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Single integrodifferential wave equation for a Lévy walk
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We derive the single integrodifferential wave equation for the probability density function of the position of
a classical one-dimensional Lévy walk with continuous sample paths. This equation involves a classical wave
operator together with memory integrals describing the spatiotemporal coupling of the Lévy walk. It is valid at
all times, not only in the long time limit, and it does not involve any large-scale approximations. It generalizes the
well-known telegraph or Cattaneo equation for the persistent random walk with the exponential switching time
distribution. Several non-Markovian cases are considered when the particle’s velocity alternates at the gamma
and power-law distributed random times. In the strong anomalous case we obtain the asymptotic solution to
the integrodifferential wave equation. We implement the nonlinear reaction term of Kolmogorov-Petrovsky-
Piskounov type into our equation and develop the theory of wave propagation in reaction-transport systems
involving Lévy diffusion.
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Introduction. Lévy walk is a fundamental notion in physics
and biology [1] with numerous applications including the
transport of light governed by Lévy statistics [2], anomalous
superdiffusion of cold atoms in optical lattices [3], T-cell
motility in the brain [4], endosomal active transport within
living cells [5]. In the last few years, the interest in the
Lévy walk models increases rapidly in the context of Lévy
flight foraging hypothesis according to which a Lévy transport
is optimal to search for randomly located objects [6]. The
Lévy movement pattern has been observed in microorganisms,
insects, molluscs, birds, etc. [7]. A recent review [8] provides
a detailed discussion of existing applications and the most
current status of Lévy walk theory.

The standard model for a Lévy walk is based on the con-
tinuous time random walk (CTRW) with coupled probability
density function for the jump length and the waiting time
between two successive jumps. Many contributions on this
subject have been given since the pioneering works three
decades ago (see, for example, [9]). Two integral equations
for the probability density function (PDF) p(x,t) for a
walker position x and arrival rate j (x,t) can be formulated
and solved [1,8]. An equivalent single integral equation for
p(x,t) has been also formulated [10,11]. To describe a Lévy
walk spatiotemporal coupling, two dynamical equations have
been suggested in [12]. Another approach to describe the
superdiffusive behavior is based on the analysis of joint PDF
p(x,v,t) of the particle’s position x and velocity v. Various
fractional generalizations of Kramers-Fokker-Planck equation
for p(x,v,t) have been derived [13–15].

It is well known that the alternative formulation of the
uncoupled CTRW with the independent random jump lengths
and waiting times is the generalized master equation for the
PDF p(x,t) with memory kernel K(τ ) [16]. The main result of
this Rapid Communication is to provide an analogous equation
for the Lévy walk PDF p(x,t). We obtain the following
integrodifferential wave equation:

∂2p

∂t2
− v2 ∂2p

∂x2
+

∫ t

0

∫
V

K(τ )ϕ(u)

(
∂

∂t
− u

∂

∂x

)

×p(x − uτ,t − τ )dudτ = 0, (1)

where v is a constant speed of walker, ϕ(u) is the velocity jump
density,

ϕ(u) = 1
2δ(u − v) + 1

2δ(u + v), (2)

in the velocity space V. The standard memory kernel K(τ )
is determined by its Laplace transform K̂(s) = ψ̂(s)/�̂(s),
where ψ̂(s) and �̂(s) are the Laplace transforms of the running
time density ψ(τ ) and the survival function �(τ ) [1]. From
Eq. (1) with p(x,0) = p0(x) and pt (x,0) = 0, one can obtain
the well-known expression for the Fourier-Laplace transform
of the PDF p(x,t),

p̂(k,s) = [�̂(s + ikv) + �̂(s − ikv)]p̂0(k)

2 − ψ̂(s + ikv) − ψ̂(s − ikv)
, (3)

where p̂0(k) = ∫
R p0(x)eikxdx [8].

