GO, LocusLink list of genes, proteins for false negative tags
Hybrid (2)

– ARBITER (Access and Retrieve Binding Terms) uses
 • UMLS Metathesaurus and GenBank to map NPs (binding terms)
 • morphological features
 • lexical information (head noun)

– EDGAR recognises gene, cell, drug names using co-occurrences of cell, clone, expression
Hybrid (3)

- C/NC value Frantzi & Ananiadou, 1998
- C-value
 - Linguistic filters
 - total frequency of occurrence of string in corpus
 - frequency of string as part of longer candidate terms (nested terms)
 - number of these longer candidate terms
 - length of string (in number of words)

 – Output: automatically ranked terms
C-value

- C-value measure extracts multi-word, nested terms
 - adenoid [cystic [basal [cell carcinoma]]]
 - cystic basal cell carcinoma
 - ulcerated basal cell carcinoma
 - recurrent basal cell carcinoma
 - basal cell carcinoma
Term variation

- variation recognition as *part of ATR*
- recognise term forms and link them into equivalence classes
- important if ATR is based on statistics (e.g. frequency of occurrence)
 - corpus-based measures are distributed across different variants
 - conflation of various surface representations of a given term should improve ATR
Simple variation

• orthographic
 – hyphens, slashes (*amino acid* and *amino-acid*)
 – lower/upper cases (*NF-KB* and *NF-kb*)
 – spelling variations (*tumour* and *tumor*)
 – transliterations (*oestrogen* and *estrogen*)

• morphological
 – inflectional phenomena (plural, possessives)

• lexical
 – genuine synonyms (*carcinoma* and *cancer*)
Complex variation

• Structural
 – Possessive usage of nouns using prepositions (*clones of human* and *human clones*)
 – Prepositional variants (*cell in blood, cell from blood*)
 – Term coordinations (*adrenal glands and gonads*)
Coordinated term variants

• Structure is ambiguous
 – Head coordination or term conjunction?

<table>
<thead>
<tr>
<th>example</th>
<th>adrenal glands and gonads</th>
</tr>
</thead>
<tbody>
<tr>
<td>head coordination</td>
<td>[adrenal [glands and gonads]]</td>
</tr>
<tr>
<td>term conjunction</td>
<td>[adrenal glands] and [gonads]</td>
</tr>
</tbody>
</table>

• Head or argument coordination?
 \[(N \mid A)^+ \text{ CC } (N \mid A)^* N^+\]
 • cell differentiation and proliferation
 • chicken and mouse receptors
Nested terms

- Majority of terms are multi-word units
- Maximal vs nested term

[leukaemic [T [cell line]] Kit225]

- Recognising boundaries of multi-word terms important for NER
 - Spotting nested terms on their own in corpus not sufficient
Nested terms

• Challenge here for ATR to identify the sub-strings which themselves are terms
 – Can help in resolving ambiguities in term variants
 – Inner term structure

\[
\text{[leukaemic } [T [cell line]]] \\
\text{[leukaemic } [[T \text{ and } B] [cell lines]]] \\
\Rightarrow \text{leukaemic } T \text{ cell line, leukaemic } B \text{ cell line} \\
\Rightarrow \text{leukaemic } T \text{ cell line, } B \text{ cell line}
\]
Acronyms

• Very productive type of term variation
 • Acronym variation (synonymy)
 – NF kappa B / NF kB / nuclear factor kappa B
 • Acronym ambiguity (polysemy) even in controlled vocabularies

GR glucocorticoid receptor
 glutathione reductase
Acronym variation

- Term variation is a big obstacle in knowledge integration. → Internal similarity of terms (edit-distance), spelling variation generator based on a probabilistic model, etc.
Acronym recognition

Recognition

• Extracting pairs of short and long forms
 <acronym, long form>
 – Distinguishing acronyms from parenthetical expressions
 – Search for parentheses in text; single or more words; e.g. Ab (antibody)
 – Limit context around (); limit number of words according to number of letters in acronym
Recognition

- Heuristics: match letters of acronym with letters of long form using rules, patterns
 - letters from beginning of words
 - combining forms
 carboxi**fluorescein** diacetate (CFDA)
 - Acronym normalisation to allow orthographic, structural and lexical variations (Nenadic et al)
 - morphological information, positional info
 - Penalise words in long form that do not match acronym
 - Accidental matching
 argininosuccitate synthetase (AS)
Acronyms

– Alignment: find all matches between letters of acronyms and their long forms and calculate likelihood (Chang & Schütze)

 • Solves problem of acronyms containing letters not occurring in LF
 • LF includes words which do not have letters in acronyms, different word order
 <ADRB2, beta 2 adrenergic receptor>
 • Choose best alignment based on features, e.g. position of letter etc.
 • Finding optimal weight for each feature challenge

 http://abbreviation.stanford.edu/
Evaluating acronym recognition

- Acronyms in biomedicine are specific
 - General language recognisers perform poorly
 - Domain area covered by gold standard important; standards accurate, product of multiple experts
 - Medstract acronym gold standard
 http://www.medstract.org/gold-standards.html
Acronym Generation

Acronym Generator

Nuclear Factor → NF
antithrombin → AT
melanoma cell adhesion molecule → Mel-CAM

– The system generates possible acronyms from a given expanded form.
Dictionary-Building Approaches

- Collect acronym-definition pairs from running text and construct a dictionary.

