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Random death process for the regularization of subdiffusive fractional equations
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The description of subdiffusive transport in complex media by fractional equations with a constant anomalous
exponent is not robust where the stationary distribution is concerned. The Gibbs-Boltzmann distribution is
radically changed by even small spatial perturbations to the anomalous exponent [S. Fedotov and S. Falconer,
Phys. Rev. E 85, 031132 (2012)]. To rectify this problem we propose the inclusion of the random death process
in the random walk scheme, which is quite natural for biological applications including morphogen gradient
formation. From this, we arrive at the modified fractional master equation and analyze its asymptotic behavior,
both analytically and by Monte Carlo simulation. We show that this equation is structurally stable against spatial
variations of the anomalous exponent. We find that the stationary flux of the particles has a Markovian form
with rate functions depending on the anomalous rate functions, the death rate, and the anomalous exponent.
Additionally, in the continuous limit we arrive at an advection-diffusion equation where advection and diffusion
coefficients depend on both the death rate and anomalous exponent.
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I. INTRODUCTION

Anomalous subdiffusion, where the mean squared displace-
ment grows sublinearly with time 〈x2(t)〉 ∼ tμ, where the
anomalous exponent μ < 1, is an observed natural phenomena
[1]. It is seen in areas as varied as dispersive charge transport
in semiconductors [2], ion movement in spiny dendrites
[3], and protein transport on cell membranes [4]. In the
classical paper [5], Metzler, Barkai, and Klafter introduced
the fractional Fokker-Planck equation (FFPE) that describes
anomalous subdiffusion of particles in an external field F (x).
This equation for the probability density p(x,t) is written as

∂p

∂t
= D1−μ

t LFP p(x,t), (1)

where

LFP = Kμ

[
∂2

∂x2
− ∂

∂x

F (x)

kBT

]
(2)

is the Fokker-Planck operator, Kμ is the anomalous diffusion
coefficient, and D1−μ

t is the Riemann-Liouville fractional
derivative of order 1 − μ, defined as

D1−μ
t p(x,t) = 1

�(μ)

∂

∂τ

∫ t

0

p(x,τ )dτ

(t − τ )1−μ
, (3)

where μ < 1. It was shown that the external field F (x)
leads to a stationary solution to the FFPE in the form of
the Gibbs-Boltzmann distribution [6]. However, in a recent
paper [7], we have demonstrated that this fundamental result
is not structurally stable with respect to spatial variations of
the anomalous exponent μ(x) = μ + δμ(x). This small per-
turbation, δμ(x), destroys the Gibbs-Boltzmann distribution
as the stationary solution to the FFPE.

The physical explanation for the occurrence of subdiffusion
is the distribution of trapping sites throughout the complex
media. It is hardly realistic to assume that the distribution, and
structure, of the traps is uniform throughout. The main reason
for the widespread use of constant μ is the implicit assumption
that this is a good approximation. However, we have shown
previously that this is not the case. This question is of great

importance for the problem of a morphological patterning of
embryonic cells, which is controlled by the distribution of
signaling molecules known as morphogens [8–10]. To ensure
robust pattern formation, the morphogen gradients must be
structurally stable with respect to the spatial variations of
environmental parameters, including the anomalous exponent.

In fact, even the simple one-dimensional fractional sub-
diffusion equation with constant anomalous exponent and
F (x) = 0, in the finite domain [0,L] with reflective boundary
conditions, is structurally unstable. This equation should yield
a uniform stationary distribution over the interval [0,L] in the
long-time limit. However, if we use a slightly nonuniform
anomalous exponent μ(x), the probability density p(x,t)
will be completely different from the uniform distribution:
as t → ∞, it concentrates at the point where μ(x) has
a global minimum on [0,L]. We called this phenomenon
anomalous aggregation [11]. We should note that there is
nothing physically wrong with the fractional equations with
space-dependent anomalous exponents and accumulation of
particles in a spatial domain with the smallest μ(x). Note that
unusual behavior of subdiffusive transport has been observed
in an infinite system with two different values of anomalous
exponents [12].