Derivation of single equation. We consider the Lévy walk
as the random particle’s motion with continuous sample paths
(no jumps) along one-dimensional space. The particle starts to
move with constant speed v at time t = 0 and after a random
time (running time) it either continues the movement in the
same direction with curtain probability or changes the direction
and moves with the same constant speed. The random running
time is defined by the switching rate γ (τ ) or the running time
PDF ψ(τ ) = γ (τ ) exp [− ∫ τ

0 γ (s)ds]. To derive the governing
equation for the Lévy walk, we start with the Markovian
model involving structural densities with the extra running
time variable τ [17–21]. We define the structural PDF’s of
walker, n+(x,t,τ ), at point x and time t that moves in the
right direction, (+), with constant speed v during time τ since
the last switching. The probability density function n−(x,t,τ )
corresponds to the walker that moves in the negative direction,
(−). The balance equations for both structural PDF’s n+(x,t,τ )
and n−(x,t,τ ) can be written as

∂n±
∂t

± v
∂n±
∂x

+ ∂n±
∂τ

= −γ (τ )n±, (4)

where the switching rate γ (τ ) depends on the running time τ .
If the walker moves in the positive direction it can switch with
rate γ (τ ) either to the opposite direction with the probability
α− or keep the same direction with the probability α+ such that
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α+ + α− = 1. For the walker moving in the negative direction
corresponding characteristics are β+ and β−. The well-known
velocity model and two-state model are just particular cases
of this general two-state model. For example, the choice
α+ = β− = 0 and α− = β+ = 1 corresponds to the two-state
model [22]. The probabilities α± = β± = 1/2 correspond to
the velocity model [23]. We assume that all walkers start to
move with zero running time τ ,

n±(x,0,τ ) = 1
2p0(x)δ(τ ). (5)

The boundary conditions at zero running time are

n±(x,t,0) = α±
∫ t

0
γ (τ )n+(x,t,τ )dτ

+β±
∫ t

0
γ (τ )n−(x,t,τ )dτ. (6)

Our aim is to derive the master equations for the probability
density functions p+(x,t) and p−(x,t) defined as

p±(x,t) =
∫ t

0
n±(x,t,τ )dτ. (7)

By differentiating (7) with respect to time t and using the
balance equations (4) we obtain

∂p±
∂t

= n±(x,t,t) ∓ v

∫ t

0

∂n±
∂x

dτ

−
∫ t

0

∂n±
∂τ

dτ −
∫ t

0
γ (τ )n±(x,t,τ )dτ.

These equations can be rewritten as the master equations

∂p±
∂t

± v
∂p±
∂x

= j±(x,t) − i±(x,t), (8)

where the rates of switching i±(x,t) are defined as

i±(x,t) =
∫ t

0
γ (τ )n±(x,t,τ )dτ (9)

and the arrival rates j±(x,t) = n±(x,t,0). By using the
definitions of the switching and arrival rates above, Eq. (6)
can be written in the compact form

j±(x,t) = α±i+(x,t) + β±i−(x,t). (10)

In what follows we consider only the simple case of a
symmetric Lévy walk for which α± = β± = 1/2. In general,
the probabilities α± and β± can be useful to formulate
the impact of the external force. Substitution of (10) with
α± = β± = 1/2 into (8) gives

∂p+
∂t

+ v
∂p+
∂x

= −1

2
i+(x,t) + 1

2
i−(x,t), (11)

∂p−
∂t

− v
∂p−
∂x

= 1

2
i+(x,t) − 1

2
i−(x,t), (12)

where the switching rates i±(x,t) can be found as follows. By
the method of characteristics, we find from (4)

n±(x,t,τ ) = n±(x ∓ vτ,t − τ,0)�(τ ), τ < t, (13)

where �(τ ) is the survival function

�(τ ) = e− ∫ τ

0 γ (s)ds . (14)

Note that at τ = t we have a singularity due to the initial
condition (5). Substitution of (13) into (9) and (7) together
with the initial condition (5) gives

i±(x,t) =
∫ t

0
j±(x ∓ vτ,t − τ )ψ(τ )dτ + 1

2
p0(x ∓ vt)ψ(t),

p±(x,t) =
∫ t

0
j±(x ∓ vτ,t − τ )�(τ )dτ + 1

2
p0(x ∓ vt)�(t).