Example:

- cytokeratine (CK)
- Interleukin-2 (IL-2)
Problems of Dictionary-Building Approaches

• Coverage
 – Limited available resources (corpora) and lack of generalization
 – Dynamic nature of terms

• Term variation in expanded forms
 – We need to address the problems of term variations in which acronyms are mixed with other variations such as spelling, lexical variations, etc.
Acronym generator

- Machine learning-based
 - Acronym generation as sequence tagging
 - Probabilistic modeling
- Advantages
 - Wide coverage can be achieved by generalization.
 - Similarities can be computed in a probabilistic form.
- Drawbacks
 - Needs training data

MEMM can integrate features that reflect intuition of rule-based methods with statistical modeling

Collection of weak cues
Acronym Generation as Sequence Tagging

cytokeratines

<table>
<thead>
<tr>
<th>Definition</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>UPPER</td>
</tr>
<tr>
<td>y</td>
<td>SKIP</td>
</tr>
<tr>
<td>t</td>
<td>SKIP</td>
</tr>
<tr>
<td>o</td>
<td>SKIP</td>
</tr>
<tr>
<td>k</td>
<td>UPPER</td>
</tr>
<tr>
<td>e</td>
<td>SKIP</td>
</tr>
<tr>
<td>r</td>
<td>SKIP</td>
</tr>
<tr>
<td>a</td>
<td>SKIP</td>
</tr>
<tr>
<td>t</td>
<td>SKIP</td>
</tr>
<tr>
<td>i</td>
<td>SKIP</td>
</tr>
<tr>
<td>n</td>
<td>SKIP</td>
</tr>
<tr>
<td>e</td>
<td>SKIP</td>
</tr>
<tr>
<td>s</td>
<td>LOWER</td>
</tr>
</tbody>
</table>

CKs

<table>
<thead>
<tr>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>s</td>
</tr>
</tbody>
</table>
Sequence Tagging with MEMM

Maximum Entropy Modeling with Inequality Constraints (Kazama and Tsujii 2003, 2005)

- Smoothing effects
 - Performance is better or comparable to that achieved with the use of Gaussian prior.
- Smaller model size -> quick decoding
 - Ex.) POS tagging
 - Gaussian prior: 12MB
 - Inequality constraints: 1.3MB

MEMM can integrate features that reflect intuition of rule-based methods with statistical modeling.

maximum entropy classifier
(model size = 60kB)
Term Disambiguation

- Rindflesch used rules based on semantic types of neighbouring words when mapping terms to UMLS concepts;
 - Rule-based expensive and difficult to be comprehensive
- Use of supervised ML techniques but required manual annotation, expensive
- Liu et al. used a supervised approach to acquire semantically annotated corpora automatically based on UMLS
- Evaluation performed on ambiguous biomedical acronyms
Disambiguation

- ML approaches (Naïve Bayesian, decision trees, etc) used to disambiguate gene, protein names
- Entities share the same name
- Use of contextual information of known occurrences to learn weights; apply weights to elements of unknown occurrences allows classification
- Terminological information, morphological, POS tags, shallow syntactic info, etc.
Term structuring

- **term clustering** (linking semantically similar terms) and **term classification** (assigning terms to classes from a pre-defined classification scheme)

- **Hypothesis**: similar terms tend to appear in similar contexts (patterns)

- combining various sources of similarity:
 - lexical
 - syntactic
 - contextual
 - Ontological (using external resources)
Term structuring

- Based on term similarities
 - choice of features:
 - domain specific → ontology
 - linguistic → text
- ontology-based similarity
- textual similarity
 - internal features
 - contextual features
Using ontologies

• two terms should match if they are:
 – identified as variants
 - siblings in the is-a hierarchy
 – in the is-a or part-whole relation

• the distance between the corresponding nodes in the ontology should be transformed into the matching score

► I. Spasic presentation MIE Tutorial http://www.nactem.ac.uk/
Using text

• number of neologisms: terms are not in the ontologies
• Use of text based techniques to calculate similarities
• edit distance (ED) – the minimal number (or cost) of changes needed to transform one string into the other
• edit operations:
 insertion deletion replacement transposition
 ...a-c... ...abc... ...abc... ...abc...
 ...abc... ...a-c... ...adc... ...acb...

• use of dynamic programming
Examples

ED(\texttt{vitamin A},
\texttt{vitamin–A}) = 1 \ (1 \text{ replacement})

ED(\texttt{vitamin A},
\texttt{vitamin C}) = 1 \ (1 \text{ replacement})

ED(\texttt{vitamin A},
\texttt{A vitamin}) = 4 \ (2 \text{ insertions, 2 deletions})
Term similarities

- **lexical similarity**: based on sharing term head and/or modifier(s) --hyponymy

nuclear receptor
 orphan nuclear receptor

- Sharing heads

 progesterone **receptor** oestrogen **receptor**

 • Specific types of associations
 - mainly general *is_a* and *part_of*
 - some domain-specific, e.g. *binding*: **CREP** **binding protein**
Contextual similarities

• Features from context
 – syntactic category
 – terminological status
 – position relative to the term
 – syntactic relation between a context element and the term
 – semantic properties
 – semantic relation between a context element and the term …….
Lexical & syntactic patterns

• a lexico-syntactic pattern:
 ... Term (, Term)* [,] and other Term ...

