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The paper deals with theoretical study of non linear viscoelastic phenomena in ferrofluids placed in magnetic
field. Our attention is focused on the study of nonstationary flow and Maxwell-like relaxation of the macro-
scopical viscous stress after alternation of the shear rate. We propose that these phenomena can be explained
by finite rate of evolution of chainlike aggregates, consisting of the ferrofluid particles. Statistical model of the
chains growth-disintegration is suggested. In this model the chain-single particle mechanism of the chains
evolution is considered, the effects of the chain-chain interaction are ignored. The proposed model allows us to
estimate the time-dependent function of distribution over number of particles in the chain. Having determined
this function and using methods of hydromechanics of ferrofluids with chainlike aggregates, we have studied
evolution of the ferrofluid viscosity after stepwise alternation of the fluid shear rate. The estimated time of
relaxation is in a reasonable agreement with experimental results. Thus, our analysis shows that the observed
macroscopical viscoelastic phenomena in ferrofluids can be provided by evolution of the chain ensemble.
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I. INTRODUCTION

Magnetic fluids �ferrofluids� present colloidal suspensions
of single-domain ferromagnetic particles in a carrier liquid.
The typical diameter of the particles is about 10–15 nm. In
order to prevent the irreversible coagulation of the particles
under the action of the colloidal dispersion forces, they are
covered by special layers which screen these forces. For
many modern ferrofluids the surface shells consist of surfac-
tant molecules; the typical thickness of these layers is about
2–2.5 nm.

Ferrofluids attract considerable interest of investigators
and engineers due to rich set of their unique physical prop-
erties, valuable for many modern technologies. Discussion of
methods of ferrofluids synthesis as well as backgrounds of
physics of these systems can be found in the book �1�. Mod-
ern state of physics of ferrofluids and various fields of their
practical applications are discussed in �2�.

One of the interesting and important features of ferroflu-
ids is their ability to change rheological properties under the
action of external magnetic field. The first theories of the
magnetorheological effects in ferrofluids �3,4� deal with very
dilute systems, where any interactions between the particles
can be ignored.

The maximal magnetoviscous effect predicted by these
models does not exceed several per cent. However, experi-
ments, carried out with various commercial ferrofluids in re-
cent decades, demonstrate increase of their viscosity under
the field by one-two orders of magnitude �5,6�. Especially
strong magnetoviscous effects are observed when magnetic
field is aligned along gradient of the fluid shear flow.

Analysis shows that the strong magnetoviscous effects
can take place due to appearance of heterogeneous aggre-
gates consisting of the ferrofluid particles �6–9�. Two types
of the structures in ferrofluids are well-known–the linear
chains and the dense bulk “drops” as well. Theoretical and
experimental study of these structures can be found in Refs.
�6–14�. Both of them can induce strong magnetorheological

effects in ferrofluids �8�. Unfortunately, there is no univer-
sally recognized theory which would be able to predict either
chains or drops dominate in ferrofluids under given condi-
tions.

It should be noted that experiments �15,16� demonstrate
various rheological effects which, in principle, cannot be ex-
plained in the framework of the classical single-particle
model. However they can be explained, at least qualitatively,
under assumption of appearance of internal heterogeneous
structures.

Theories of magnetorheological properties of ferrofluids
are mainly devoted to steady flow of these systems. How-
ever, from scientific as well as practical viewpoints, study of
nonstationary flow of ferrofluids presents significant interest.
Experiments �16� with typical commercial ferrofluids have
demonstrated pronounced viscoelastic �relaxation� effects
with the time of rheological relaxation about ten seconds.
These magnitudes of the relaxation time are about four to
five decimal orders of magnitude greater than the classical
theories �3,4� predict.

Some attempts of theoretical description of the viscoelas-
tic properties of ferrofluids with chainlike aggregates have
been done in Refs. �17–19�. In these models, the viscoelastic
effects have been explained by the finite time of the chain
reorientation after alternation of the fluid shear rate. The time
of viscoelastic relaxation obtained from the models �17–19�
is significantly closer to the experimental results of �16� than
that of the models �3,4�; nevertheless, the calculated relax-
ation time is one to two orders of magnitude less than that
detected in experiments �16�. Thus one can conclude that
microscopical physical cause of the strong viscoelastic phe-
nomena in ferrofluids is still not understood even qualita-
tively.

It should be noted that phenomenological models of the
nonstationary viscoelastic flow of ferrofluids with chainlike
aggregates has been suggested in Refs. �20,21�. As usual, the
phenomenological models propose macroscopical equations
of dynamical behavior of ferrofluids, but do not allow esti-
mating characteristic parameters �effective viscosity, time of
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relaxation, etc.�, which figurate in these equations, as well as
dependences of these parameters on applied field, shear rate,
etc. Moreover, the phenomenological approach can lead to
constructive results only when mathematical forms of equa-
tions for the stress and ferrofluid magnetization are known.
However, for ferrofluids the nonlinear functional forms of
relation between these magnitudes a priori are unknown.
From our point of view only microscopical analysis is able to
uncover internal, intimate mechanisms of formation of mac-
roscopical nonlinear rheological behavior of ferrofluids and
gives possibility to derive the macroscopical governing equa-
tions.