Applying the Fourier-Laplace transform to these equations,
we find expressions for i+(x,t) and i−(x,t) [21]

i±(x,t) =
∫ t

0
K(τ )p±(x ∓ vτ,t − τ )dτ. (15)

Note that four equations i±(x,t) and p±(x,t) can be written in
the standard form of two equations for

p(x,t) = p+(x,t) + p−(x,t) (16)

and the arrival rate j = j+ + j− with the jump density
w(z|τ ) = 1

2δ(z − vτ ) + 1
2δ(z + vτ ):

p(x,t) =
∫ t

0

∫
R

j (x − z,t − τ )w(z|τ )�(τ )dzdτ

+
∫
R

p0(x − z)w(z|t)dz�(t),

j (x,t) =
∫ t

0

∫
R

j (x − z,t − τ )w(z|τ )ψ(τ )dzdτ

+
∫
R

p0(x − z)w(z|t)dzψ(t).

Our main purpose now is to reduce the system (11) and (12)
with (15) to a single governing equation for the PDF p(x,t)
defined by (16). First we introduce the flux [24],

J (x,t) = vp+(x,t) − vp−(x,t). (17)

Then by adding (11) and (12) we obtain the standard
conservation equation

∂p

∂t
+ ∂J

∂x
= 0. (18)

Equation for the flux J can be obtained by multiplication of
(11) and (12) by v and subtraction,

∂J

∂t
+ v2 ∂p

∂x
= −v[i+(x,t) − i−(x,t)]. (19)

By differentiating (18) with respect to t and (19) with respect
to x and eliminating ∂2J/∂t∂x, we obtain

∂2p

∂t2
= v2 ∂2p

∂x2
+ v

∂

∂x
[i+(x,t) − i−(x,t)]. (20)

Now we need to express the last term in (20) in terms of p(x,t)
alone. From (16) and (17) we find the expressions for p+(x,t)
and p−(x,t) in terms of the PDF p(x,t) and the flux J (x,t),

p±(x,t) = p(x,t)

2
± J (x,t)

2v
. (21)
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By using (18), (21), and (15) we obtain from (20) a single
integrodifferential equation for the PDF p(x,t),

∂2p

∂t2
= v2 ∂2p

∂x2

− 1

2

∫ t

0
K(τ )

[(
∂

∂t
− v

∂

∂x

)
p(x − vτ,t − τ )

]
dτ

− 1

2

∫ t

0
K(τ )

[(
∂

∂t
+ v

∂

∂x

)
p(x + vτ,t − τ )

]
dτ.

(22)

This integrodifferential wave equation for a Lévy walk is valid
for any running time PDF ψ(τ ). It generalizes the well-known
telegraph equation obtained from the persistent random walk
with the constant rate of switching γ. By using the velocity
jump density (2), we rewrite Eq. (22) in the compact form
(1). It is instructive to compare the uncoupled CTRW with
Lévy walk. When jumps and waiting times of the CTRW
are independent random variables, one can convert the single
integral equation for p(x,t) into a master equation [16,17].
For the Lévy walk involving spatiotemporal coupling the
integrodifferential wave equation (22) plays the same role as
the master equation for the uncoupled CTRW. Let us now
consider several examples of the running time PDF ψ(τ ).

Exponential running time density. In the Markovian
case with the exponential running time PDF: ψ(τ ) =
T −1 exp (−τT −1) for which ψ̂(s) = (1 + T s)−1 and K(τ ) =
T −1δ(τ ), we obtain from (22) the classical Cattaneo or
telegraph equation [17]

∂2p

∂t2
+ 1

T

∂p

∂t
− v2 ∂2p

∂x2
= 0. (23)

This hyperbolic equation ensures that the density profile
propagates with finite speed v.

Gamma PDF g(τ,2,λ). For the biological applications it
is important to consider a running time PDF that takes the
maximum value not at zero time as the exponential density [7].
For example, it was found that the running time density for a
single bacterium might deviate significantly from exponential
approximation [25]. One example of such PDF is the gamma
density:

ψ(τ ) = g(τ,2,λ) = λ2τ exp(−λτ ) (24)

with ψ̂(s) = λ2(s + λ)−2 and

K̂(s) = λ2

2λ + s
. (25)

The memory kernel in Eq. (22) takes the form K(τ ) =
λ2 exp (−2λτ ). The advantage of this exponential memory
kernel is that one can localize integrodifferential equation (22)
by direct differentiation of (22) with respect to time twice:

∂4p

∂t4
+ 4λ

∂3p

∂t3
+ 5λ2 ∂2p

∂t2
+ 2λ3 ∂p

∂t

= v2 ∂2

∂x2

[
2
∂2p

∂t2
+ 4λ

∂p

∂t
+ 3λ2p − v2 ∂2p

∂x2

]
. (26)

Note that non-Markovian particle’s movement with veloci-
ties alternating at Erlang-distributed and gamma-distributed

random times was considered in [26]. Next we consider the
anomalous case involving walker’s velocities alternating at
power-law distributed random times [12,20–22].