To rectify the structural instability involving unlimited
growth of p(x,t), at the point of the minimum of the anomalous
exponent μ(x), we need a regularization of subdiffusive
transport. The standard approach to regularize the fractional
subdiffusive equations is to temper the power law waiting time
distribution in such a way that the normal diffusion behavior
in the long-time limit is recovered (see, for example, [13]).
In a recent paper [14] the transient anomalous transport
has been considered such that this subdiffusive transport
becomes normal in the long-time limit. In this paper we
suggest a completely different approach, where we do not
introduce an exponential cutoff parameter, which is difficult to
find experimentally. Instead, we introduce an experimentally
measurable death rate. The main idea is to employ a random
death process, which is quite natural for many biological
applications, for example, the problem of morphogen gradient
formation involving morphogen degradation. Although we
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refer to this as the death process, in fact any reversible or
irreversible reaction or conversion to another species (A → B,
A � B) or spontaneous evanescence (A → 0) is valid. For
discussion of this, see [15]. We show that as long as a death
process is introduced, together with a particle production at the
boundary, the stationary solution of the modified fractional
master equation is structurally stable whatever the spatial
variations of the anomalous exponent might be.

II. SUBDIFFUSIVE MASTER EQUATION

Let us consider a random walk of particles on a semi-infinite
lattice with unit length. The particle performs a random walk
as follows: it waits for a random time Tk at each point k before
making a jump to the right with probability r(k) and left with
probability l(k). We consider the anomalous subdiffusive case
with the survival probability [16]

�(k,t) = Pr {Tk > t} = Eμ(k)

[
−

(
t

τ0

)μ(k)]
,

where Eμ [z] is the Mittag-Leffler function, τ0 is a constant
with the unit of time, and μ(k) is the spatially dependent
anomalous exponent: 0 < μ(k) � 1. For large t, the survival
probability � (k,t) behaves as

� (k,t) ∼
(

t

τ0

)−μ(k)

.

We assume that during the time interval (t,t + �t) at point k

the particle has a chance

θ (k)�t + o(�t)

of dying, where θ (k) is the death rate (θ (k) > 0).
We denote by p(k,t) the average number of particles at

point k at time t. The anomalous subdiffusive master equation
with the death process can be written as

∂p

∂t
= ν(k − 1)e−θ(k−1)tD1−μ(k−1)

t [p(k − 1,t)eθ(k−1)t ]

+ η(k + 1)e−θ(k+1)tD1−μ(k+1)
t [p(k + 1,t)eθ(k+1)t ]

− [ν(k) + η(k)]e−θ(k)tD1−μ(k)
t [p(k,t)eθ(k)t ]

− θ (k)p(k,t), k � 2, (4)

where

ν(k) = r(k)

(τ0)μ(k)
, η(k) = l(k)

(τ0)μ(k)

are the anomalous rate functions. This fractional equation can
be derived from a number of standpoints (see, for example,
[17]). In this equation the anomalous exponent depends on the
state, which is crucial for what follows. For the case of constant
anomalous exponent μ, this reaction-transport equation and its
continuous approximations were considered in [15,18–20].

To ensure the existence of stationary structure in the long-
time limit, we introduce the constant source term g at the
boundary of the semi-infinite lattice (k = 1). This is crucial
for the problem of morphogen gradient formation, where g

models a localized source of morphogens [10]. We assume that
the boundary is reflective, so we have the following equation

for p(1,t):

∂p(1,t)

∂t
= η(2)e−θ(2)tD1−μ(2)

t [p(2,t)eθ(2)t ]

− ν(1)e−θ(1)tD1−μ(1)
t [p(1,t)eθ(1)t ] − θ (1)p(1,t) + g.

(5)

Note that any nonlinear proliferation term g(p) can be included
in the master equation (4).

A. Structural instability of a subdiffusive equation with a
constant anomalous exponent

Without the reaction (θ = 0) the fractional master equa-
tion (4) with a constant anomalous exponent μ can be written
as

∂p(k,t)

∂t
= ν(k − 1)D1−μ

t [p(k − 1,t)]

+ η(k + 1)D1−μ
t [p(k + 1,t)]

− [ν(k) + η(k)]D1−μ
t [p(k,t)], k � 2.