One can suppose that experimentally detected relaxation
viscoelastic phenomena in ferrofluids appear due to finite
rate of evolution of ensembles of heterogeneous aggregates
after alternation of macroscopical shear rate of the fluid.
Characteristic time of evolution of these ensembles can de-
termine the time of macroscopical viscoelasticity of the fluid.

In this paper, we propose a simple microscopical model of
viscoelastic properties of a ferrofluid with the chainlike ag-
gregates under assumption that these properties are due to
evolution of the chain ensemble. The proposed model is
based on statistical analysis of kinetics of the chains growth/
disintegration in the shear flowing ferrofluid. Our attention is
focused on the effects of the Maxwell-like relaxation of the
macroscopical viscous stress after alternation of the imposed
shear rate. That is why we suppose that length of the chains
is much less than size of the ferrofluid sample. Elastic phe-
nomena, which appear when the chains �or other heteroge-
neous structures� overlap the channel with the ferrofluid, are
not considered here.

The structure of this paper is the following. In part II, we
consider evolution of the chains in a ferrofluid after alterna-
tion of shear rate and/or applied magnetic field. In part III, by
using microscopical approach, we determine the macroscopi-
cal stress in the ferrofluid. Evolution of the fluid viscosity
after stepwise alternation of the shear rate is considered in
part IV.

In presented model we use the same approximations as in
the Refs. �7,8,16–19,22,23�. In spite of the fact that these
approximations definitely oversimplify the physical situation
which takes place in real ferrofluids, they have allowed to get
quite reasonable agreement with experiments for the station-
ary magnetoviscous effects �5–7,9,16,22� and rate of the
chain growth �23�.

The main simplifications of the approach are the follow-
ing. First, we model the ferrofluid as suspension of identical
ferromagnetic spheres in a carrier liquid. One needs to note
that the modern ferrofluids are, as a rule, polydisperse sys-
tems, very often with wide distribution over particle sizes.
The typical diagrams of the particle size distribution can be
found in Ref. �5�. Unfortunately account of many fractions of
the particles with different sizes leads to very complicated
and cumbersome mathematics. However it is known �see, for
example �5�� that the macroscopical magnetorheological ef-
fects in ferrofluids are provided by the fractions of relatively
big particles. As a rule, volume concentration of these par-
ticles in ferrofluids is quite small—about 1–2 %. That is
why, for maximal simplification of calculations, we will con-
sider only monodisperse ensemble of the big particles, as-

suming that their volume concentration is between 1% and
2%.

Second, it is well known �4,5� that magnetic moment m of
the big ferrofluid particle is frozen in its body, i.e., rotates
together with it. We will assume that this condition is ful-
filled.

Third, we will ignore any interactions between the chains.
This approximation is justified by the small total concentra-
tion of the big ferroparticles in the system.

Next, we will neglect the thermal flexibility of the chains
and consider them as rigid rodlike aggregates. Magnetic mo-
ments of all particles in the chain are supposed to be aligned
along the chain axis. In part, it means that the magnetic in-
teraction between the nearest particles in the chain is as-
sumed much greater than the thermal energy kT. The last
condition is necessary for formation of any heterogeneous
aggregates in ferrofluid.

II. KINETICS OF EVOLUTION OF THE CHAIN
ENSEMBLE

Stationary distribution over number of particles in the
chains. The chainlike aggregates can be considered as spe-
cific heterogeneous fluctuations of density. That is why the
number of particles in a chain is stochastic quantity which is
determined by competition between magnetic attraction of
the particles, their thermal motion and hydrodynamical de-
struction. Theoretically, in macroscopically motionless sys-
tem a chain can include infinite number of particles. In the
shear moving ferrofluid too long chains must be destroyed by
the viscous hydrodynamical forces. Competition of the hy-
drodynamical and magnetic forces leads to existence of a
finite maximal number nc of the particles in the chain. In the
case when applied magnetic field is aligned along gradient of
the fluid flow, this number has been estimated in �5,7� as

nc ���
Dr

�̇
� =

�0

2�

m2

d3kT
, Dr =

kT

��0d3 . �1�

Here d is hydrodynamical diameter of the particle, defined
with account of the stabilizing shells, �0 is viscosity of the
carrier liquid, �0 is the vacuum permeability. Parameter �
presents dimensionless, with respect to the thermal energy
kT, energy of the magnetodipole interaction between the
nearest particles, Dr is the coefficient of rotational diffusion
of the single particle, �̇ is the shear rate. Below, for simpli-
fication, we will use estimate Eq. �1� for nc without any
multiplier.

Let us denote the number of n-particle chains per unit
volume of the system as gn. If the convective motion of the
particles near the chain is much weaker than their diffusion
motion �the Pecklet number is small�, then the scenario of
the particles integration/disintegration from the chains is
quite similar to that in the motionless media. That is why the
stationary distribution function gn can be found with the
same way as the equilibrium function, taking into account
the restriction �Eq. �1�� on the number of particles in the
chain.