• the leading Terms hyponyms of the head Term
 ... antiandrogens, hydroxyflutamide, bicalutamide,
 cyproterone acetate, RU58841, and other compounds ...

• candidate instances of the hyponymy relation:
 hyponym(antiandrogens, compound)
 hyponym(hydroxyflutamide, compound)
 hyponym(bicalutamide, compound)
 hyponym(cyproterone acetate, compound)
 hyponym(RU58841, compound)
Contextual information

- automatic pattern mining for most important context patterns
 - find most important contexts in which a term appears

... receptor is **bound** to these DNA sequences ...
... proteins **bound** to the DNA ...
... estrogen receptor **bound** to DNA ...
... steroid receptor coactivator-1 when **bound** to DNA ...
... progesterone receptor complexes **bound** to DNA ...
... RXRs **bound** to respective DNA elements in vitro ...
... glucocorticoid receptor to **bind** DNA ...

pattern: <TERM> **V:**bind <TERM:DNA>
Stumbling blocks

- Lexical similarities affected by many neologisms and ad hoc names
 - only 5% of most frequent terms in GENIA belonging to same biomedical class have some lexical links
- Issue over how much context to use (sentence, phrase, abstract, ...)
- Attempts at using co-occurrence: many report up to 40% of co-occurrence based relationships biologically meaningless
Term similarities

- **SOLD = Syntactic, Ontology-driven & Lexical Distance** (Spasic, I. & Ananiadou, S. 2005)

- hybrid approach to comparing term contexts, which relies on:
 - linguistic information (acquired through tagging and parsing)
 - domain-specific knowledge (obtained from the ontology)

- roughly based on the approximate pattern matching (i.e. ED)

- combines ontology-based similarity with corpus-based similarity using both internal and contextual features
Term similarity measures

- the ED is used to account for **structural differences** in term contexts while making it more flexible with respect to lexical and terminological variations
- **approximate** matching not only for a term context as a whole, but for its **individual constituents** as well
- different types of features combined:
 - syntactic
 - lexical
 - semantic
Context alignment

The context of the ecdysone receptor (EcR) is a member of the classical receptor for estradiol, which is a member of the large family of nuclear hormone receptors, which of a super-family of nuclear receptors that are ligand regulated transcription factors. Function as hormone regulated transcription factors.
A Term management system

http://www.nactem.ac.uk/

Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation.

Kassel C, Bussemann M, Lorentz H, Lehnke MU
Institute for Pharmacology and Toxicology, Versaicher Straße 5, 56177 Wuppertal, Germany.

Homologous desensitization of beta2-adrenergic receptors has been shown to be mediated by phosphorylation of the agonist-stimulated receptor by G-protein coupled receptor kinase 2 (GRK2) followed by binding of beta-arrestin to the phosphorylated receptor. Binding of beta-arrestin to the receptor is a prerequisite for subsequent receptor desensitization, internalization into the endosome, and the inhibition of alternative signaling pathways. In this study, we investigated the interaction between receptor and beta-arrestin. P388 cells using fluorescence resonance energy transfer. We show that (a) the initial kinetics of beta-arrestin binding to the receptor is limited by the kinetics of GRK2-mediated receptor phosphorylation, (b) sustained stimulation leads to the accumulation of GRK2-phosphorylated receptor, which can bind beta-arrestin very rapidly, and (c) the interaction of beta-arrestin with the receptor depends on the activation of the receptor by agonist because agonist withdrawal leads to a rapid dissociation of the receptor-beta-arrestin complex.

The beta-arrestin 2 (beta2-AR) belongs to the group of G-protein-coupled receptors and is present on skeletal and cardiac muscle cells and on lymphocytes. The gene encoding beta2-AR (ADRB2) displays a moderate degree of heterogeneity in the human population and the distributions of single nucleotide polymorphisms (SNPs) at amino acid positions 16, 27, and 34 are changed in asthma, obesity, and hypotension and in the autoimmune disease myocarditis. Recent studies have implicated beta2-AR polymorphisms in various diseases such as rheumatoid arthritis (RA) and its animal model. We describe here an increased prevalence of the alleles Arg16 and Gln27 and a lower prevalence of homozygosity for Gly16 and Gln27 in patients with RA. Patients having the combination Gly16-Gln27 had higher levels of the rheumatoid factor (RF) and a more active disease than other patients. Patients having the genotypes Arg16-Gln27 had lower levels of RF when compared to those having Arg16+Gln27, and patients who were carriers of Gly27 had a more active disease than non-carriers of Gly27. Our results show an association of beta2-AR SNPs with RA in a population from the northern part of Sweden. Our study also confirms the strong linkage disequilibrium of genotypes at amino acid positions 16, 27, and 34.
Challenges of biomedical terminology

