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Abstract

This paper is concerned with the stochastic generation of a large-scale galactic magnetic field and propagation of

magnetic fronts in the subcritical regime. Starting with a two-component thin-disk aO-dynamo model in the axisymmetric

case, we derive the equation for order parameter in the form of a stochastic reaction–diffusion equation with free energy

functional. This equation describes subcritical generation of galactic magnetic field as a first-order phase transition in

spatially extended system. We consider in particular a situation in which the magnetic field propagates as a plane front.

We derive an approximate formula for propagation speed.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The generation and propagation of magnetic fields in galaxies have been studied for many years [1–4].
Nonetheless, many fundamental aspects of the galactic dynamo remain to be understood. The propagation of
magnetic fronts is one such aspect of dynamo evolution. It is now accepted that the generation of the large-
scale magnetic field occurs as a result of the simultaneous action of differential rotation of the galactic disk
and turbulent motions of the interstellar medium. Standard mathematical procedure consists of looking for
exponentially growing solutions of the linear mean field dynamo equation (kinematic dynamo). The
propagation of a magnetic front then can be analyzed in terms of the classical Fisher–Kolmogorov–
Petrovskii–Piskunov (FKPP) equation for the azimuthal magnetic field [5,6]. This equation is a generic model
describing front propagation into an unstable state [7]. If the dynamo excitation occurs within a certain radius
rpr0, then the magnetic front propagates into the unstable region r4r0, where the linear growth rate g is
positive (supercritical case). One can find that the minimal propagation speed is c ¼ 2ðgbÞ1=2, where b is a
magnetic diffusivity. This type of magnetic front is referred to as an exterior front [6]. In fact, there are
infinitely many possible wave velocities which are determined by initial conditions. The front-like initial
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condition for a magnetic field ensures the minimal rate of propagation c. Recently, these results have been
extended to the case when the memory effects are taken into account. It has been shown that the integral
turbulent transport leads to the essential decrease of the speed of magnetic front [8,9].

The essential feature of early models for magnetic waves is that the minimal propagation rate is found
from linear analysis. The main purpose of this work is to consider the subcritical case when the
propagation of a magnetic wave is essentially a nonlinear phenomenon. We are going to use recent results
concerning nonnormal growth and nonlinear instability for the galactic dynamo [10,11]. The key insight
gained from this theory is that although the trivial state with zero magnetic field is linearly stable, the non-
normality due to differential rotation and the dependence of a-effect and turbulent magnetic diffusivity on
magnetic field can lead to the instability with respect to finite perturbations. Thus, in the subcritical case the
generation of large-scale magnetic field can be regarded as a stochastic nucleation in a spatially extended
dissipative system. Depending upon relative stability of stationary states, the finite localized perturbations
(nuclei) either grow or shrink. When they grow, the propagation of magnetic fronts is observed. It should be
noted that although the phenomenon of metastability occurs in many different situations in physics, it has
received little attention in the context of magnetic field generation. Let us mention the work of Tobias on
hysteresis in solar dynamo [12] and the so-called self-killing and self-creating dynamos by Fuchs, Rädler, and
Rheinhard [13].

In this paper we use the comparatively simple thin-disk asymptotic approach to axisymmetric mean field
dynamo for disk galaxy [3]. We restrict ourselves to the nonlinear aO-dynamo when both alpha and magnetic
diffusivity quenching are taken into account. The aim is to derive a closed stochastic partial differential
equation for the order parameter describing the subcritical generation and propagation of magnetic fronts. We
use a transformation of variables and a technique of adiabatic elimination [15,16]. Our intention is to describe
the magnetic field generation as a stochastic process in a spatially extended system with multiple stationary
states (a first-order phase transition) [17]. The magnetic front can be regarded as a trigger wave connecting an
initial metastable state and absolutely stable state [7,18].

2. Thin-disk dynamo equation

We start with an axisymmetric turbulent dynamo in the galactic disk of thickness 2h and radius R that
rotates with angular velocity OðrÞ ðRbhÞ [1–3]. A mean field model for the evolution of the components of
magnetic field Brðt; rÞ and Bjðt; rÞ can be written as

qBr

qt
¼ �

aðBjÞBj

h
�

p2bðBjÞBr

4h2
þ rðbðBjÞrBrÞ þ F rðt; rÞ,

qBj

qt
¼ gOBr �

p2bðBjÞBj

4h2
þ rðbðBjÞrBjÞ þ Fjðt; rÞ, (1)

