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Self-organized anomalous aggregation of particles performing nonlinear
and non-Markovian random walks
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We present a nonlinear and non-Markovian random walks model for stochastic movement and the spatial
aggregation of living organisms that have the ability to sense population density. We take into account social
crowding effects for which the dispersal rate is a decreasing function of the population density and residence time.
We perform stochastic simulations of random walks and discover the phenomenon of self-organized anomaly
(SOA), which leads to a collapse of stationary aggregation pattern. This anomalous regime is self-organized and
arises without the need for a heavy tailed waiting time distribution from the inception. Conditions have been
found under which the nonlinear random walk evolves into anomalous state when all particles aggregate inside a
tiny domain (anomalous aggregation). We obtain power-law stationary density-dependent survival function and
define the critical condition for SOA as the divergence of mean residence time. The role of the initial conditions
in different SOA scenarios is discussed. We observe phenomenon of transient anomalous bimodal aggregation.
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I. INTRODUCTION

Aggregation of motile organisms is an example of ecolog-
ical spatial self-organization due to direct or indirect interac-
tions between individuals [1]. Many organisms (cells, birds,
mammals) have the ability to sense a population density, which
leads to density-dependent dispersal [2,3]. This dependence
can be explained by various mechanisms including (i) compe-
tition that forces an individual to emigrate (positive density-
dependence), (ii) avoidance of crowded areas by individuals
(positive density-dependence), (iii) social crowding effects
when certain areas are attractive to many conspecifics (negative
density-dependence) [3]. Density-dependent dispersal can be
regarded as a behavioral response in which an individual
changes its rate of jump due to sensing the mean population
density [4,5]. To model the density-dependent dispersal and
aggregation, various nonlinear local and nonlocal advection-
diffusion equations have been used in the literature [5–10].
Some living organisms like amoeboid microorganism Dic-
tyostelium discoideum can interact indirectly. They secrete a
diffusible attractant (signaling molecules) to which individuals
respond chemotactically. They move toward regions of high
concentration of attractant and aggregate into a mound.
On the population level, the standard model for chemical
interaction of species is a pair of the advection-diffusion-
reaction equations for the average population density and
concentration of signaling molecules. There is a huge body
of literature on chemotactic aggregation modeling (see, for
example, Refs. [11–16]).

The microscopic theory of actively moving organisms is
based on various random walk models [4–14]. One of the
main characteristics of the continuous-time random walk
(position jump walk) is the escape rate T from the point
x. For density-dependent dispersal models involving direct
interaction between individuals this rate depends on the
population density [5]. Indirect interaction can be modeled by
the dependence of T on concentration of signaling molecules
produced by individuals [11–14]. An important feature of such
random walk models is that they are Markovian. However,
many transport processes are non-Markovian for which the

transport operators are nonlocal in time. Examples include
the Lévy walk that may accelerate aggregation [17], slow
subdiffusive transport that may lead to the phenomenon
of anomalous aggregation [18]. The challenge is to take
into account both nonlinear density-dependent dispersal and
non-Markovian anomalous behavior [19–21]. Although some
research has been done to address the interplay between
nonlinearity and non-Markovian effects [23], it is still an open
problem.

In this paper we consider nonlinear and non-Markovian
random walks and propose an alternative mechanism of
aggregation, which we call the regime of self-organized
anomaly (SOA). It leads to the collapse of a standard sta-
tionary aggregation pattern and development of nonstationary
anomalous aggregation. By using Monte Carlo simulations
we show that under certain conditions particles performing a
non-Markovian random walk with crowding effects aggregate
inside a tiny domain (anomalous aggregation). An important
fact is that this anomalous regime is self-organized and arises
spontaneously without the need for a heavy-tailed waiting time
distribution with an infinite mean time from the inception.

II. NONLINEAR AND NON-MARKOVIAN
RANDOM WALKS

In this section we formulate our nonlinear and non-
Markovian continuous-time random walks model. Instead of
the waiting time probability density function (PDF) we use the
escape rate T(τ,ρ), which depends on the residence time τ and
the density of particles ρ. Due to the dependence of the rate
T on the residence time τ, our model is non-Markovian and
should involve memory effects. Our intention is to take into
account nonlinear social crowding effects and non-Markovian
negative aging. We assume that the random walker has the
ability to sense the population density ρ. We model the escape
rate T as a decreasing function of the density ρ(x,t) [3,5],

T(τ,ρ) = μ(τ )