Anomalous enhanced transport. We consider two anoma-
lous cases: (1) strong ballistic case for which the mean squared
displacement, 〈x2〉 ∼ t2, and (2) subballistic superdiffusion
with 〈x2〉 ∼ t3−μ, where 1 < μ < 2 [8].

In the strong ballistic case, we use the survival function

�(τ ) = E[−(τ/τ0)μ], 0 < μ < 1, (27)

where E[z] is the Mittag-Leffler function, τ0 is a constant with
the unit of time. In this case the mean running time is divergent
[27,28], the Laplace transform of the running time PDF ψ(τ )
is

ψ̂(s) = 1

1 + (τ0s)μ
, 0 < μ < 1, (28)

and the Laplace transform of the memory kernel K(τ ) is

K̂(s) = sψ̂(s)

1 − ψ̂(s)
= s1−μ

τ
μ

0

. (29)

It is important to note that this memory kernel is valid at all
times and it does not involve the standard long-time asymptotic
s → 0. The main equation (1) can be rewritten in the different
forms involving material fractional derivatives [12,29–33]. We
write it in the form

∂2p

∂t2
− v2 ∂2p

∂x2
+ 1

τ
μ

0

∫
V

ϕ(u)L1−μ
u pdu = 0, (30)

where the operator L
1−μ
u for 0 < μ < 1 is defined by its

Fourier-Laplace transform

FL
{
L1−μ

u p
} = (s − iku)1−μ[(s + iku)p̂(k,s) − p̂0(k)].

(31)

In the subballistic superdiffusive case, one can obtain for small
s

ψ̂(s) � 1 − T s + AT sμ, 1 < μ < 2, (32)

for which the first moment T = ∫ ∞
0 �(τ )dτ is finite and the

second moment is divergent; A = �(2 − μ)τμ−1
0 . Then the

Laplace transform of K(τ ) is K̂(s) � T −1(1 + Asμ−1) as s →
0. From (1) we obtain

T
∂2p

∂t2
+ ∂p

∂t
− D

∂2p

∂x2
+ A

∫
V

ϕ(u)Lμ−1
u pdu = 0, (33)

where the operator L
μ−1
u for 1 < μ < 2 is defined by (31),

where 1 − μ is replaced by μ − 1, and the diffusion coefficient
D = T v2. It is clear from (30) and (33) that strong ballistic
and subballistic cases are fundamentally different. In the
strong ballistic case (0 < μ < 1), the integral term is in the
balance with classical wave equation, while for the subballistic
superdiffusive case (1 < μ < 2), the memory term is in the
balance with the Cattaneo (telegraph) equation. One can
perform various asymptotic analysis of (30) and (33), obtain
the pseudodifferential equations for the walker’s PDF position
[30–33] and determine the shape of PDF profiles [34].

As an illustration let us find the long-time asymptotic
solution to Eq. (30) (0 < μ < 1). In the limit τ0 → 0, the
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evolution of the PDF p(x,t) is determined by the integral
term, while the first two waves’ terms in (30) are irrelevant.
The PDF p(x,t) obeys∫

V

ϕ(u)L1−μ
u pdu = 0. (34)

By using (31), we obtain

(s − ikv)1−μ[(s + ikv)p̂(k,s) − p̂0(k)]

+ (s + ikv)1−μ[(s − ikv)p̂(k,s) − p̂0(k)] = 0. (35)

In particular, for μ = 1/2 and p̂0(k) = 1, we factorize Eq. (35)
and find that

(s2 + k2v2)1/2p̂(k,s) − 1 = 0. (36)

By using the inverse Fourier-Laplace transform we obtain the
well-known self-similar profile [1],

p(x,t) = π−1(v2t2 − x2)−1/2.