where aðBjÞ is the nonlinear function describing the a-effect, bðBjÞ is the nonlinear magnetic diffusivity,
gO ¼ rdO=dr is the measure of differential rotation and ðdO=dro0Þ, r is the gradient operator in the
polar system of coordinates: rB ¼ qB=qr er. To take into account unresolved turbulent fluctuations, we add
two stochastic terms F rðt; rÞ and Fjðt; rÞ on the right-hand side of (1) [19]. We average the magnetic
field over the vertical cross-section of a turbulent disk and consider the spatial structure in the galactic
plane only [3]. Such a ‘no-z’ model proves to be generic and provides a very reasonable match to obser-
vations of the magnetic field generation in disk-like galaxies [2]. Since Bz=Br;j�h=R51, we are only interested
in the radial, Br, and azimuthal, Bj, components of the magnetic field B. Here we introduce two
functions aðBjÞ and bðBjÞ describing the quenching mechanism. The current theories disagree about how the
a-effect and turbulent diffusivity b are suppressed by the magnetic field. In this paper we use the following
nonlinear functions:

aðBjÞ ¼ a0ð1þ kaðBj=BeqÞ
2
Þ
�1; bðBjÞ ¼ b0 1þ

kb

1þ ðBeq=BjÞ
2

 !�1
, (2)
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where ka and kb are positive constants, Beq is the equipartition strength (see, for example, Ref. [4], p. 799). It
should be noted that whilst in this paper we choose specific forms of the dependence of a and b on the
magnetic field Bj, the core result is not dependent upon the precise forms of these functions. Beq is defined as a
field for which the magnetic energy is equal to the characteristic energy of the turbulent
fluctuations: Beq ¼ rv2T . Here r is the density and v2T is the characteristic velocity associated with the
large-scale turbulent flow. Both functions aðBjÞ and bðBjÞ decay with Bj thus describing the
negative feedback on the magnetic field generation; a0 and b0 are chosen in a such way that að0Þ ¼ a0 and
bð0Þ ¼ b0. Note that the dependence of the magnetic diffusivity bðBjÞ on the azimuthal component Bj is
crucial for the subcritical generation of magnetic field. More general forms of these functions were considered
in Ref. [14].

The mean field dynamo equations (1) can be non-dimensionalized by using a characteristic length 2h=p,
an angular velocity O0, and the equipartition strength Beq:

qBr

qt
¼ �djaðBjÞBj � �jbðBjÞBr þ �rðjbðBjÞrBrÞ þ f rðt; rÞ,

qBj

qt
¼ �gBr � �jbðBjÞBj þ �rðjbðBjÞrBjÞ þ f jðt; rÞ, (3)

where

d ¼
Ra

Ro
; � ¼

p2

4Ro
; g ¼

jgOj

O0
(4)

and Ra and Ro are the dimensionless measures of relative strength of the a-effect and the differential rotation,
respectively:

Ra ¼
a0h
b0

; Ro ¼
O0h2

b0
. (5)

The random forces f rðt; rÞ ¼ Frðt; rÞ=O0 and f jðt; rÞ ¼ Fjðt; rÞ=O0 are assumed to be Gaussian delta-correlated
random fields with zero-mean

hf rðt; rÞf rðt
0; r0Þi ¼ Drdðt� t0Þdðr� r0Þ, (6)

hf jðt; rÞf jðt
0; r0Þi ¼ Djdðt� t0Þdðr� r0Þ. (7)

The nonlinear functions jaðBjÞ and jbðBjÞ are:

jaðBjÞ ¼
1

1þ kaB
2
j

; jbðBjÞ ¼
ð1þ B2

jÞ

1þ ðkb þ 1ÞB2
j

. (8)

In this paper we consider only the case of aO-dynamo for which the differential rotation dominates
over the a-effect: O0hba0, that is Ra5Ro. It means that the system (3) involves two small parameters
d and �. The typical values are d ¼ 0:01 and � ¼ 0:1. For small values d, � and g�1, the linearized
operator in (3) is highly non-normal which might lead to a large transient growth of the azimuthal component
Bj. Comprehensive survey and many examples of non-normal systems are given in Ref. [21]. One can also
expect a high sensitivity of the second moments of a magnetic field to the stochastic perturbations f rðt; rÞ and
f jðt; rÞ [10].