1 + Aρ(x,t)
, (1)
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where A is a positive parameter. This nonlinear function
describes the phenomenon of conspecific attraction: the rate
at which individuals emigrate from the point x is reduced
due to the presence of many conspecifics. This negative
density-dependence can be explained by the various benefits
of social aggregation like mating, antipredator aggregation,
etc. [3]. The rate parameter μ(τ ) is a decreasing function of
the residence time (negative aging):

μ(τ ) = μ0

τ0 + τ
, (2)

where μ0 and τ0 are positive parameters. This particular
choice of the rate parameter μ(τ ) has been motivated by
non-Markovian crowding: the longer the living organisms
stay in a particular site, the smaller becomes the escape
probability to another site. Since the escape rate T(τ,ρ)
depends on both residence time τ and t (indirectly through
ρ), we cannot define the waiting (residence) time PDF. It can
be done only for the linear case when A = 0. In this case
the waiting time PDF ψ(τ ) can be defined in the standard
way: ψ(τ ) = T(τ,0) exp [− ∫ τ

0 T(τ,0)dτ ] [24]. The particular
choice Eq. (2) generates the power law distribution:

ψ(τ ) = μ0τ
μ0
0

(τ0 + τ )1+μ0
. (3)

For the exponent μ0 < 1, this waiting time probability density
function has infinite first moment which corresponds to
anomalous subdiffusion [19–21]. In this paper we choose μ0

as

μ0 > 1, (4)

for which the mean waiting time is finite for the linear case
(A = 0). We do not introduce the anomalous effects from the
inception as it is done for a classical theory of subdiffusive
transport [19–21].

Regarding the space dynamics, we consider the random
walks in the stationary external field S(x) on the one-
dimensional lattice with the step size a. We should note
that the extension for the two and three dimensions is pretty
straightforward. When the walker escapes from the point x

with the rate T(τ,ρ), it jumps to x + a with the probability
p+(x), and it jumps to x − a, with the probability p−(x). For
the standard chemotaxis models [22], it is assumed that the
jumping probabilities are determined by the chemoattractant
concentration S(x) on both sides of the point x as

p±(x) = eβS(x±a)

eβS(x−a) + eβS(x+a)
. (5)

In this way we introduce the bias of the random walk in the
direction of the increase of the external field S(x). The positive
parameter β > 0 is the measure of the strength of the bias. For
small step size a, one can obtain the expressions for p±(x) in
the continuous case

p±(x) = 1

2
± β

2

∂S

∂x
a + o(a). (6)

Because of the dependence of T on the residence time τ,

it is convenient to define the structured density of particles
ξ (x,τ,t) at time t such that ξ (x,τ,t)�x�τ gives the number
of particles in the space interval (x,x + �x) whose residence

time lies in (τ,τ + �τ ) [23–25]. We consider initial condi-
tions ξ (x,τ,0) = ρ0(x)δ(τ ), for which all particles have zero
residence time at t = 0. The total density ρ(x,t) is defined in
the standard way:

ρ(x,t) =
∫ t

0
ξ (x,τ,t)dτ. (7)

The balance equation for the density ξ (x,τ,t) for τ > 0 takes
the Markovian form

ξ (x,τ + �τ,t + �t) = ξ (x,τ,t)(1 − T(τ,ρ)�τ ) + o(�t),

where 1 − T(τ,ρ)�τ is the survival probability during �τ at
point x. Since dτ/dt = 1, in the limit �t → 0 we obtain the
following equation:

∂ξ

∂t
+ ∂ξ

∂τ
= −T(τ,ρ)ξ. (8)

In what follows we use this equation to determine the
conditions for the self-organized anomalous regime. The
master equation for ρ can be written as [4]

∂ρ

∂t
= −i(x,t) + p+(x − a)i(x − a,t)

+p−(x + a)i(x + a,t), (9)

where i(x,t) = ∫ t

0 T(τ,ρ)ξ (x,τ,t)dτ . In general, the expres-
sion for the total escape rate i(x,t) is not known. In the
Markovian case, when the rate T is independent of τ , using
Eq. (7) we obtain

i(x,t) = T(ρ)ρ(x,t). (10)

For μ0 < 1 and only for linear case (A = 0), the total escape
rate takes the form [18]

i(x,t) = (

(1 − μ0)τμ0

0

)−1
D

1−μ0
t ρ(x,t), (11)

where D
1−μ0
t is the Riemann-Liouville fractional derivative.