- Linking termforms in text with existing resources
- Term clustering, classification and linking to databases, ontologies
- Selection of most representative terms (concepts) in documents (important for improved IR, database curation, annotation tasks)
Information Extraction in Biology

• Results appear depressed compared to general language
 – Dependent of earlier stages of processing (tokenisers, taggers, results from NER, etc)
 – MUC data 80% F-score template relations, 60% events
 – Challenge for biotext mining is to achieve similar results
 • Evaluation see Hirschman, L. (Text mining book)
IE in Biology

- Pattern-matching
- Context-free grammar approaches
- Full parsing approaches
- Sublanguage driven IE
- Ontology-driven IE

Pattern-matching IE

– Usual limitations with non inclusion of semantic processing
– Large amount of surface grammatical structures = too many patterns (Zipf’s law)
– Cannot explore syntactic generalisations (active, passive voice)
– Systems extract phrases or entire sentences with matched patterns; restricted usefulness for subsequent mining
Pattern-matching systems (1)

- **BioIE** uses patterns to extract sentences, protein families, structures, functions..
 - Presents user with relevant information, improvement from classic IR

- **BioRAT** uses “deeper” analysis, tagging, apply RE over POS tags, stemming, gazetter categories etc
 - Templates apply to extract matching phrases, primitive filters (verbs are not proteins, etc)
Pattern matching systems (2)

- **RLIMS-P (Hu)** protein phosphorylation by looking for enzymes, substrates, sites assigned to *agent, theme, site* roles of phosphorylation relations
- Pos tagger, trained on newswire, chunking, semantic typing of chunks, identification of relations using pattern-matching rules
- Semantic typing of NPs: using combination of clue words, suffixes, acronyms etc
- Semantically typed sentences matched with rules
- Patterns target sentences containing *phosphorylate*
CFG approaches

- Application of CFG; little consideration of linguistic constraints
- Temkin & Gilder (2003) use compiler generator tools to produce lexical analyser and parser to extract gene, protein, molecule interactions
- Top-down parser, hypotheses made about structure of sentence before seeing the words
- Rely on small number of interaction keywords, grouped by semantic category
- Problems with long complex sentences because grammar is simple
Full parsing approaches

- Link Grammar applied for protein-protein interactions; general English grammar adapted to bio-text

- Link Grammar finds all possible *linkages* according to its grammar

- Number of analyses reduced by random sampling, heuristics, processing constraints relaxed
 - 10,000 results permitted per sentence
 - 60% of protein interactions extracted
 - Problems: missing possessive markers & determiners, coordination of compound noun modifiers
Full parsing IE (2)

- Not all parsing strategies suitable for bio-text mining
- Text type, abstracts, “ungrammaticality” related with sublanguage characteristics?
- Ambiguity and full parsing; fragmentary phrases (titles, headings, text in table cells, etc)
- CADERIGE project used Link grammar but on shallow parsing mode
- Kim & Park (BioIE) use combinatorial categorial grammar, annotated with GO concepts, extract general biological interactions
- 1,300 patterns applied to find instances of patterns with keywords
Full parsing (3)

- Keywords indicate basic biological interactions
- Patterns find potential arguments of the interaction keywords (verbs or nominalisations)
 - Validated arguments mapped into GO concepts
 - Difficult to generalise interaction keyword patterns
- BioIE’s syntactic parsing performance improved after adding subcategorisation frames on verbal interaction keywords
Full parsing (4)

- Daraselia (2004) use full parsing and domain-specific filter to extract protein interactions
 1. All syntactic analyses discovered using CFG and variant of LFG
 2. Each alternative parse mapped to its corresponding semantic representation
 3. Output = set of semantic trees, lexemes linked by relations indicating thematic or attributive roles
 4. Apply custom-built, frame based ontology to filter representations of each sentence
 5. Preference mechanism controls construction of frame tree, high precision, low recall (21%)
Sublanguage-driven IE (1)

- Language of a special community (e.g. biology)
- Particular set of constraints re GL
- Constraints operate at all linguistic levels
 - Special vocabulary (terms)
 - Specialised term formation rules
 - Sublanguage syntactic patterns
 - Sublanguage semantics
- These constraints give rise to the *informational structure* of the domain (Z. Harris)
- See JBI 35(4) Special Issue on Sublanguage
GENIES system

- Employs SL approach to extract biomolecular interactions
- Uses hybrid syntactic-semantic rules
 - Syntactic and semantic constraints referred to in one rule
- Able to cope with complex sentences
- Frame-based representation
 - Embedded frames
- Domain specific ontology covers both entities and events
GENIES system

- Default strategy: full parsing
 - Robust due to sublanguage constraints
 - Much ambiguity excluded
- If full parse fails, partial parsing invoked
 - Maintains good level of recall
- Precision: 96%, Recall: 63%
Ontology-driven IE

- Until recently most rule based IE have used neither linguistic lexica nor ontologies
 - Reliance on gazetteers
 - Small number of semantic categories
- Gazetteer approach not well suited in bioIE
- **Ontology based vs ontology driven**
 - Passive use of ontologies, map discovered entity to concept
 - Active use, ontology guides and constrains analysis, fewer rules
- Examples: PASTA, GenIE not SL
- GENIES, SL and ontology driven
Summary: simple pattern matching