Linearization of a zero-dimensional dynamical system (3) about the equilibrium point ð0; 0Þ shows that in
the subcritical case when both eigenvalues l1 and l2 are negative:

l1 ¼ ��þ
ffiffiffiffiffi
gd

p
; l2 ¼ ���

ffiffiffiffiffi
gd

p
, (9)
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the point ð0; 0Þ is a stable node. The corresponding eigenvectors are

h1 ¼ ð�m; 1Þ
T; h2 ¼ ðm; 1Þ

T; m ¼

ffiffiffi
d
g

s
51. (10)

3. Stochastic normal form of dynamo equation

In this paper we consider only the subcritical case ð�4
ffiffiffiffiffi
gd

p
Þ [10]. It is convenient to represent the system (3)

in the stochastic normal form [20]. By using the eigenvectors h1 and h2 as a basis, one can introduce the change
of variables ðBr;BjÞ ! ðu; vÞ:

Brðt; rÞ ¼ mðvðt; rÞ � uðt; rÞÞ; Bjðt; rÞ ¼ vðt; rÞ þ uðt; rÞ. (11)

The partial derivatives of the fields uðt; rÞ and vðt; rÞ are

qu

qt
¼

1

2m
�
qBr

qt
þ m

qBj

qt

� �
,

qv

qt
¼

1

2m
qBr

qt
þ m

qBj

qt

� �
, (12)

and the nonlinear stochastic system (3) can be rewritten as:

qu

qt
¼

1

2m
½dðja � 1Þvþ ðd� 2m�jb þ djaÞu� þ �rðjbruÞ �

1

2m
f r þ

1

2
f j,

qv

qt
¼

1

2m
½ð�2m�jb � dja � dÞvþ dð1� jaÞu� þ �rðjbrvÞ þ

1

2m
f r þ

1

2
f j, (13)

where

ja ¼ jaðvþ uÞ; jb ¼ jbðvþ uÞ. (14)

Since the parameter m is small, the stochastic term f jðt; rÞ can be neglected compared to ð2mÞ�1f rðt; rÞ. Since the
latter term is proportional to the large parameter m�1, it explains the sensitivity of the non-normal dynamical
systems to random perturbations (see Ref. [21]). In the linear case, the system (13) can be rewritten in a
decoupled form:

qu

qt
¼ �jl1juþ �Du�

1

2m
f rðt; rÞ,

qv

qt
¼ �jl2jvþ �Dvþ

1

2m
f rðt; rÞ. (15)

These two equations can be easily solved to get the statistical moments of the random fields uðt; rÞ and vðt; rÞ.
For the large r for which Du ¼ q2u=qr2, we can find from (15) (see Ref. [16]) that two-point equal time
correlation functions are

huðt; rÞuðt; r0Þi ¼
Dj

4m2ðjl1j�Þ
1=2

exp �
jl1j
�

� �1=2

jr� r0j

" #
, (16)

hvðt; rÞvðt; r0Þi ¼
Dj

4m2ðjl2j�Þ
1=2

exp �
jl2j
�

� �1=2

jr� r0j

" #
. (17)

In what follows we consider only the case when

jl1j5jl2j. (18)
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One can see from (15) that under the condition (18) the random field uðt; rÞ can be regarded as the ‘‘slow’’ field
and vðt; rÞ as the ‘‘fast’’ field. We can see from (16) and (17) that the ratio of the second moments hv2i and hu2i

can be written as:

hv2i

hu2i
¼
jl1j
jl2j

� �1=2

51. (19)

This inequality allows us to neglect the random fluctuations of vðt; rÞ compared to those of uðt; rÞ.
4. Stochastic equation for order parameter

4.1. Adiabatic elimination

Our purpose now is to derive the stochastic equation governing the slow evolution of the field u [15]. Under
the conditions (18) and (19) the ‘‘fast’’ field vðt; rÞ follows the ‘‘slow’’ field uðt; rÞ. Neglecting partial structure of
vðt; rÞ one can find from (13) that

v ¼
dð1� jaðuÞÞu

2m�jbðuÞ þ djaðuÞ þ gm2
. (20)

The latter equation corresponds to the so-called ‘‘silence’’ adiabatic elimination [15]. Substitution of (20) into
(13) and putting v ¼ 0 in (14) give the stochastic partial differential equation for the order parameter uðt; rÞ

qu

qt
¼ bðuÞ þ �rðjbðuÞruÞ �

1

2m
f rðt; rÞ, (21)

where

bðuÞ ¼
2mðgdjaðuÞ � �

2j2
bðuÞÞu

2m�jbðuÞ þ djaðuÞ þ gm2
. (22)

The main idea of this paper is that the stochastic reaction–diffusion equation (21) provides the universal
description of magnetic field generation near subcritical bifurcation point. It admits a large variety of solutions
including propagating fronts connecting the different metastable states. The remarkable result here is the
appearance of the deterministic potential