Obviously, the equilibrium distribution function must cor-
respond to the principle of free energy minimum. Since con-
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centration of the aggregated particles in the ferrofluid is sup-
posed small, we may neglect any interactions between the
chains. In this approximation the free energy of a unit vol-
ume of the system can be presented as �see, also �7,17–19��,

F = kT�
n=1

nc �gn ln
gnv

e
+ gnfn	, v =

�d3

6
. �2�

The first term in the brackets �Eq. �2�� corresponds to the
entropy of ideal gas of the chains, fn is the dimensionless
free energy of the chain. This magnitude is determined by
interaction between particles in the chain as well as by their
interaction with applied magnetic field. By using the well
known approximation of the nearest neighbors, in the frame-
work of approximation of the straight chains, this free energy
can be estimated as

fn = − 
��n − 1� + ln
sinh��n�

�n
� ,

� = �0
mH

kT
. �3�

Here H is the magnetic field, dimensionless parameter � is
the ratio of energy of interaction between the particles with
the field to the thermal energy kT. The first term in the brack-
ets �Eq. �3�� corresponds to the energy of magnetic interac-
tion between particles in the chain, estimated in the nearest-
neighbors approximation. The second term is the Langevine
free energy of the chain with the total magnetic moment
�mn� in the field H.

Substituting Eq. �3� into Eq. �2�, we get

F = kT�
n=1

nc

gn�ln
gnv

e
− 
��n − 1� + ln

sinh��n�
�n

� . �4�

We determine the stationary distribution function from the
condition of minimum of the free energy �Eq. �4�� with re-
spect to gn under the obvious normalization condition

�
n=1

nc

ngn = C =
	

v
. �5�

Here C is the total number of the particles in the unit volume,
	 is their hydrodynamical volume concentration defined with
account of the shells on the particles.

Minimizing Eq. �4� under condition �5�, after standard
transformations we get

gn =
1

v

sinh��n�
�n

Xn exp�− �� , �6�

where X is undefined Lagrange multiplier. One can show,
combining Eqs. �4�–�6�, that kT ln X is chemical potential of
the ferrofluid particles.

In order to determine X one needs to substitute Eq. �6�
into the Eq. �5�. As a result, we come to a transcendental
equation with respect to X, which can be solved numerically.

Flux of free particles toward the chain. Let us pass now to
analysis of kinetics of the chains growth. This kinetics is
determined by the competition between flux of the particles

toward the chain and evaporation of the particles from this
chain. Here, in order to determine the flux of the particles to
the chain, we will use the main ideas of the model �23�
which have been successfully used at the analysis of evolu-
tion of chains of polarized particles in electric field.

In the framework of this model we suppose that the chain
growth takes place due to the “chain-particle” aggregation
and ignore the “chain-chain” way of aggregation. Indeed,
first, for the realistic situations concentration g1 of the single
particles is significantly more than concentration gn of any
chains in the system �17–19�. Second, the hydrodynamical
mobility of the single particle is more than mobility of a
chain. Therefore, the flux of the single free particles to the
chain must be significantly more than the flux of any other
chains.

Additionally, we will assume that the particle “adsorb”
only at extremities of the chain. Thus we neglect probability
of the lateral aggregation. This assumption is justified by the
fact that in the applied field average magnetic moments of
the particles and chains are parallel. That is why for the
lateral aggregation, the particle must overcome a potential
barrier with the height which is significantly greater than kT.
The probability to overcome this barrier due to diffusion ef-
fects is much less than unity. Thus the probability of particle
attachment to the chain pole is significantly more than prob-
ability of attachment to the chain lateral surface.

It should be noted that too long chains in ferrofluid are
thermodynamically unstable—they must transform to a
dense drop or globule �24�. We assume that probability of
appearance of these drops is negligible.

Our first aim now is to determine the flux of free particles
toward the chain, i.e., number of the particles which attach
to the chain extremities per unit of time. The flux of the
particles evaporating from the chain we will determine later.

Let us consider a chain consisting of n particles sur-
rounded by free particles �Fig. 1�.

By c
 we will denote the numerical concentration of the
free particles, c�r�—their concentration in the point r. In
order to be in the framework of the approximation of the
nearest neighbors, which is used for calculations of the sta-
tionary distribution function gn, we will take into account
interaction of the free particle only with the particle at the
nearest extremity of the chain. It is shown in Ref. �23� that in
this approximation the magnetic interaction of the free par-
ticle with the chain is quite similar to its interaction with a
single particle.

Let us consider the particle, which models the chain and
introduce a coordinate system with the origin in the center of
the particle. It is convenient to use spherical coordinate sys-
tem with the polar axis aligned along the applied field H.
This coordinate system is shown in Fig. 1.

Because concentration of the particles in ferrofluid is
small, we can neglect interaction of the free particle with any

H

r

FIG. 1. Sketch of the chain and free particle.
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chains except the considered one. Then the equation of dif-
fusion of the free particles near the particle in the origin of
the coordinate system �i.e., near the particle which models
the chain� can be written down as

�c

�t
= ��D�r� � c� + ��D�r�c � udd�r�� . �7�

Here udd is the dimensionless, with respect to kT, energy of
the dipole-dipole interaction between the fixed and free par-
ticles, D�r�=D0��r�, D0 is the coefficient of translational dif-
fusion of a single particle, ��r�=1−3d /4r is the multiplier
which takes into account hydrodynamical interaction be-
tween the particles �23,25�.