- Over text strings
 - Many patterns required, no generalisation possible
- Over POS
 - Some generalisation but ignore sentence structure
- POS tagging, chunking, semantic p-m, typing
 - Limited generalisation, some account taken of structure, limited consideration of SL patterns
Summary: full parsing

- Full parsing on its own, parsing done in combination with chunking, partial parsing, heuristics) to reduce ambiguity, filter out implausible readings
 - GL theories not appropriate
 - Difficult to specialise for biotext
 - Many analyses per sentence
 - Missing information due to sublanguage meaning
Summary: sublanguage approach

- Exploits a rich SL lexicon
- Describes SL verbs in detail
- Syntactic-semantic grammar
- Current systems would benefit from adopting ontology-driven approach
Ontology-driven

- Uses event concept frames to guide processing
- Integration of extracted information
- Current systems would benefit from adopting also SL approach
Linguistically Annotated Corpora

• GENIA
 – Domain
 • Mesh term: *Human, Blood Cells, and Transcription Factors.*
 – Annotation: POS, named entity, parse tree

• Penn BioIE
 – Domain
 • the molecular genetics of oncology
 • the inhibition of enzymes of the CYP450 class.
 – Annotation: POS, named entity, parse tree

• Yapex
• GENETag
• etc..
Part-Of-Speech annotation

The peri-kappa B site mediates human immunodeficiency virus type 2 enhancer activation in monocytes ...

<table>
<thead>
<tr>
<th>Corpus</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIA</td>
<td>2,000 abstracts</td>
</tr>
<tr>
<td>Penn BioIE</td>
<td>2,157 abstracts</td>
</tr>
<tr>
<td>MedPost</td>
<td>5,700 sentences</td>
</tr>
</tbody>
</table>
Named-entity annotation

We have shown that interleukin-1 (IL-1) and IL-2 control protein transcription in DNA.

IL-2 receptor alpha (IL-2R alpha) gene control protein transcription in DNA.

CD4-CD8-murine T lymphocyte precursors.

• Entity type
 – Genes/protein names
 – Enzymes, substances, etc.
 – GENIA ontology
Entity-annotated corpora (Kim, 2006)

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Annotation Type (Size)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENIA</td>
<td>Term (2,000 abstracts)</td>
<td>Terminal concepts in GENIA ontology</td>
</tr>
<tr>
<td>GENIA-JNLPBA</td>
<td></td>
<td>Proteins, DNAs, RNAs, cell lines, cell types</td>
</tr>
<tr>
<td>PennBioIE-Oncology</td>
<td>Entity (1,157 abstracts)</td>
<td>Genes, variation events, malignancies</td>
</tr>
<tr>
<td>PennBioIE-CYP</td>
<td>Entity (1,100 abstracts)</td>
<td>CYP450 enzymes, other substances, quantitative measurements</td>
</tr>
<tr>
<td>GENETAG-05 (MedTag)</td>
<td>Entity (15,000 sentences)</td>
<td>Gene/protein names</td>
</tr>
<tr>
<td>ABGene (MedTag)</td>
<td>Entity (4,265 sentences)</td>
<td>Gene/protein names</td>
</tr>
<tr>
<td>Yapex</td>
<td>Entity (200 abstracts)</td>
<td>Protein names</td>
</tr>
</tbody>
</table>
Analog of 1 alpha,25-(OH) 203 with substitutions on C-11 were synthesized.

Corpus	**Size**
GENIA | 1500 abstracts
Penn BioIE | 642 abstracts
Other types of annotation

• Co-reference

• Biological events

 “Lipopolysaccharide induces phosphorylation of MAD3”

 – Event #1
 • Type: Protein_amino_acid_phosphorylation (GO:0006468)
 • Theme: MAD3 (Protein_molecule)

 – Event #2
 • Type: Positive_regulation (GO:0048518)
 • Theme: Event #1
 • Cause: Lipopolysaccharide
Basic Steps of NLP

- Sentence splitting
- Tokenization
- Part-of-speech tagging
- Shallow parsing (chunking)
- Named entity recognition
- CFG parsing
- Deep parsing
Sentence splitting

- PubMed has no information about sentence boundaries.

- Sentence splitting by simple heuristic rules
 - Space + capital letter
 - Exceptions: “Dr. Xxx”, “e.g. YYY”, ...

- JASMINE
 - A rule-based sentence splitter

- Machine learning
 - Maximum-entropy (Reynar, 1997): 98-99% accuracy
 - Training data: e.g. GENIA
Tokenization

- Convert a sentence into a sequence of tokens
 - tokenizer.sed: a simple sed script
 - http://www.cis.upenn.edu/~treebank/tokenization.html

- Undesirable tokenization
 - org: “1,25(OH)2D3”
 - tokenized: “1, 25 (OH) 2D3”

- Tokenization for biomedical text
 - Not straight-forward
 - Needs dictionary? Machine learning?
Part-Of-Speech tagging

The peri-kappa B site mediates human immunodeficiency virus type 2 enhancer activation in monocytes …

- Assign a part-of-speech tag to each token in a sentence.
POS tagging algorithms