For the arbitrary μ from the interval 0 < μ < 1, one can find
from (35) that the solution to (34) is the Lamperti distribution
[8]. Note that at the small times t 	 τ0, it follows from
(30) that the integral term is irrelevant, so the p(x,t) obeys
the wave equation. For the initial conditions p(x,0) = δ(x)
and pt (x,0) = 0 it has the classical d’Alembert’s solution
p(x,t) = 1

2δ(x − vt) + 1
2δ(x + vt) representing two waves

traveling in opposite directions. These two waves are the
walkers that never change their directions. Later these δ-
functional “horns” develop decaying weight proportional to
the power law survival function t−μ [1]. The shape of the
PDF at several successive times can be found in [8]. It
would be interesting to use a new wave equation for the non-
normalizable density problem for superdiffusive anomalous
transport [35].

Front propagation. Our technique leads to the significant
advances in the extension of the standard linear Lévy walk
models. The main advantage of our approach is that it allows
us to implement the nonlinear reactions and develop the
theory of wave propagation [17]. As an illustration let us
consider the fundamental problem of wave propagation in
reaction-transport systems involving enhanced Lévy diffusion.
Instead of the PDF’s n±, p±, and p we consider the mean
densities of Lévy walkers n± and ρ±. To take into account
the nonlinear reaction (proliferation of Lévy walkers), we
modify the boundary condition at zero running time as
follows:

n±(x,t,0) = 1

2

∫ t

0
γ (τ )n+(x,t,τ )dτ + 1

2

∫ t

0
γ (τ )n−(x,t,τ )dτ

+ 1

2
r(ρ)ρ(x,t), (37)

where r(ρ) is the density dependent proliferation rate. This
boundary condition corresponds to the case when newborn
walkers have zero running time. We consider the reaction
term of Kolmogorov-Petrovsky-Piskounov (KPP) type [7] for
which

max
ρ

r(ρ) = r(0) = r, r(1) = 0. (38)

For example, r(ρ) = r(1 − ρ) corresponds to the logistic
growth. The master equations for the mean densities ρ± take
the form

∂ρ+
∂t

+ v
∂ρ+
∂x

= −1

2
i+(x,t) + 1

2
i−(x,t) + r(ρ)ρ

2
, (39)

∂ρ−
∂t

− v
∂ρ−
∂x

= 1

2
i+(x,t) − 1

2
i−(x,t) + r(ρ)ρ

2
. (40)

The governing equation for the mean density ρ = ρ+ + ρ− is

∂ρ

∂t
+ ∂J

∂x
= r(ρ)ρ, (41)

where the flux J = vρ+ − vρ− obeys the equation

∂J

∂t
+ v2 ∂ρ

∂x
= −v[i+(x,t) − i−(x,t)]. (42)

By differentiating (41) with respect to t and (42) with respect
to x and eliminating ∂2J/∂t∂x, we obtain a single nonlinear
integrodifferential equation for the density ρ(x,t),

∂2ρ

∂t2
− v2 ∂2ρ

∂x2
= [r(ρ) + r ′(ρ)ρ]

∂ρ

∂t
−

∫ t

0

∫
V

K(τ )ϕ(u)

×
(

∂

∂t
− u

∂

∂x
− r(ρ)

)
ρdudτ, (43)

where the velocity jump density ϕ(u) is defined by (2).
This equation is a generalization of the well-known reaction-
telegraph equation [7]. Our purpose now is to find a traveling
wave solution to this integrodifferential wave equation with
appropriate initial conditions. To ensure the minimal propaga-
tion speed we consider the frontlike initial condition

ρ(x,0) =
{0, x � 0,

1, x < 0.
. (44)

The main idea is that after the hyperbolic scaling t → t/ε,

x → x/ε, the rescaled density ρε(x,t) = ρε(x/ε,t/ε) with the
KPP-kinetics (38) takes only two values 0 and 1 as ε → 0. The
rescaled linear equation takes the form

ε2 ∂2ρε

∂t2
− ε2v2 ∂2ρε

∂x2
− rε

∂ρε

∂t

= −ε

2

∫ t/ε

0
K(τ )

[(
∂

∂t
− v

∂

∂x
− r

)
ρε

×
(

x

ε
− vτ,

t

ε
− τ

)]
dτ

− ε

2

∫ t/ε

0
K(τ )

[(
∂

∂t
+ v

∂

∂x
− r

)
ρε

×
(

x

ε
+ vτ,

t

ε
− τ

)]
dτ.