The boundary conditions to this problem are

c → c
, r → 
 ,

c → 0, r → 0. �8�

The first condition is obvious; the second one means that
when the free particle touches the fixed one �i.e., it touches
the chain�, the free particle disappears and transforms into a
particle which belongs to this chain.

Equation �7� does not have exact analytical solution. In
order to find an approximate estimate, like in Ref. �23�, we
will use the following considerations. First, we will take into
account that the time, which is necessary to establish station-
ary concentration profile around the fixed particle, is defi-
nitely less than the time needed to change the mean concen-
tration c
. This allows us to consider Eq. �7� in
quasistationary approximation, neglecting the time derivative
in this equation.

The potential udd of the dipole-dipole interaction depends
not only on the distance r between the fixed and free par-
ticles, but also on the angle � between the radius-vector r
and the field H. Taking it into consideration, one can search
solution of the stationary problem �Eqs. �7� and �8�� in the
form of series in Legendre polynomials in cos �. However
this series contains infinite number of terms and converges
slowly. Thus, this series is inconvenient for the practical cal-
culations. In order to get reasonable estimates of the particle
flux toward the chain, we will average the potential udd, like
in �23�, over angle � in the region corresponding to the cone
of attraction between the particles. The averaged magnitude
of the potential is

ūdd =

�
cos2 �1/3

udd�r,��d cos �

�
−1

1

d cos �

. �9�

Instead of the exact potential udd�r�, in the Eq. �7� we will
use this average magnitude of the potential, which depends
only on the distance r. This simplification allowed in �23� to
get quite accurate description of experiments on kinetics of
aggregation of polarized particles in electric field.

The potential of dipole-dipole interaction between two
particles with magnetic moments m1 and m2 can be written
as

udd = −
�0

4�kT

3

�m1 · r��m2 · r�
r5 −

�m1 · m2�
r3 � .

Since ferromagnetic particles are small, they are involved
into intensive Brownian motion, both translational and rota-
tional. That is why, strictly speaking, their magnetic mo-
ments fluctuate. The simultaneous account of the transla-
tional and rotational Brownian motion in the Eq. �7� leads to
very difficult mathematical problem. Here, for simplicity, we
will suppose that the moments of both free and fixed par-
ticles are aligned along the field H. This approximation over-
estimates effect of the magnetic field on the kinetics of the
chain growth. However, for the case of strong enough mag-
netic fields ��1� necessary for pronounced magnetorheo-
logical effects, deviations of the particle moments from the
field are weak. That is why the error of this approximation
cannot be significant.

Assuming that magnetic moments of the particles are par-
allel to the field H, we get

udd = −
�0m2

4�kT

3 cos2 � − 1

r3 . �10�

Combining Eqs. �9� and �10� gives

ūdd = −
�

3�3x3
. �11�

Here x=r /d is the dimensionless distance between the par-
ticle centers.

Substituting Eq. �11� into Eq. �7�, we come to the follow-
ing quasistationary equation

�

�r

D0��r�r2� �

�r
c + c

�

�r
ūdd�r�	� = 0. �12�

Equation �12� with the boundary condition �8� leads to the
following expression for the flux J of the free particles onto
the chain,

J = Ac
, A =
4�D0d

W
, W = �

1


 exp�ūdd�
��x�x2 dx . �13�

Evolution of the chain ensemble. Let us pass now from
analysis of growth of a single chain to evolution of the
chains ensemble. The distribution function gn changes with
time due to “adsorption” of the single particles at the ex-
tremities of the chains and desorption of the particles from
the chains because of their Brownian motion. As the energy
of interaction of the particles at the extremities of the chain is
smaller approximately by a factor of 2 than the energy of
“internal” particles in the chain, it seems reasonable to con-
sider “evaporation” only of the particles located at the ex-
tremities of the chain and to neglect other kinds of the chain
rupture.

Since the “adsorption” of a free particle by the n-particle
chain transforms the chain into �n+1�-particle chain and the
“evaporation” of the terminal particle transforms n-particle
chain into �n−1�-particle chain, we come to the following
kinetic equation:
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�gn

�t
= − Ag1�gn − gn−1� + B1� Bn

Bn+1
gn+1 −

Bn−1

Bn
gn	, n  1.

�14�

Here A is the adsorption coefficient determined in Eq. �13�,
Bn are coefficients which determine intensity of desorption of
the particles from the chains. They will be determined below.

The first term in the Eq. �14� determines the rate of
change of concentration of the n-particle chains due to at-
tachment of single particles to these chains and to
�n−1�-particle chains; the second one—due to desorption of
the particles from the chains with �n+1� and n particles. The
fraction form of the coefficient multiplying gn+1 and gn in the
desorption term in Eq. �14� is chosen for the convenience.

Equation for g1 has the following form:

�g1

�t
= − 2Ag1

2 − Ag1 �
n=2

nc−1

gn + 2
B1

2

B2
g2 + B1�

n=3

nc Bn−1

Bn
gn.

�15�

Here we take into account that, first, when two particles
form a doublet, their relative hydrodynamical mobility is ap-
proximately twice more than the relative mobility of indi-
vidual particle and motionless chain. Second, after disap-
pearing of the doublet, two new single particles appear. The
equations similar to Eqs. �14� and �15� have been used in
Ref. �23� at the analysis of evolution of ensemble of chains
of polarized particles.