The equation for p(1,t) without proliferation term g takes the
form

∂p(1,t)

∂t
= η(2)D1−μ

t [p(2,t)] − ν(1)D1−μ
t [p(1,t)].

It follows from here that in the stationary case

pst (k) = pst (k − 1)
ν(k − 1)

η(k)
, k � 2. (6)

The stationary solution pst (k) = limt→∞ p(k,t) can be found
as

pst (k) = pst (1)
k−1∏
j=1

ν(j )

η(j + 1)
, k � 2, (7)

where

pst (1) =
⎛
⎝1 +

∞∑
k=2

k−1∏
j=1

ν(j )

η(j + 1)

⎞
⎠

−1

, (8)

provided the sum is convergent. This solution is structurally
unstable with respect to partial variations of the anomalous
exponent. When the anomalous exponent is not constant, the
asymptotic behavior is completely different. Consider point M ,
at which the anomalous exponent is at a minimum μ(M) <

μ(k), ∀ k �= M . Then, one can show [7] that

p(M,t) → 1, p(k,t) → 0, t → ∞. (9)

See [21] for full details.

B. Stationary solution of master equations (4) and (5)

It is convenient to rewrite the fractional master equation (4)
as

∂p(k,t)

∂t
= −I (k,t) + I (k − 1,t) − θ (k)p(k,t), k � 2,

(10)
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where I (k,t) is the total flux of particles from k to k + 1,

I (k,t) = ν(k)e−θ(k)tD1−μ(k)
t [p(k,t)eθ(k)t ]

− η(k + 1)e−θ(k+1)tD1−μ(k+1)
t [p(k + 1,t)eθ(k+1)t ].

(11)

The equation for p(1,t) has the form

∂p(1,t)

∂t
= −I (1,t) − θ (1)p(1,t) + g. (12)

The Laplace transform of the total flux I (k,t),

Î (k,s) =
∫ ∞

0
I (k,t)e−st dt,

takes the form

Î (k,s) = ν(k)[s + θ (k)]1−μ(k)p̂(k,s)

− η(k + 1)[s + θ (k + 1)]1−μ(k+1)p̂(k + 1,s). (13)

From here we can find the stationary flux Ist (k) =
lims→0 sÎ (k,s) as follows:

Ist (k) = νμ(k)pst (k) − ημ(k + 1)pst (k + 1), (14)

where

νμ(k) = ν(k)[θ (k)]1−μ(k), ημ(k) = η(k)[θ (k)]1−μ(k),

and pst (k) = lims→0 sp̂(k,s). The main feature of this station-
ary flux is that it has Markovian form, but the rate functions
νμ(k) and ημ(k) depend on the anomalous rate ν(k), η(k),
the random death rate θ (k), and the anomalous exponent
μ(k). This unusual form of stationary flux is because of the
non-Markovian character of subdiffusion.

Let us find the stationary distribution pst (k) for the simple
case where θ is constant. In the long-time limit, at the boundary
k = 1, we then have the following condition:

Ist (1) = g − θpst (1).

We are able to obtain a general expression for the stationary
flux at location k,

Ist (k) = g − θ

k∑
j=1

pst (j ). (15)

This has a very simple physical meaning: as t → ∞, Ist (k)
tends to the difference between the proliferation rate g and the
sum of death rates at all states from the boundary up to k. It
is clear that as k → ∞, the stationary flux Ist (k) → 0 since in
the stationary state g should be equal to total death rate,

g = θ

∞∑
j=1

pst (j ). (16)

We obtain

η(k + 1)θ−μ(k+1)pst (k + 1)

= ν(k)θ−μ(k)pst (k) −
⎛
⎝g

θ
−

k∑
j=1

pst (j )

⎞
⎠ . (17)

This equation allows us to find pst (k) for all k. For the
symmetrical random walk for which ν(k) = η(k) = ν and