UðuÞ ¼ �

Z u

0

bðzÞdz, (23)

which one does not obtain by considering the original equations (3). Recall that the azimuthal component of
the magnetic field, Bj, can be found as Bj ¼ vþ u. The function u describes how the solution of the system (3),
ðBr;BjÞ, moves along the eigenvector h1. Eliminating the variable v we neglect the ‘‘fast’’ evolution of ðBr;BjÞ

towards h1 from arbitrary initial conditions.
4.2. Steady uniform distributions

Let us find the steady uniform distributions for Eq. (21). By using (8), (22), and equating bðuÞ to zero, we
find the equation:

�2

gd
ð1þ u2Þ

2
ð1þ kau2Þ � ð1þ ðkb þ 1Þu2Þ

2
¼ 0, (24)

determining non-trivial stationary points for the deterministic equation du=dt ¼ bðuÞ. If we take ka ¼ kb ¼ 1,
then (24) can be rewritten as the equation

ð1þ u2Þ
3
� gbð1þ 2u2Þ

2
¼ 0 (25)
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Fig. 1. Functions bðuÞ of the stochastic PDE (21) for d ¼ 0:01 and � ¼ 0:1 and two different values g. Solid line, g ¼ 0:86; dashed line,

g ¼ 0:9.
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with the bifurcation parameter

gb ¼
gd
�2

. (26)

It follows from (25) that when the parameter gb is below approximately 0:844, there exists only one stable
equilibrium point u ¼ 0. For the range 0:844ogbo1, the system exhibits multistability in the bifurcation
diagram [11]: there are two unstable states, u�1 , and two non-trivial stable states, u�2 (see Fig. 1). This is a
classical subcritical pitchfork bifurcation [17]. For example, if gb ¼ 0:95, then u�1 ¼ �0:243 and u�2 ¼ �1:167.
The value gb ¼ 1 separates subcritical ðgbo1Þ and supercritical ðgb41Þ zones. Here we are concerned only with
the subcritical case: 0:844ogbo1. Since

jl1j
jl2j
¼

ffiffiffiffiffi
gd

p
� �ffiffiffiffiffi

gd
p

þ �
¼

1� gb

ð1þ
ffiffiffiffiffi
gb

p
Þ
2
51, (27)

the main criteria for the adiabatic elimination procedure: jl1j5jl2j is generic in the subcritical case.

4.3. Free energy functional and first-order phase transitions

One can introduce the free energy functional

F ½u� ¼

Z
�jbðuÞ

2
ðruÞ2 þUðuÞ

� �
dr (28)

such that the stochastic PDE (21) can be rewritten in the form

qu

qt
¼

dF

du
�

1

2m
f rðt; rÞ. (29)

This equation allows us to look at the problem of a galactic magnetic field generation as a first-order phase
transition in a distributed non-equilibrium system [16]. The additive noise term, f rðt; rÞ, represents the
stochastic forcing arising from the small-scale fluctuations in magnetic and turbulent velocity fields. Here we
address the situation when these fluctuations generate the critical nucleus. The stable uniform distributions
u ¼ 0 and u ¼ u�2 can be interpreted as phases. Subcritical instability of the metastable state u ¼ 0 with respect
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to a finite spatially localized perturbation (nucleus) gives rise to a transient behavior of magnetic field in the
forms of trigger waves. They connect, for example, the local minimum of F ½u� at u ¼ 0 and the global
minimum at u ¼ u�2 . The critical nucleus, u�ðt; rÞ can be found from dF=du ¼ 0, that is

bðu�Þ þ �rðjbðu
�Þru�Þ ¼ 0, (30)

ru�ð0Þ ¼ 0 and u� ! 0 as r!1. (31)

As long as the critical nucleus u� is formed as a result of random perturbations, it gives rise to traveling fronts.
One can verify that the functional Fokker–Planck equation corresponding to (29) has a stationary solution
[17]

P½u� ¼
1

Z
exp �

4m2F ½u�
Dj

� �
, (32)

where Z is a normalization constant. The transition time, T , from the metastable uniform state u ¼ 0 to the
stable state uþ2 is given by

T� exp
4m2F ½u��

Dj

� �
. (33)

The derivation of this formula can be found in Ref. [22].

4.4. Magnetic fronts

In the subcritical case, galactic magnetic fronts can be analyzed by using the deterministic PDE

qu

qt
¼ bðuÞ þ �rðjbðuÞruÞ, (34)

where the nonlinear function bðuÞ belongs to a generic class of bistable nonlinearities: bðuÞo0 for u in ð0; uþ1 Þ
and bðuÞ40 for u in ðuþ1 ; u

þ
2 Þ. (Note that bðuÞ is the odd function.) This is a classical reaction–diffusion

equation with the field dependent diffusivity �jbðuÞ [7,23].
Let us consider the propagation of the effectively plane magnetic front neglecting all curvature effects.