Equation for the chain with maximal number nc of the
particles has the following form:

�gnc

�t
= Agnc−1g1 − B1

Bnc−1

Bnc

gnc
. �16�

The system of Eq. �14�–�16� is closed and automatically
satisfies to the condition

�
n=1

nc

ngn = const. �17�

It follows from the physical considerations that const=C
=	 /v.

Now we are in a position to determine the coefficients Bn.
To this end we will use the same considerations as in Ref.
�23�.

Obviously, the stationary solution gn
0 of the system �Eqs.

�14�–�16�� corresponds to the equilibrium state of the system.
Thus it must coincide with the quasiequilibrium distribution
function determined from the condition of the free energy
minimum. One can easily show that the stationary solution
of Eqs. �14�–�16� has the following form:

gn
0 =

Bn

A
Yn, �18�

where Y is an undetermined multiplier.
Equating gn in Eqs. �6� and �18�, we come to the follow-

ing results:

Y = X, Bn =
A

v

sinh��n�
�n

exp�− �� . �19�

The way of calculation of the parameter X is discussed right
after Eq. �6�.

Note that similar method of determination of the desorp-
tion parameter through the adsorption coefficient and equi-
librium distribution function have been used in Ref. �26� at
the analysis of kinetics of polymer chains growth.

The system of Eqs. �14�–�16� can be solved numerically.
Figures 2 and 3 illustrate the time dependences of the distri-
bution function gn after stepwise alternation of applied field
and the shear rate, respectively. Parameters of the fluid used
in our calculations correspond to the ferrofluid TTR of the
University of Timishoara �Romania�. This fluid has been
used in experiments �16� on the viscoelastic phenomena in
ferrofluids.

III. MACROSCOPICAL STRESS TENSOR

A model of viscoelastic phenomena in ferrofluids with the
chainlike aggregates has been suggested in Refs. �17–19�.
Kinetics of the chain growth/disintegration has not been con-
sidered in �17–19�—these processes have been assumed to

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

t (s)

1

2

3 4

g
n
 /
!

FIG. 2. Concentration gn vs time t after stepwise increase, at
t=0, of the applied magnetic field in magnetite ferrofluid. The di-
mensionless field � changes from 0 to 3. Parameters of the system:
hydrodynamical diameter of the particles is 16 nm, the volume
concentration of particles 	=0.015; �=5.5, viscosity of the carrier
liquid �0=0.13 Pa s, the shear rate �̇=16 s−1. Figures near curves-
number n of particles in the chain.
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FIG. 3. The same as for Fig. 2 after stepwise decrease of the
shear rate; at t=0 the shear rate �̇ changes from 16 s−1 to 1.6 s−1;
the dimensionless field �=3.
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be momentary. Only kinetics of the chains reorientation after
alternation of the fluid shear rate has been taken into account.
Analysis shows that for the ferrofluids TTR, used in the ex-
periments �16�, this mechanism gives the time of rheological
relaxation of about 10−1–10−2 s, whereas in experiments
�16� this time varied in region from 1 to 10 s.

In this part of the work, we suggest a model of nonsta-
tionary rheological properties of ferrofluids with the chain-
like aggregates. This model is based on the idea that the
viscoelastic phenomena in ferrofluids can be explained by
kinetics of formation/disintegration of the chains. Since time
of the chain reorientation, according to the results �18,19�, is
much less than the time �16� of the fluid macroscopical rheo-
logical relaxation, we will neglect the time of reorientation
and will consider this process as instant.

Similar to �7,17–19�, we model the n-particle chain by
ellipsoid of revolution with the minor and major axes equal
to d and nd, respectively. It is of principal importance that
the volume of this ellipsoid equals to the total volume
�nd3 /6 of all particles in the chain. Thus the volume con-
centration of ellipsoids is the same as concentration of the
particles in the ferrofluid.

By using results of statistical hydromechanics of suspen-
sions of nonspherical particles �27�, one can present the mac-
roscopical viscous stress tensor � as follows:

�ik = �ik
s + �ik

a ,

�ik
s = 2�0�ik + �0��
�2�n�ik − �n�ejes�n�ik� js� + ��n + �n�n�

���eiej�n� jk + �ekej�n� ji� + �n��ij�ejek�n + �kj�ejei�n�

+ ��n − 2�n�n��eiekejes�n� js − �n
d

dt
�eiek�n��� ,

�ik
a =

�kT

2v
���ei�hk − �ek�hi��, hi =

Hi

H
,

�ik =
1

2
� �ui

�xk
+

�uk

�xi
	, �ik =

1

2
� �ui

�xk
−

�uk

�xi
	 ,

i, j,k,s = x,y,z . �20�

Here and below

�� . . . �� = �
n

. . .nvgn, � . . . � =� . . .e�n�e�de ,

� . . . �0 =� . . .e�n
0�e�de, i, . . . ,k = x,y,z ,

u is macroscopical velocity of the fluid flow. The unit vector
e is aligned along the chain axis, �n is normalized to unity
function of distribution over orientations of e, �n

0 is the
equilibrium distribution function. Parameters �n , . . .�n are
given in the Appendix. The Einstein convention for summa-
tions over indexes is used here.