μ = const, we have

pst (k + 1) = pst (k) − θμ

ν

⎛
⎝g

θ
−

k∑
j=1

pst (j )

⎞
⎠ . (18)

C. Subdiffusive fractional equation with the death process

Now let us obtain the subdiffusive fractional equation
with the death process as the continuous limit of the master
equation (4). We change the variables k → x, k ± 1 → x ± a

and obtain from (10)

∂p(x,t)

∂t
= −I (x,t) + I (x − a,t) − θ (x)p(x,t), (19)

where I (x,t) is the flux of particles from x to x + a,

I (x,t) = ν(x)e−θ(x)tD1−μ(x)
t [p(x,t)eθ(x)t ]

− η(x + a)e−θ(x+a)tD1−μ(x+a)
t [p(x + a,t)eθ(x+a)t ].

(20)

In the limit a → 0 we find
∂p(x,t)

∂t

= − ∂

∂x

{
a(ν(x) − η(x))e−θ(x)tD1−μ(x)

t [p(x,t)eθ(x)t ]
}

+ ∂2

∂x2

{
a2

2
[ν(x) + η(x)]e−θ(x)tD1−μ(x)

t [p(x,t)eθ(x)t ]

}
− θ (x)p(x,t). (21)

The details of this standard derivation can be found in [15,18–
20]. It follows from (14) that the stationary flux Ist (x) is

Ist (x) = ν(x) [θ (x)]1−μ(x) pst (x)

− η(x + a) [θ (x + a)]1−μ(x+a) pst (x + a),

where pst (x) = limt→∞ p(x,t). From the stationary equation

−Ist (x) + Ist (x − a) = θ (x)pst (x)

in the limit a → 0, we obtain an advection-diffusion equation,

− ∂

∂x

[
vθ

μ (x) pst (x)
] + ∂2

∂x2

[
Dθ

μ (x) pst (x)
] = θ (x)pst (x),

where vθ
μ (x) is the drift and Dθ

μ (x) is the generalized diffusion
coefficient, defined as

vθ
μ(x) = a(r(x) − l(x))[θ (x)]1−μ(x)

(τ0)μ(x)
,

Dθ
μ(x) = a2 [θ (x)]1−μ(x)

2(τ0)μ(x)
, 0 < μ(x) � 1.

This result means that in the long-time limit, subdiffusion
with the death process becomes standard diffusion with
nonstandard drift vθ

μ(x) and diffusion coefficient Dθ
μ(x). Both

of them depend on the death rate θ (x) and the anomalous
exponent μ(x). This is due to the non-Markovian character
of subdiffusion. Note that the drift term vθ

μ(x) plays an
essential role in chemotaxis since vθ

μ(x) ∼ a ∂C
∂x

, where C is
the chemotactic substance. Therefore the dependence of the
chemotactic term of the degradation rate θ can be of great
importance for the problem of cell aggregation [11,22,23]. For
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μ(x) = 1, we have classical drift and a diffusion coefficient
independent from θ (x). It has been found in [19] that the
non-Markovian behavior of subdiffusion leads to an effective
nonlinear diffusion.

D. Morphogen gradient formation

Let us illustrate our theory in terms of the problem of
morphogen gradient formation involving morphogen degrada-
tion [8–10]. We consider a random walk with a constant drift
vθ

μ = −v, diffusion Dθ
μ, and degradation rate θ. We obtain the

stationary morphogen profile from the equation

v
∂pst (x)

∂x
+ Dθ

μ

∂2pst (x)

∂x2
− θpst (x) = 0. (22)

The solution of (22) is the exponential distribution

pst (x) = A exp

⎡
⎣−

v +
√

v2 + 4Dθ
μθ

2Dθ
μ

x

⎤
⎦ , (23)

where A can be found from the condition g = θ
∫ ∞

0 pst (x)dx:

A =
g
(
v +

√
v2 + 4Dθ

μθ
)

2θDθ
μ

.