Eq. (34) can be written as

qu

qt
¼ bðuÞ þ �

q
qr

jbðuÞ
qu

qr

� �
. (35)

One can expect that the long-time development leads to the propagation of a traveling front of permanent
form u ¼ uðzÞ, where z ¼ r� ct. The propagation rate c has to be found from the boundary value problem

�c
du

dz
¼ bðuÞ þ �

d

dz
jbðuÞ

du

dz

� �
, (36)

u! 0 as z!1; u! uþ2 as z!�1. (37)

One can also consider the front propagation when u! u�2 as z!�1. It should be noted that when the
nonlinear function bðuÞ is bistable and the diffusivity �jbðuÞ depends on the field u, the direction of front
propagation is controlled by the sign of the integralZ uþ

2

0

jbðuÞbðuÞdu (38)

rather than
R uþ

2

0 bðuÞdu (constant diffusion) [7]. To show this, let us use the new variable [23] s ¼ sðzÞ obtained
from the equation

ds

dz
¼

1

jbðuðzÞÞ
. (39)
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We can rewrite the boundary value problem (36) in terms of the auxiliary function FðsðzÞÞ ¼ uðzÞ:

�c
dF
ds
¼ jbðFÞbðFÞ þ �

d2F
ds2

, (40)

F! 0 as s!1; F! uþ2 as s!�1. (41)

Multiplying both sides of (40) by dF=ds and integrating over ½0; uþ2 �, we find that the propagation rate c is
given by

c ¼

R uþ
2

0 jbðuÞbðuÞdu

R1
�1

dF
ds

� �2

ds

. (42)

So the speed c is positive as long as the integral (38) is positive. Fig. 2 shows the bistable function bðuÞ (u40)
(solid line) and the product jbðuÞbðuÞ (dashed line) appearing in the integral (38). It is clear from Fig. 2 and the
formula (42) that the dependence of jb on u slows down the propagation speed.

To get the formula for c we approximate the nonlinear function jbðuÞbðuÞ by a cubic polynomial for uX0:

jbðuÞbðuÞ ¼
jl1ju
uþ1 uþ2

ðuþ1 � uÞðu� uþ2 Þ, (43)

such that jbð0Þbð0Þ ¼ �jl1ju. It follows from (40), (41) that the propagating rate c is given by

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�jl1j
2uþ1 uþ2

s
ðuþ2 � 2uþ1 Þ. (44)

This is a unique speed which does not depend on the initial conditions. Recall that for the supercritical case
when l140 we have the minimal speed cmin ¼ 2

ffiffiffiffiffiffiffi
�l1
p

.
So far we have considered the magnetic field propagation in the form of one-dimensional traveling wave

that propagates with a constant velocity. It is well known that the speed of traveling wave in the two-
dimensional depends on the radius of the expanding circle: cðRÞ ¼ c�D=R, where D is a constant diffusivity,
c is the propagation rate of a plane wave. So the excited domain with the radius less than the critical Rcr ¼ D=c

does not propagate outward. The value of the critical radius corresponding to the equation with field
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Fig. 2. Functions bðuÞ (1—solid line) and jbðuÞbðuÞ (2—dashed line) for g ¼ 0:9, d ¼ 0:01 and � ¼ 0:1.
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dependent diffusivity can be found from the critical ‘‘nucleus’’ problem (see (30) and (31)). Note that in the
subcritical case, the excited domain with the radius greater than Rcr can be formed as a result of random
fluctuations. Clearly, our results concerning the subcritical generation of magnetic field and front propagation
are relevant not only for galactic dynamo but for solar dynamo as well where spatial and temporal structures
emerge. However, the solar dynamo equations cannot be reduced to a single equation like (21) and therefore
the computer simulations are required to analyze the subcritical dynamics.

5. Conclusions

We have studied the stochastic aO-dynamo model near the bifurcation point in the subcritical case. By using
a two-component aO-dynamo model, we have derived the equation for order parameter in the form of a
stochastic reaction–diffusion equation. This stochastic partial differential equation describes a subcritical

generation of galactic magnetic field as a first-order phase transition in spatially extended system. We have
identified the free energy functional for galactic dynamo problem which allows us to find the estimate for the
mean transition time from the metastable uniform state with zero magnetic field. We have shown that the
stochastic generation of magnetic field leads to a spontaneous front propagation. We have determined the
speed of fronts which does not depend on the initial conditions.
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