• Accuracies on the WSJ corpus

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Training Cost</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependency Net (2003)</td>
<td></td>
<td>97.2</td>
</tr>
<tr>
<td>Perceptron (2002)</td>
<td></td>
<td>97.1</td>
</tr>
<tr>
<td>SVM (2003)</td>
<td></td>
<td>97.1</td>
</tr>
<tr>
<td>Bidirectional MEMM (2005)</td>
<td></td>
<td>97.1</td>
</tr>
<tr>
<td>Brill's tagger (1995)</td>
<td>low</td>
<td>96.6</td>
</tr>
<tr>
<td>HMM (2000)</td>
<td>low</td>
<td>96.7</td>
</tr>
</tbody>
</table>
POS taggers

• Brill’s tagger
 – http://www.cs.jhu.edu/~brill/

• TnT tagger
 – http://www.coli.uni-saarland.de/~thorsten/tnt/

• Stanford tagger

• SVMTool
 – http://www.lsi.upc.es/~nlp/SVMTool/

• GENIA tagger
 – http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
Tagging errors made by a WSJ-trained POS tagger

… and membrane potential after mitogen binding.

… two factors, which bind to the same kappa B enhancers…

… by analysing the Ag amino acid sequence.

… to contain more T-cell determinants than …

Stimulation of interferon beta gene transcription in vitro by
Taggers for general text do not work well on biomedical text

Performance of the Brill tagger evaluated on randomly selected 1000 MEDLINE sentences: 86.8% (Smith et al., 2004)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>84.4%</td>
</tr>
<tr>
<td>NNP = NN, NNPS = NNS</td>
<td>90.0%</td>
</tr>
<tr>
<td>LS = NN</td>
<td>91.3%</td>
</tr>
<tr>
<td>JJ = NN</td>
<td>94.9%</td>
</tr>
</tbody>
</table>

Accuracies of a WSJ-trained POS tagger evaluated on the GENIA corpus (Tsuruoka et al., 2005)
MedPost
(Smith et al., 2004)

- Hidden Markov Models (HMMs)
- Training data
 - 5700 sentences randomly selected from various thematic subsets.
- Accuracy
 - 97.43% (native tagset), 96.9% (Penn tagset)
 - Evaluated on 1,000 sentences
- Available from
Training POS taggers with bio-corpora
(Tsuruoka and Tsujii, 2005)

<table>
<thead>
<tr>
<th>training</th>
<th>WSJ</th>
<th>GENIA</th>
<th>PennBioIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSJ</td>
<td>97.2</td>
<td>91.6</td>
<td>96.5</td>
</tr>
<tr>
<td>GENIA</td>
<td>85.3</td>
<td>98.6</td>
<td>92.2</td>
</tr>
<tr>
<td>PennBioIE</td>
<td>87.4</td>
<td>93.4</td>
<td>97.9</td>
</tr>
<tr>
<td>WSJ + GENIA</td>
<td>97.2</td>
<td>98.5</td>
<td>93.6</td>
</tr>
<tr>
<td>WSJ + PennBioIE</td>
<td>97.2</td>
<td>94.0</td>
<td>98.0</td>
</tr>
<tr>
<td>GENIA + PennBioIE</td>
<td>88.3</td>
<td>98.4</td>
<td>97.8</td>
</tr>
<tr>
<td>WSJ + GENIA + PennBioIE</td>
<td>97.2</td>
<td>98.4</td>
<td>97.9</td>
</tr>
</tbody>
</table>
How robust are they?

Relative performance evaluated on recent abstracts selected from three journals:
- Nucleic Acid Research (NAR)
- Nature Medicine (NMED)
- Journal of Clinical Investigation (JCI)

<table>
<thead>
<tr>
<th>training</th>
<th>NA</th>
<th>NME</th>
<th>NME</th>
<th>Total (Acc.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSJ</td>
<td>109</td>
<td>47</td>
<td>102</td>
<td>258 (70.9%)</td>
</tr>
<tr>
<td>GENIA</td>
<td>121</td>
<td>74</td>
<td>132</td>
<td>327 (89.8%)</td>
</tr>
<tr>
<td>PennBioIE</td>
<td>129</td>
<td>65</td>
<td>122</td>
<td>316 (86.6%)</td>
</tr>
<tr>
<td>WSJ + GENIA</td>
<td>125</td>
<td>74</td>
<td>135</td>
<td>334 (91.8%)</td>
</tr>
<tr>
<td>WSJ + PennBioIE</td>
<td>133</td>
<td>71</td>
<td>133</td>
<td>337 (92.6%)</td>
</tr>
<tr>
<td>GENIA + PennBioIE</td>
<td>128</td>
<td>75</td>
<td>135</td>
<td>338 (92.9%)</td>
</tr>
<tr>
<td>WSJ + GENIA +</td>
<td>133</td>
<td>74</td>
<td>139</td>
<td>346 (95.1%)</td>
</tr>
</tbody>
</table>

PennBioIE
Chunking (shallow parsing)

He reckons the current account deficit will narrow to only #1.8 billion in September.