It is well known that for the reaction-transport systems with
the KPP kinetics the front speed is determined by the tail
density distribution. Therefore it is enough to consider the
linear reaction. We apply an exponential transformation

ρε(x,t) = exp

(
−G(x,t)

ε

)
(45)
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and obtain the generalized Hamilton-Jacobi equation for
G(x,t) as ε → 0,(

∂G

∂t

)2

− v2

(
∂G

∂x

)2

+ r
∂G

∂t

= 1

2

(
∂G

∂t
− v

∂G

∂x
+ r

)
K̂

(
−∂G

∂t
− v

∂G

∂x

)

+ 1

2

(
∂G

∂t
+ v

∂G

∂x
+ r

)
K̂

(
−∂G

∂t
+ v

∂G

∂x

)
. (46)

Here K̂(s) is the Laplace transform of the memory kernel
K(τ ). The crucial advantage of (46) is that the expression
for K̂(s) is always available compared to K(τ ) which is not.
For K(τ ) = 1

T
δ(τ ) we obtain the relativistic Hamilton-Jacobi

equation(
∂G

∂t

)2

− v2

(
∂G

∂x

)2

+
(

r − 1

T

)
∂G

∂t
− r

T
= 0.

We introduce the Hamiltonian H (p) and the generalized
momentum p,

H (p) = −∂G

∂t
, p = ∂G

∂x
,

then we obtain the equation for the Hamiltonian H (p):

H 2 − v2p2 − rH = 1
2 (−H − vp + r)K̂(H − vp)

+ 1
2 (−H + vp + r)K̂(H + vp).

This equation allows us to determine the front speed V by the
formula

V = min
p>0

(
H (p)

p

)
.

For the Markovian case involving exponential running time
distribution we obtain

H 2 − v2p2 − rH + H − r

T
= 0.

By using this formula, we find the front speed

V = min
p>0

(
H (p)

p

)
= v

√
4rT

1 + rT

and momentum p∗ at which the speed V takes the minimum
value,

p∗ = 2r

(1 − rT )V
.

When rT < 1 the front speed V is less than the speed
of particles v. When rT → 1, the front speed V → v and
p∗ → ∞. However, for the strong anomalous case when
K̂(H ± vp) = τ

−μ

0 (H ± vp)1−μ we obtain

H 2 − v2p2 − rH + 1

2τ
μ

0

(H + vp − r)(H − vp)1−μ

+ 1

2τ
μ

0

(H − vp − r)(H + vp)1−μ = 0. (47)

It follows from (47) that minp>0 (H (p)/p) = v and therefore
the reaction front propagates with the same speed v as the
Lévy walker moves: V = v. We believe that this is a very
important result for the theory of proliferating swarming
bacteria performing Lévy walk and superdiffusive cancer cells
[36].

Summary. We have derived the integrodifferential wave
equation for the probability density function of a position of a
Lévy walker with continuous sample paths. This mesoscopic
equation involves a classical wave operator together with
memory integrals describing a spatiotemporal coupling of
Lévy walk. It is valid at all times and it does not involve
any long-time large-scale approximations. It generalizes the
well-known telegraph equation obtained from the persistent
random walk with the exponential running time distribution.
We have also implemented the nonlinear reaction into a
Lévy transport and derived a reaction-transport equation that
generalizes the well-known reaction-telegraph equation [7].
By using Hamilton-Jacobi techniques, we have developed
the theory of wave propagation in reaction-transport systems
involving Lévy diffusion and KPP kinetics. Our approach is
particularly helpful because it is difficult to take into account
nonlinear terms within the standard approach involving in-
tegral equations (see the similar problems for subdiffusion
[37]). In a similar way one can take into account the nonlinear
Lévy particles interactions [38] and Lévy walk with nonlinear
death process [21]. Our theory can be useful to formulate the
impact of the external force or the chemotactic substance on
the random movement of particles with finite velocities.
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