Under the conditions ��1 and ��� one can propose that
magnetic moments of all particles in a chain are aligned
along the chain axis. Thus, the equilibrium orientational dis-
tribution function �n

0�e� coincides with that for the rigid
magnetic rods with the moment mn.

By using well-known results of the equilibrium theory of
ferrofluids �see, for example �1,4� �, one can write down

�n
0�e� =

�n

4� sinh��n�
exp��n�e · h�� . �21�

In order to determine the nonequilibrium orientation function
	n, one needs to find a solution of corresponding Fokker-
Planck equation. By using the model of ellipsoids for the
chains and well-known form of this equation for the ellip-
soids of revolution �see, for example �27��, we can write the
Fokker-Planck equation as

��n

�t
+ �n�es�sl − emesel�ms�

��n

�el
+ �lses

��n

�el
− 3�neles�ls	n

− Dn�n
�ejemhm − hj�
��n

�ej
+ 2ejhj�n�

= Dn� �2�n

�ej
2 − 2es

��n

�es
− ejes

�2�n

�ej � es
	 , �22�

where

Dn =
kT

��0d3n�n
, �n =

2�n2 + 1�
3n�n2�0 + �0�

.

The shape parameters �0 ,�0 are given in the Appendix.
Equation �22� is the well known Fokker-Planck equation

for ellipsoidal ferromagnetic Brownian particle, written
down in a Cartesian coordinate system. Exact solution of this
equation for arbitrary �n is unknown. In order to find its
approximate solution, we will use the effective-field method
developed in �4� for ferrofluids with single particles, and
applied to the systems with chains in �7,8,17–19�. In the
framework of this approach, which is a variant of the trial
function method, we will look for the nonequilibrium distri-
bution function in the form

�n = �n
0�1 + ai�ei − �ei�n

0� + bik�eiek − �eiek�n
0�� . �23�

Here ai and bik are Cartesian components of unknown vector
and tensor which are to be determined.

To this end, we multiply both parts of Eq. �22� by com-
ponents of vector e and tensor eiem-�im /3, then integrate
these expressions over all orientations of e. As a result, in the
linear approximation with respect to the components of gra-
dient of the flow velocity, we get the following equations
�see �27��:

d�ek�n

dt
= −

1

�1n
�ek�n + �n��ei�n

0�ik − �ekejes�n
0� js� + �kj�ej�n

0

+ Dn�n�hk − �ekej�nhj� �24�

and
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d�eiek�n

dt
= −

1

�2n
��eiek�n −

1

3
�ik	 + �n��eies�n

0�sk + �ekes�n
0�si�

+ �ij�ejek�n
0 + �kj�ejei�n

0 − 2�n�eiekesej�n
0�sj

+ Dn�n��ek�nhi − 2�ejeiek�nhj + �ei�nhk� , �25�

where

�1n =
1

2Dn
, �2n =

1

6Dn
.

The upper index 0 marks the equilibrium statistical moments
determined by using the equilibrium distribution function �n

0.
Approximation linear with respect to the components �ik

and �ik is valid when the following strong inequality
��ik ,�ik� /Dn� �1 is held for all n�nc. Simple estimates
show that for majority of realistic situations the last inequal-
ity is fulfilled.

By using the trial function �23� for calculation of the non-
equilibrium moments in Eqs. �24� and �25�, we come to a
system of ordinary differential equations with respect to ai�t�
and bik�t� for every given n. Having solved this system, we
can use the function �23� to determine the moments in the
expression �20� for the macroscopical stress tensor. It should
be noted that similar approach has led to quite good agree-
ment of the analytical calculations with the results of labo-
ratory experiments �5,7� and computer simulation �28�.

IV. RELAXATION OF VISCOSITY AFTER STEPWISE
ALTERNATION OF THE SHEAR RATE

Let us introduce a Cartesian coordinate system x ,y ,z with
the axis Oz parallel to the applied magnetic field. In this
system Hz=H=const, Hx,y =0. In general case the problem of
calculation of ai and bij is not difficult, however, quite cum-
bersome. Here we consider a case when the ferrofluid
velocity u is aligned along the axis Ox and its
gradient—along the axis Oz �i.e., along the applied field H�.
Let us denote by �̇ the components of the velocity gradient
�̇=�xz=�zx=�xz=−�zx.

Estimates based on the model �18,19� show that the typi-
cal time �1n of reorientation of even long chains, consisting
of several tens of particles, for the ferrofluid of type TTR is
short, about 10−2–10−1 s. That is significantly less than the
time of rheological relaxation of the fluid, detected in experi-
ments �16� �from 1 to 10 s�. That is why, for maximal sim-
plification of calculations, we will neglect the time of the
chains reorientation, considering this process as momentary.
It allows restricting ourselves by the stationary approxima-
tion of the problem �Eqs. �24� and �25��.