III. STOCHASTIC SIMULATIONS
AND SELF-ORGANIZED ANOMALY

In this section we present the stochastic simulations of
nonlinear and non-Markovian continuous time random walks
along a one-dimensional lattice. Because of the density-
dependent dispersal we intend to model, we cannot introduce
the power-law probability density function for the random
residence time as it is done for the classical continuous time
random walk (CTRW) [19–21]. Therefore, we cannot apply the
standard Gillespie algorithm [26]. In this paper, we simulate
the random walks in a domain [0,L], which is divided into M

boxes of length a = L/M . To calculate the escape rate Eq. (1)
from the box, we approximate the density of walkers ρ in each
box as the number of walkers in this box divided by the size of
the box and the total number of particles. Each walker has its
own residence time τ , which determines its escape rate Eq. (1).
First, we consider a stationary linear profile

S(x) = αx, (12)

where α is the chemotactic strength parameter. In Fig. 1 we
present a convergence of the population density profile ρ(x,t)
to the stationary distribution ρst (x) on the interval [0,4] in
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FIG. 1. (Color online) Population density profiles in linear
regime A = 0. External field (chemoattractant concentration) is
linear: S(x) = αx. Parameters are τ0 = 1, β = 1, α = 0.34, and
μ0 = 4. We consider L = 4, and M = 40, so that a = 0.1. The dashed
line in the rightmost panel (coincides with the profile) represents the
stationary Boltzmann distribution. We have used ensemble of 106

walkers uniformly distributed at time t = 0 on the interval [0.5,2.5]
with zero residence time (τ = 0). The boundaries at x = 0 and x = 4
are assumed to be reflecting.

the linear case (A = 0) for which the walkers only sense the
external field (concentration of signaling molecules) S(x) and
not the density of particles ρ(x,t). One can see that the standard
aggregation pattern develops. It is easy to show that in the
continuous case this distribution is the stationary solution of
the standard Fokker-Planck equation: ρst(x) ∼ exp [2βS(x)].

The striking feature of our random walk is that the interplay
of nonlinearity Eq. (1) and non-Markovian aging effect Eq. (2)
leads to nonequilibrium phase transition. In the nonlinear case
(A > 0), when the chemotactic strength parameter α is smaller
than a critical value αcr, the population density converges to the
stationary aggregation profile. When the chemotactic strength
parameter α is greater than αcr, crowding effects induce a
collapse of the stationary aggregation pattern. The nonlinear
random walk evolves into the self-organized anomaly. In this
regime, the stationary density profile does not exist and all
walkers tend to aggregate at the point xm where the subcritical
(α < αcr) stationary density ρst(x) takes the maximum value
ρst(xm). The initial conditions are chosen such that ρ0(x) <

ρst(xm). We discuss the role of other initial conditions in Sec. V.
Stochastic simulations of the nonlinear and non-Markovian
random walks are presented in Fig. 2. The top row shows
the convergence of the population density to the stationary
aggregation profile for α = 0.34. When α < αcr � 0.345,

we observe a development of a stationary aggregation with
a continuous increase in the maximum value of population
density at the point xm = 4 as the parameter α increases up to
αcr. The value of αcr depends on the properties of the random
walk, system size, and the boundary conditions. Here we do not
study this dependence. The observed profile is similar to that
of Fig. 1. The only difference is that the nonlinear crowding
effects make the value of ρst(4) greater. However, the drastic
change happens, when the value of α exceeds αcr. The dashed
line in Fig. 2 represents ρst(4) = 1.5 given by Eq. (28) below.
Our nonlinear random walk evolves into the nonstationary
SOA, which becomes an attractor for random dynamics. In
this regime all particles eventually concentrate in the vicinity
of xm = 4. The bottom row in Fig. 2 shows this collapse of
the density for α = 1. Note that similar phenomenon occurs
as a result of chemotaxis, the so-called chemotactic collapse
when all cells aggregate at some point. Our explanation of
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FIG. 2. (Color online) Transition to self-organized anomalous
regime for the linear density of external field S(x) = αx. Transition
from stationary density to collapsed density occurs when signaling
strength α exceeds critical value αcr, or in other words when the
maximum of the stationary density, ρst(xm), exceeds the critical
value ρcr = 1.5 given by Eq. (28). Here xm = 4 and μ0 = 4, A = 2.
Other parameters, initial and boundary conditions are the same as in
Fig. 1. The top row shows the formation of stationary distribution
for α = 0.34 < αcr. The bottom row illustrates the density collapse
that takes place for α = 1 > αcr. The critical strength of signaling is
estimated numerically as αcr � 0.345.

this collapse is different from the classical Patlak-Keller-Segel
theory in which the growth of cell density to infinity happens
in finite time [11,15,16].