When vθ
μ = 0, we have the morphogen profile obtained in [10]:

pst (x) = g√
θDθ

μ

exp

[
−

√
θ

Dθ
μ

x

]
. (24)

We now simulate the fractional master equation with a random
death process using Monte Carlo techniques. Throughout this
we let τ0 = 1, so that this is the unit of time for the simulation;
we take g = 1, so that we have a constant birth rate of one
particle per unit time. The first particle begins a random walk
at k = 1, such that at each point k waiting times are power law
distributed, and jump probabilities to the left and right of each
point k are r(k) and l(k), respectively. A particle completes
a random walk from when it is produced until the terminal
time t = T or until its random time of death, exponentially
distributed as ψD(t) = θe−θt . Also note that unlike the waiting
time, the death time is not renewed when the particle makes a
jump.
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FIG. 1. Stationary profile for the symmetric fractional master
equation where r(k) = l(k) = 1

2 , μ(k) = const = 0.5, τ0 = 1, and
θ = 10−3.
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FIG. 2. Stationary profile for the symmetric fractional master
equation, with a perturbation to the anomalous exponent at k = 8.
μ(k �= 8) = 0.5, μ(8) = 0.4.

First, let us consider the symmetrical random walk, where
r(k) = l(k) = 1

2 , μ(k) = 0.5, and θ = 10−3. Figure 1 shows
the corresponding stationary density made up of 104 realiza-
tions of the random walk at time T = 106. We can see that our
simulation is in agreement with the analytical values calculated
from the recurrence relation (18).

Next, we show that the model is robust to nonhomogenous
spatial perturbations in the anomalous exponent. Analogously
to the simulation we presented in the previous work [7], we
introduce a small perturbation to the anomalous exponent at
one point in the space: all states have μ = 0.5 except for k = 8,
which has μ = 0.4. From Fig. 2 we can see that although we
observe a change to the stationary profile around the point
k = 8, the stationary profile is structurally stable and exponen-
tial in character. We stress the importance of the death process
in regulating the behavior of the process to ensure stability,
whereas in our previous work, we showed that even a small
perturbation in the anomalous exponent like this would lead
to a breakdown in the Gibbs-Boltzmann stationary density.
Additionally, we considered a nonsymmetrical random walk,
which leads to a drift, and found that the profile is stable.

III. CONCLUSIONS

In summary, it was previously thought that as far as the
fractional Fokker-Planck equation is concerned, the effect of
subdiffusive trapping was just to cause a power law decay to
the stationary state, such as the Gibbs-Boltzmann distribution.
However, we showed that a nonuniform distribution of traps
drastically changes the stationary structure itself and develops
singularities like anomalous aggregation. This is a critical
problem, especially for morphogen gradient formation, and
we introduced the random death process as a natural remedy.
Our approach is fundamentally different from tempering [13],
which is just the truncation of the power law waiting time
distribution by an exponential factor involving a tempering
parameter. This parameter is extremely difficult to measure
experimentally, but in our case it is quite the opposite. We
introduce the death process, and the death rate can be easily
measured independently of the transport process. Another
advantage of our approach is that it can be easily extended to
the case when the death rate depends on the density of particles.
So we are not just employing a mathematical trick to overcome
the problem of an infinite mean waiting time. We also find the
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stationary flux of the particles has a Markovian form, with
an unusual rate function depending on the anomalous rate
functions, the death rate, and the anomalous exponent.

We have shown that the long-time and continuous limit of
this regularized fractional equation is the standard advection-
diffusion equation that, importantly, is structurally stable with
respect to spatial variations of the anomalous exponent μ.
Thus we have addressed the problem of applicability to
modeling complex biological systems. We have found that
the effective advection and diffusion coefficients, vθ

μ and Dθ
μ,

are increasing functions of the death rate θ : vθ
μ ∼ Dθ

μ ∼ θ1−μ.
We have applied a regularized fractional master equation and

modified fractional Fokker-Planck equation to the problem
of the morphogen gradient formation. We have shown the
robustness of the stationary morphogen distribution against
spatial fluctuations of anomalous exponent.
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