In the case of flow under consideration, in the linear ap-
proximation with respect to �̇ Eq. �20� has the following
form:

�xz = �xz
s + �xz

a ,

�xz
s = 2�0�̇ + �0���2�n + ��n + �n�n���ex

2�n
0 + �ez

2�n
0� + �n��ez

2�n
0

− �ex
2�n

0� + 2��n − 2�n�n��ex
2ez

2�n
0��̇ − �n

d

dt
�exez�n�� ,

�xz
a =

�kT

2v
���ex�n�� �26�

Equations �23�–�25� now can be written respectively as fol-
lows:

�n = �n
0�1 + axex + bxzexez� , �27�

d�ex�n

dt
= −

1

�1n
�ex�n + ��n��ez�n

0 − 2�ex
2ez�n

0� + �ez�n
0��̇

− Dn�n�exez� , �28�

and

d�exez�n

dt
= −

1

�2n
�exez�n + ��n��ex

2�n
0 + �ez

2�n
0 − 4�ex

2ez
2�0�

+ �ez
2�n

0 − �ex
2�n

0��̇ + Dn�n��ex�n − 2�exez
2�n�

�29�

Direct calculations show that for the considered flow all
components of ai and bij, except ax and bxz, equal to zero.

Combining Eqs. �27� and Eqs. �28� and �29�, after simple,
however, cumbersome calculations, we come to the follow-
ing system of equations with respect to ax and bxy:


� 1

�1n
	�ex

2�n
0 + Dn�n�ex

2ez�n
0�ax

+ 
� 1

�1n
	�ex

2ez�n
0 + Dn�n�ex

2ez
2�n

0�2bxz

= ��n��ez�n
0 − 2�ex

2ez�n
0� + �ez�n

0��̇ , �30�

and


� 1

�2n
	�ex

2ez�n
0 + Dn�n�2�ex

2ez
2�n

0 − �ex
2�n

0��ax

+ 
� 1

�2n
	�ex

2ez
2�n

0 + Dn�n�2�ex
2ez

3�n
0 − �ex

2ez�n
0��2bxz

= ��n��ex
2�n

0 − 4�ex
2ez

2�n
0 + �ez

2�n
0� + �ez

2�n
0 − �ex

2�n
0��̇ . �31�

Substituting Eq. �27� into Eq. �26�, we get

�xz = 2��̇ �32�

Here � is the ferrofluid effective viscosity which is equal to

� = �0
1 + ���n +
1

2
���n + �n�n���ex

2�n
0 + �ez

2�n
0� + �n��ez

2�n
0

− �ex
2�n

0� + 2��n − 2�n�n��ex
2ez

2�n
0�

+
1

2v

�kT

�0
�A1�ex

2�n
0 + B1�ex

2ez�n
0���� ,

A1 =
ax

2�̇
, B1 =

bxz

�̇
. �33�

Having determined the function gn from Eqs. �15� and �17�,
ax and bxz from the system �Eqs. �30� and �31��, combining
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them with Eq. �33�, we can estimate the time-dependent ef-
fective viscosity ��t�.

Figure 4 illustrates evolution of the viscosity after step-
wise decrease of the shear rate. Physical parameters of the
fluid correspond to those of the fluid TTR which have been
used in experiments �16�.

Evolution of the viscosity after stepwise increase of the
shear rate is illustrated in Fig. 5.

The difference between situations, illustrated in Figs. 4
and 5, is only in direction of the shear rate alternation. These
results demonstrate that characteristic time of the viscosity
evolution after increase of shear rate �̇ is shorter than after
decrease of �̇.

Analysis shows that evolution of the viscosity after in-
crease of the shear rate qualitatively depends on the magni-
tude of the shear rate step. Calculations of the viscosity be-
havior for different magnitudes of the step are illustrated in
Fig. 6.

Evolution of the viscosity is determined by evolution of
the distribution function gn after the shear rate step. Shortly
after this step chains with nnc��̇2� disintegrate. The inti-
mate details of this disintegration have not been studied yet.
However, analysis shows that the hydrodynamical destruc-
tion forces have maximum in the middle of the chain. Thus
one can expect that under the action of these forces a chain
separates in half. This assumption has been used in our cal-
culations.

Analysis shows that the further evolution of gn is deter-
mined by difference between the initial �̇1 and final �̇2 mag-

nitudes of the shear rate. In the case of relatively large dif-
ference, the function gn evolves toward the short chains. It
leads to decrease of the effective viscosity � with time
�curve 1 in Fig. 6�. In the case of relatively small difference
between �̇1 and �̇2 the chains evolve toward n=nc��̇2�, their
characteristic length increases, therefore the effective viscos-
ity � increases �curve 3�. Curve 2 with the nonmonotonic
behavior of � corresponds to some intermediate case and
competition between the tendencies to the chain growth and
disintegration.

Let us discuss now the characteristic time of the viscosity
evolution after a stepwise change of the shear rate. It is natu-
ral to define the relaxation time � as the time t for which the
value ���t�−��
�� is e=2.72. . . times less than the initial
difference ���0�−��
��.

Some results of calculations of the time � after stepwise
alternations of the shear rate are shown in Fig. 7. Dots dem-
onstrate results �16� for this time taken from the experiments
with oscillating shear rate and measurements of the real and
imaginary parts of the complex viscosity. The relaxation time
in �16� has been determined as �=1 /�max, where �max is
frequency of the imaginary viscosity maximum.