We should note that the self-organized anomaly is an
universal effect that can occur for any nonuniform external
field S(x). To demonstrate that the boundary effects are
irrelevant and to show that the SOA does not depend on the
form of S(x), in particular on the derivative of S(x) at the point
xm, we consider quadratic external field with the maximum at
the center of the domain [0,4]:

S(x) = −σ (x − 2)2/2. (13)

Here σ > 0 is the strength parameter. Figure 3 illustrates the
phenomenon of the density collapse that takes place at the
point xm = 2. This shows that SOA is not a boundary effect.

IV. NONLINEAR MARKOVIAN MODEL

We should stress the fact that the self-organized anomalous
regime occurs only for the non-Markovian case. In this section
we show that there is no anomalous collapse for the Markovian
nonlinear dynamics when the escape rate T is independent of
the residence time τ :

T(ρ) = μ0

τ0(1 + Aρ)
. (14)

We start with the Markovian master equation for the total
density ρ. Using Eq. (9), we have

∂ρ

∂t
= −T(ρ)ρ(x,t) + p+(x − a)T(ρ(x − a,t))ρ(x − a,t)

+p−(x + a)T(ρ(x + a,t))ρ(x + a,t), (15)
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FIG. 3. (Color online) Same as in Fig. 2 but for quadratic external
field S(x) = −σ (x − 2)2/2. The upper row shows the formation of
stationary distribution for σ = 0.64 < σcr. The bottom row illustrates
the density collapse that takes place for σ = 10 > σcr. Here we
consider parameters A = 4 and μ0 = 4. Other parameters, initial and
boundary conditions are the same as in Fig. 2. The critical value of
σ is estimated numerically to be σcr � 0.65. Dashed lines represent
critical value of the density ρcr = 3/4 given by Eq. (28). Notice that
in this case the collapse takes place at x = 2.

where p±(x) is defined by Eq. (5). We use the Taylor series
in Eq. (15) expanding the righthand side in the small a and
truncate the series at the second term. The equation for ρ takes
the form

∂ρ

∂t
= −2β

∂

∂x

[
∂S

∂x
D(ρ)ρ

]
+ ∂2

∂x2
[D(ρ)ρ], (16)

with the nonlinear diffusion coefficient

D(ρ) = a2T(ρ)

2
= a2μ0

2τ0(1 + Aρ)
. (17)

There is no anomalous collapse in this model for any
form of the signaling concentration S(x). The nonuniform
stationary solution of Eqs. (16) with (17) gives us a population
aggregation profile. In the linear case A = 0 we have a classical
Fokker-Planck equation involving the external field S(x).
We should note that in this paper we do not consider the
aggregation process due to negative diffusion coefficient [6] .
This effect might occur for some negative dependence of the
escape rate T(ρ) on the density ρ. For our model with Eq. (14)
the last term in Eq. (16) can be modified in a such way that
Eq. (16) takes the form

∂ρ

∂t
= −2β

∂

∂x

[
∂S

∂x
D(ρ)ρ

]
+ ∂

∂x

[
Dm(ρ)

∂ρ

∂x

]
,

with

Dm(ρ) = a2μ0

2τ0(1 + Aρ)2
> 0. (18)

Clearly, the modified nonlinear diffusion coefficient Dm(ρ) is
positive.

V. THE UNDERLING MECHANISM FOR THE
SELF-ORGANIZED ANOMALOUS REGIME

A. Stationary aggregation profile

Can we understand the underling mechanism for the SOA
observed in our Monte Carlo simulations? They show that in
the self-organized anomalous regime, the standard stationary
density profile (aggregation pattern) does not exist. So, it is
natural first to find a stationary solution ξst(x,τ ) to the Eq. (8)
from

∂ξst

∂τ
= −T(τ,ρst(x))ξst.

Using the escape rate Eq. (2) we obtain

ξst(x,τ ) = ξst(x,0)

(
τ0

τ0 + τ

) μ0
1+Aρst(x)

.