• A chunker (shallow parser) segments a sentence into non-recursive phrases.
Extracting noun phrases from MEDLINE (Bennett, 1999)

- Rule-based noun phrase extraction
 - Tokenization
 - Part-Of-Speech tagging
 - Pattern matching

Noun phrase extraction accuracies evaluated on 40 abstracts

<table>
<thead>
<tr>
<th></th>
<th>FastNPE</th>
<th>NPtool</th>
<th>Chopper</th>
<th>AZ Phraser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recall</td>
<td>50%</td>
<td>95%</td>
<td>97%</td>
<td>92%</td>
</tr>
<tr>
<td>Precision</td>
<td>80%</td>
<td>96%</td>
<td>90%</td>
<td>86%</td>
</tr>
</tbody>
</table>
Chunking with Machine learning

- Chunking performance on Penn Treebank

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winnow (with basic features) (Zhang, 2002)</td>
<td>93.60</td>
<td>93.54</td>
<td>93.57</td>
</tr>
<tr>
<td>Perceptron (Carreras, 2003)</td>
<td>93.29</td>
<td>94.19</td>
<td>93.74</td>
</tr>
<tr>
<td>SVM + voting (Kudoh, 2003)</td>
<td>93.92</td>
<td>93.89</td>
<td>93.91</td>
</tr>
<tr>
<td>SVM (Kudo, 2000)</td>
<td>93.51</td>
<td>93.45</td>
<td>93.48</td>
</tr>
<tr>
<td>Bidirectional MEMM (Tsuruoka, 2005)</td>
<td>93.70</td>
<td>93.70</td>
<td>93.70</td>
</tr>
</tbody>
</table>
Machine learning-based chunking

- Convert a treebank into sentences that are annotated with chunk information.
 - CoNLL-2000 data set
 - The conversion script is available
- Apply a sequence tagging algorithm such as HMM, MEMM, CRF, or Semi-CRF.
- YamCha: an SVM-based chunker
 - http://www.chasen.org/~taku/software/yamcha/
GENIA tagger

• Algorithm: Bidirectional MEMM
• POS tagging
 – Trained on WSJ, GENIA and Penn BioIE
 – Accuracy: 97-98%
• Shallow parsing
 – Trained on WSJ and GENIA
 – Accuracy: 90-94%
• Can output base forms
• Available from
 – http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/
Named-Entity Recognition

We have shown that interleukin-1 (IL-1) and IL-2 control protein protein protein IL-2 receptor alpha (IL-2R alpha) gene transcription in DNA CD4-CD8-murine T lymphocyte precursors.

• Recognize named-entities in a sentence.
 – Gene/protein names
 – Protein, DNA, RNA, cell_line, cell_type
Performance of biomedical NE recognition

- Shared task data for Coling 2004 BioNLP workshop
 - entity types: protein, DNA, RNA, cell_type, and cell_line

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall</th>
<th>Precision</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVM+HMM (Zhou, 2004)</td>
<td>76.0</td>
<td>69.4</td>
<td>72.6</td>
</tr>
<tr>
<td>Semi-Markov CRFs (in prep.)</td>
<td>72.7</td>
<td>70.4</td>
<td>71.5</td>
</tr>
<tr>
<td>Two-Phase (Kim, 2005)</td>
<td>72.8</td>
<td>69.7</td>
<td>71.2</td>
</tr>
<tr>
<td>Sliding Window (in prep.)</td>
<td>71.5</td>
<td>70.2</td>
<td>70.8</td>
</tr>
<tr>
<td>CRF (Settles, 2005)</td>
<td>72.0</td>
<td>69.1</td>
<td>70.5</td>
</tr>
<tr>
<td>MEMMM (Finkel, 2004)</td>
<td>71.6</td>
<td>68.6</td>
<td>70.1</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>
Features

Classification models, main features used in NLPBA (Kim, 2004)

<table>
<thead>
<tr>
<th>CM</th>
<th>lx</th>
<th>af</th>
<th>or</th>
<th>sh</th>
<th>g</th>
<th>gz</th>
<th>po</th>
<th>n</th>
<th>sy</th>
<th>tr</th>
<th>a</th>
<th>ca</th>
<th>do</th>
<th>p</th>
<th>pr</th>
<th>ext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zho</td>
<td>SH</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>p</td>
<td>x</td>
<td>b</td>
<td>x</td>
<td>a</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fin</td>
<td>M</td>
<td>x</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set</td>
<td>C</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>(x)</td>
<td>(x)</td>
<td>x</td>
<td>(x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Son</td>
<td>SC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zha</td>
<td>H</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Classification Model (CM):
- S: SVM; H: HMM; M: MEMM; C: CRF

Features
- lx: lexical features; af: affix information (character n-grams); or: orthographic Information; sh: word shapes; gn: gene sequence; gz: gazetteers; po: part-of-speech tags; np: noun phrase tags; sy: syntactic tags; tr: word triggers; ab: abbreviations; ca: cascaded entities; do: global document information; pa: parentheses handling; pre: previously predicted entity tags; B: British National Corpus; W: WWW; V: virtually generated corpus; M: MEDLINE
Estimated volume was a light 2.4 million ounces.
Phrase structure + head information