The theoretical and experimental results have the same
order of magnitude. It should be noted that the relaxation

0 50 100 150
0
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15

t (s)

1 2 /
 0

FIG. 4. The time dependence of the effective viscosity � after
stepwise decrease, at t=0, of the shear rate �̇ from 16 s−1 to
1.6 s−1. Parameters of the system are the same as in Fig. 2. Figures
near curves: 1−�=3; 2−�=1.
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FIG. 5. The same as in Fig. 4 after stepwise increase of the
shear rate from 1.6 s−1 to 16 s−1.
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23

 /
 0

FIG. 6. Dimensionless effective viscosity � /�0 vs time t. Pa-
rameters of ferrofluid are the same as for Figs. 2–5, dimensionless
magnetic field �=3. At t=0 the shear rate increases from �̇1 to
�̇2. Figures near curves: 1—initial shear rate �̇1=1.6 s−1,
2− �̇1=2 s−1, 3− �̇1=7 s−1. In all three cases the final shear rate
�̇2=1.6 s−1.
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FIG. 7. Relaxation time � vs applied magnetic field H. 1 and
2—theoretical calculations for the system with the same parameters
as for Figs. 2–6; the shear rate changes stepwisely from 16 s−1 to
1.6 s−1 �line 1� and back �line 2�; dots 3—experiments �16� with
the oscillating shear flow.
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times, calculated by using the previous models �4,18,19�, are
several orders of magnitude less than the experimental re-
sults �16�. What is more, the model �4� predicts decrease of
the relaxation time when applied magnetic field H increases.
This conclusion is in qualitative contradiction with experi-
ments �16�, whereas our model predicts the correct depen-
dence of � on H.

The fact that our results fit the correct order of magnitude
of the relaxation time � as well as the dependence of this
time on the field shows that the model correctly reflects the
main physical features of the microscopical cause of the vis-
coelastic phenomena in ferrofluids.

The quantitative difference between the theory and ex-
periments can take place due to many reasons, for
example—polydispersity of the real ferrofluid, flexibility of
chains in this system, etc. Unfortunately, account of polydis-
persity of a ferrofluid as well as fluctuations of the chain
shape leads to significant mathematical difficulties, which
hardly can be overcome in an analytical model.

V. CONCLUSIONS

We propose a simple statistical model of kinetics of evo-
lution of the chainlike aggregates in ferrofluids and effect of
this process on the macroscopical nonstationary viscoelastic
�relaxation� properties of ferrofluids. Our analysis shows that
the viscoelastic phenomena can be determined by evolution
of the heterogeneous aggregates in ferrofluids. In spite of the
conscious oversimplification of the model, it leads to reason-
able agreement with known experimental results. It should
be noted that any modification of the model in order to take
into account various factors which take place in the real fer-
rofluids but have been ignored here �polydispersity of these
systems; flexibility and interaction of the chains, etc.�, will
lead to significant mathematical problems and very cumber-
some calculations.
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APPENDIX

�1� The equilibrium statistical moments of orientation of
n-particles chain have the following form �27�:

�ei�n
0 = hiL1, �eiek�n

0 =
1

2
�1 − L2��ik +

1

2
�3L2 − 1�hihk,

�eiekej�n
0 =

1

2
�L1 − L3���ikhj + �ijhk + �kjhi�

+
1

2
�5L3 − 3L1�hihjhk,

�eiekelem�n
0 =

1

8
�1 − 2L2 + L4���ik�lm + �im�kl + �il�km�

+
1

8
�6L2 − 5L4 − 1��hihk�lm + hihm�kl + hihl�km

+ hlhm�ik + hlhk�im + hmhk�li�

+
1

8
�3 − 30L2 + 35L4�hihkhlhm,

�ez�n
0 = L1, �ez

2�n
0 = L2, �ez

3�n
0 = L3, �ez

4�n
0 = L4,

�ez
5�n

0 = L5, �ex
2�n

0 =
1

2
�1 − L2� ,

�ex
2ez�n

0 =
1

2
�L1 − L3�, �ex

2ez
2�n

0 =
1

2
�L2 − L4� ,

�ex
2ez

3�n
0 =

1

2
�L3 − L5� ,

Here LJ are the Langevine functions of the order J and

LJ = LJ��n�, J = 1,2,3,4,5,

L1�x� = coth�x� −
1

x
, L2�x� = 1 −

2

x
L1�x� ,

L3�x� =
1

x
+ L1�x� −

3

x
L2�x�, L4�x� = 1 −

4

x
L3�x� ,

L5�x� =
1

x
+ L1�x� −

5

x
L4�x� .

�2� Shape coefficients �n . . . .�n are determined in Ref.
�27� as

�n =
1

n�0�
, �n =

2�n2 − 1�
n�n2�0 + �0�

, �n =
4

n�0��n
2 + 1�

−
2

n�0�
, �n =

2�0�

n�0�0�
−

8

n�0��n
2 + 1�

+
2

n�0�
,

�n =
1

3n�0��0�
�2��0� − �0�� + 3n��0�0� − �0�0���, �n =

n2 − 1

n2 + 1
.

where

�0 = �
0


 ds

�n2 + s�Q
, �0 = �

0


 ds

�1 + s�Q
,

�0� = �
0


 ds

�1 + s�2Q
, �0� = �

0


 ds

�1 + s��n2 + s�Q
,

�0� = �
0


 sds

�1 + s�2Q
, �0� = �

0


 sds

�1 + s��n2 + s�Q
,

Q = �1 + s��n2 + s
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