This can be rewritten in terms of the density-dependent power-
law survival function


(τ,ρst) =
(

τ0

τ0 + τ

) μ0
1+Aρst(x)

(19)

and the stationary arrival rate jst(x) = ξst(x,0) as

ξst(x,τ ) = jst(x)
(τ,ρst). (20)

In the stationary case the arrival rate of particles jst(x) to the
point x and the escape rate of particles from the point x are
the same: jst(x) = ist(x). The stationary density ρst(x) can be
obtained from Eqs. (7) and (20) in the limit t → ∞:

ρst(x) =
∫ ∞

0
ξst(x,τ )dτ = ist(x)

∫ ∞

0

(τ,ρst)dτ. (21)

Note that

T̄ (ρst(x)) =
∫ ∞

0

(τ,ρst)dτ (22)

can be interpreted as the expected value of the random resi-
dence time T whose survival function is given by Eq. (19). It
should be emphasized that we cannot introduce the power-law
survival function as the function of nonstationary population
density ρ(x,t). It follows from Eqs. (21) and (22) that the
stationary escape rate ist(x) can be written in the standard
Markovian form

ist(x) = 1

T̄ [ρst(x)]
ρst(x). (23)

Using Eq. (9), we write the stationary master equation:

− ist(x) + p+(x − a)ist(x − a) + p−(x + a)ist(x + a) = 0.

(24)

Using probabilities Eq. (5), in the limit a → 0, we obtain from
Eqs. (23) and (24) the nonlinear stationary advection-diffusion
equation for the population density ρst(x) :

− 2β
∂

∂x

{
S ′(x)ρst(x)

T̄ [ρst(x)]

}
+ ∂2

∂x2

{
ρst(x)

T̄ [ρst(x)]

}
= 0. (25)

It follows from Eq. (25) that the steady profile ρst(x) on the
interval [0,L] with the reflecting boundaries can be found
from the nonlinear equation ρst(x) = N−1T̄ (ρst) exp [2βS(x)],
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where N is determined by the normalization condition N =∫ L

0 T̄ (ρst(x)) exp [2βS(x)]dx. This stationary profile ρst(x) is
illustrated in Fig. 2 for the linear external field Eq. (12) and in
Fig. 3 for quadratic field Eq. (13) (see rightmost profiles in the
top rows).

B. Conditions for self-organized anomaly

The question arises why the increase of the parameter α

for the linear external field Eq. (12) or σ for the quadratic
field Eq. (13) above the corresponding critical value αcr or
σcr leads to a collapse of stationary aggregation pattern (see
bottom rows in Figs. 2 and 3). Our main idea is that when α or
σ gets bigger it leads to the increase of the population density
at the point xm where density ρst(x) takes the maximum value
and the divergence of the integral∫ ∞

0

(τ,ρst(xm))dτ. (26)

In another words: the self-organized anomaly occurs when the
effective mean residence time T̄ (xm) = ∫ ∞

0 
(τ,ρst(xm))dτ

becomes infinite and the stationary Eq. (25) breaks down.
The reason why we call this regime anomalous is that the
divergence of the mean waiting time explains anomalous
subdiffusive behavior of the random walkers [19–21]. The
essential difference to the standard CTRW theory is that we use
the stationary density-dependent power-law survival function.
Although SOA is similar to the phenomenon of anomalous
aggregation [18] or the accumulation of subdiffusive particles
in one of two infinite domains with two different values of
anomalous exponents [27], it is essentially different. Anoma-
lous conditions are not imposed by power law waiting time
PDF Eq. (3) with the anomalous exponent μ0 < 1. Anomalous
regime is self-organized for μ0 > 1 through the nonlinear
interactions of random walkers due to social crowding effects
described by Eq. (1).

Substitution of the survival function Eq. (19) into Eq. (26)
gives

T̄ (xm) = τ0[1 + Aρst(xm)]

μ0 − 1 − Aρst(xm)
. (27)

The divergence of T̄ (xm) gives the critical density ρcr:

ρcr = μ0 − 1

A
. (28)

One can also write the critical condition as γ = 1, where

γ = μ0

1 + Aρst(xm)
, μ0 > 1. (29)

In particular, for the linear external field S(x) = αx in the
interval [0,4] the stationary density ρst(x) has a maximum
value at the point xm = 4. We can find the critical value αcr as

lim
α→αcr

μ0

1 + Aρst(xm)
= 1, μ0 > 1. (30)

Numerical simulations presented in Figs. 2 and 3 are in
excellent agreement with Eq. (28). In Fig. 4 we illustrate
the time evolution of the population density ρ(xm,t) at the
boundary xm = 4 for linear field S(x) with different strength
of the signaling α. Transition to self-organized anomalous
regime is observed by the transition of the density through the
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ρ(
x m
)

α=0.34
α=0.35

α=0.4

α=0.43

α=0.5

ρcr

FIG. 4. (Color online) Dependence of the population density at
the boundary xm = 4, ρ(xm,t), for linear field S(x) = αx. Parameters
are the same as in Fig. 2. Dashed line mark critical values of
ρcr = 1.5 given by Eq. (28). Dashed-dotted curve is the best fit for
intermediate value of α = 0.4 by logarithmic function ρ(xm,t) ∼
0.28 ln(t) − 0.22.

critical value given by Eq. (28). For intermediate values of α,
we find that the density grows as ln t ; see Fig. 4.