Estimated volume was a light 2.4 million ounces.
Dependency relations

Estimated volume was a light 2.4 million ounces.
CFG parsing algorithms

- Performance on the Penn Treebank

<table>
<thead>
<tr>
<th>Model</th>
<th>LR</th>
<th>LP</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generative model (Collins, 1999)</td>
<td>88.1</td>
<td>88.3</td>
<td>88.2</td>
</tr>
<tr>
<td>Maxent-inspired (Charniak, 2000)</td>
<td>89.6</td>
<td>89.5</td>
<td>89.5</td>
</tr>
<tr>
<td>Simply Synchrony Networks (Henderson, 2004)</td>
<td>89.8</td>
<td>90.4</td>
<td>90.1</td>
</tr>
<tr>
<td>Data Oriented Parsing (Bod, 2003)</td>
<td>90.8</td>
<td>90.7</td>
<td>90.7</td>
</tr>
<tr>
<td>Re-ranking (Johnson, 2005)</td>
<td></td>
<td></td>
<td>91.0</td>
</tr>
</tbody>
</table>
CFG parsers

- Collins parser
- Bikel’s parser
 - http://www.cis.upenn.edu/~dbikel/software.html#stat-parser
- Charniak parser
 - http://www.cs.brown.edu/people/ec/
- Reranking parser
 - http://www.cog.brown.edu:16080/~mj/Software.htm
- SSN parser
Parsing biomedical documents

- CFG parsing accuracies on the GENIA treebank (Clegg, 2005)

<table>
<thead>
<tr>
<th></th>
<th>LR</th>
<th>LP</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bikel 0.9.8</td>
<td>77.43</td>
<td>81.33</td>
<td>79.33</td>
</tr>
<tr>
<td>Charniak</td>
<td>76.05</td>
<td>77.12</td>
<td>76.58</td>
</tr>
<tr>
<td>Collins model 2</td>
<td>74.49</td>
<td>81.30</td>
<td>77.75</td>
</tr>
</tbody>
</table>

- In order to improve performance,
 - Unsupervised parse combination (Clegg, 2005)
 - Use lexical information (Lease, 2005)
 - 14.2% reduction in error.
HPSG parsing

- HPSG
 - A few schema
 - Many lexical entries
 - Deep syntactic analysis
- Grammar
 - Corpus-based grammar construction (Miyao et al. 2004)
- Parser
 - Beam search (Tsuruoka et al.)

Mary walked slowly
The protein is activated by IL2
The protein is activated by IL2
Parsing MEDLINE with HPSG

• Enju
 – A wide-coverage HPSG parser
 – http://www-tsujii.is.s.u-tokyo.ac.jp/enju/

• Parsing performance on the GENIA Treebank (Hara et al., 2005)
 – with gold-standard POS tags: 85.1 f-score.
 – Use the GENIA in training: 86.9 f-score
Extraction of Protein-protein Interactions: Predicate-argument relations + SVM

- (Yakushiji, 2005)\(^{(1)}\)

Extraction patterns based on predicate-argument relations

\[
\text{CD4 protein interacts with non-polymorphic regions of } MHCII \text{.}
\]

SVM learning with predicate-argument patterns
Extraction of Protein-protein Interactions:
Predicate-argument relations + SVM

- Evaluation on the Aimed corpus (Bunescu et al., 2004).

![Graph showing Precision vs. Recall with two curves labeled (Yakushiji 2005) and (Ramani et al., 2005).]
Biomedical IE/IR Systems

- **iHOP**
- **EBIMed**
 - http://www.ebi.ac.uk/Rebholz-srv/ebimed/index.jsp
- **GoPubMed**
 - http://www.gopubmed.org/
- **PubFinder**
 - http://www.glycosciences.de/tools/PubFinder
- **Textpresso**
MEDUSA

• An interactive IR system based on predicate-argument relations

• System components
 – GENIA tagger
 – Enju (HPSG parser)
 – Dictionary-based named entity recognition
 – IR engine based on region algebra

• (demo)
• Subject: p53
• Verb: activate
• Object:
Info-PubMed

- An interactive IE system that helps the user to build gene interaction networks.
- System components
 - MEDUSA
 - Extraction of protein-protein interactions
 - Multi-window interface on a browser
- (demo)
Studies using adRaf and adRafK demonstrated that RAF blocked activation of ERK and AKT by Raf1 in beta cells.

Studies using adRaf and adRafK demonstrated that RAF blocked activation of ERK and AKT by Raf1 in beta cells.

Studies using adRaf and adRafK demonstrated that RAF blocked activation of ERK and AKT by Raf1 in beta cells.

Studies using adRaf and adRafK demonstrated that RAF blocked activation of ERK and AKT by Raf1 in beta cells.

Studies using adRaf and adRafK demonstrated that RAF blocked activation of ERK and AKT by Raf1 in beta cells.

Raf1 depletion inhibits DNA synthesis and induces apoptosis in three melanoma cell lines and we show that the RAF inhibitor 844 also blocks RAF activity, inhibits DNA synthesis and induces cell death in these cells.

Raf1 depletion by siRNA blocks RAF activity, whereas RAF and ERK depletion do not affect MAPK signaling.

We found that SPP1, an inhibitor homologous to SPP2, which was previously shown to suppress Raf1/ERK signaling via direct binding to Raf1, had reduced expression in WIT RAF cells.