C. The role of the initial conditions

In our numerical simulations we have used the initial
conditions for which all walkers have zero residence time (no
aging effects) and the maximum value of the initial density
ρ0(x) obeys the inequality

max ρ0(x) < ρcr, (31)

where ρcr is given by Eq. (28). However, when this condition
is violated the SOA regime could have different scenarios.
In Fig. 5 some preliminary results of numerical simulations
are shown. We observe three scenarios depending on the
strength of the external field σ . The left most panel shows the
anomalous aggregation of the walkers in the region of nonzero
initial density [0.5,0.6]. The peak of the density in this region
is infinitely increasing (this increase is not captured in Fig. 5,
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FIG. 5. (Color online) The role of the initial conditions for the
quadratic external field S(x) with different field strength σ . We have
considered parameters τ0 = 1, β = 1, A = 4, μ0 = 4, L = 4, and
M = 400, so that a = 0.01. In contrast to Fig. 3, the initial distribution
of particles is chosen to violate the condition in Eq. (31). We have used
ensemble of 106 walkers uniformly distributed at time t = 0 on the
interval [0.5,0.6] with zero residence time (τ = 0). The boundaries
at x = 0 and x = 4 are assumed to be reflecting. The dashed lines
correspond to the critical value of the density ρcr = 3/4; see Eq. (28).
Curve 1 corresponds to t = 104 and curve 2 to t = 7 × 104.
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only the peak is visible). The density in the other region
reaches a quasistationary form approximately represented by
curve 2 for t = 7 × 104. Note, however, that it is not a true
stationary state since the particles continue to accumulate in
the interval [0.5,0.6]. The middle panel demonstrates similar
scenario for σ = 1. However, now the field is strong enough to
temporarily accumulate particles at the critical point xm = 2.
Our assumption is that similarly to the previous case, in the
long time limit these particles will be concentrated in the region
of nonzero initial conditions. A different scenario occurs for
large strength of the external field. The rightmost panel shows
this situation for σ = 5. In this case the external field is able
to strongly attract particles to its critical point xm = 2. At
some time the density at this point exceed the critical value
Eq. (28). Therefore, in this case the anomalous aggregation of
the density is observed at two places, at the region of nonzero
initial conditions and at the critical point xm = 2. We call this
phenomenon as transient anomalous bimodal aggregation.

VI. CONCLUSIONS

We have discovered the phenomenon of SOA, which takes
place in a population of particles performing nonlinear and
non-Markovian random walks. The random walks involve
social-crowding effects for which the dispersal rate of particles
is a decreasing function of the population density and residence
time [3,5]. Monte Carlo simulations shows that the regime
of self-organized anomaly leads to a collapse of a stationary
aggregation pattern when all particles concentrate inside a
tiny region of space and form a nonstationary high-density
cluster. The maximum population density slowly increases

with time as ln t. We should note that the anomalous regime
is self-organized and arises spontaneously without the need
for introduction of the power-law waiting time distribution
with infinite mean time. Only in a stationary case one
can obtain a power-law density-dependent survival function
and define the critical condition as the divergence of mean
residence time. SOA gives a new possible mechanism for
chemotactic collapse in a population of living organisms as
an alternative to the celebrated Patlak-Keller-Segel theory
[11,15,16]. The crossover from the standard stationary ag-
gregation pattern to a nonstationary anomalous aggregation as
the strength of chemotactic force increases can be interpreted
as nonequilibrium phase transition. Our theory can be used to
explain various anomalous aggregation phenomenon including
accumulation of phagotrophic protists in attractive patches
where they become almost immobile [28]. The phenomenon
of self-organized anomaly was not known before and therefore
new experiments need to be done particularly measurements
of the dependence of the rates of movements of the living
organisms on residence time in order to prove our theory.
The task of our paper is to stimulate these new studies and
provide theoretical background. It would be interesting (i)
to analyze extensions of our model by taking into account
additional effects like volume feeling preventing unlimited
density growth [23] and (ii) apply our model for the analysis
of how self-organization and an anomalous cooperative effect
arise in social systems [29].
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