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The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport
equations described by a continuous time random walk �CTRW� with nonexponential waiting time distribu-
tions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the
mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distri-
butions. We apply these equations to the problem of front propagation in the reaction-transport systems with
Kolmogorov-Petrovskii-Piskunov kinetics and anomalous diffusion. We have found an explicit expression for
the speed of a propagating front in the case of subdiffusive transport.
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I. INTRODUCTION

This paper addresses the problem of the mesoscopic de-
scription of reaction-transport system of particles performing
a continuous time random walk �CTRW� �1�. One of the
main challenges is an implementation of the description of
chemical reactions in non-Markovian transport processes
governed by CTRW with nonexponential waiting time distri-
butions. There exist several approaches and techniques to
deal with this problem �2–11�. In particular, there are many
efforts to incorporate the chemical reactions into subdiffusive
transport. Different models lead to various fractional
reaction-diffusion equations corresponding to kinetic re-
gimes �12–20� and subdiffusion-limited reactions �21�.

Our main objective here is to discuss how to incorporate
the nonlinear kinetic term into non-Markovian transport
equations which is still an open problem. We consider a one-
component reaction-transport system consisting of indepen-
dent particles X that follow CTRW. Let ��x , t� represent the
density of these particles at point x and time t. The main
purpose is to derive the nonlinear Master equation for the
density ��x , t� in the following form:

��

�t
= L� , �1�

where the nonlinear evolution operator L has to be deter-
mined. The challenge is to derive the Master equation for an
arbitrary CTRW model coupled with nonlinear reaction. We
assume that the chemical reaction follows the mass action
law and the reaction term is of the form r����. The density of
other species participating in the reactions are held constant.
It has been shown recently that for non-Markovian transport
we cannot just add the term r���� to the right-hand side of
evolution Eq. �1� �12–16�. It is convenient to represent the
nonlinear reaction rate r��� as the difference between the
birth rate r+��� and the death rate r−���,

r��� = r+��� − r−��� . �2�

As an illustration, let us consider the classical Schlögl first
model �22�,

A + X�
k2

k1

A + 2X, X→
k3

B , �3�

where k1, k2, and k3 are the reaction-rate constants. If we
denote the densities of particles X and A by � and �A respec-
tively, then the birth and death rates are

r+��� = k1�A, r−��� = k3 + k2� . �4�

In what follows the density �A of the catalyst A is assumed to
be constant.

In what follows we consider three different non-
Markovian models for reaction and transport processes. We
apply these models to the problem of propagating fronts in
reaction-transport systems with nonstandard diffusion
�23,24� �see also a recent review �25��. The theory of subdif-
fusive propagation of a front is presented in �3,11,26–30�,
the superdiffusive propagation is studied in �31�.

II. MODEL A

Non-Markovian behavior of particles performing CTRW
occurs when diffusive particles get trapped for random times
with nonexponential distribution. Let ��t� and w�z� denote
the waiting time probability density function and the dis-
persal kernel respectively. For simplicity we consider the un-
coupled case when jumps and waiting times are independent.
If the distribution of waiting times is exponential: ��t�
=� exp�−�t�, the transport model is Markovian, and the dif-
ficulty of implementation of a nonlinear reaction term does
not arise. In this case the Master Eq. �1� takes the form of the
Kolmogorov-Feller equation with reaction

��

�t
= ��

R
��x − z,t�w�z�dz − �� + r���� �5�

with a clear separation of the transport and reactive terms on
the RHS �23�. In the non-Markovian case these terms are not
additive �12,15–17�. The key question is how the chemical
reaction influences the transport process. For model A, we
assume that transport processes associated with CTRW and
chemical reactions are independent. This case has been con-
sidered in the series of papers �12,13,15�. The main assump-
tion here is that when particles are trapped, the waiting time
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is the same for all particles including newborn particles. One
can think of biological applications when cells or bacteria are
trapped in some confined region, say, at time �� t, they pro-
liferate over the trapping �waiting� time t−�, and then they
are released at time t. In particular, for the problem of virus
infection and its propagation, the random waiting time oc-
curs due to virus reproduction inside infected cells �32�.

A. Conservation laws for particles

The first step in the derivation of non-Markovian Master
Eq. �1� is to formulate the integral balance equations for the
density ��x , t� and the auxiliary density j�x , t�. The latter de-
scribes the number of particles arriving at point x exactly at
time t �see, for example �10,12�, �. The balance equations for
��x , t� and j�x , t� can be written in the following form:

��x,t� = �0�x�e�0
t r���x,u��du��t�

+ �
0

t

j�x,��e��
t r���x,u��du��t − ��d� , �6�

j�x,t� = �
R

�0�x − z�e�0
t r���x,u��duw�z���t�dz

+ �
0

t �
R

j�x − z,��e��
t r���x−z,u��duw�z���t − ��dzd� .

�7�

These equations represent the balance of particles due to
nonlinear chemical reaction and transport process described
by CTRW �1�. Equation �6� is the conservation law for par-
ticles’ density ��x , t� at point x at time t. The first term on the
RHS of Eq. �6� represents the particles that stay at their
initial position up to time t. Their density grows with the rate
r���x , t�� during time interval �0, t�. The first term involves
also the survival function ��t�=�t

���t�dt which is the prob-
ability that particles stay at their initial location up to time t.
The second term gives the number of particles that arrive at
point x at previous time �� t and grow with rate r��� during
time interval �� , t� so that no jumps take place during this
time interval. Note that the initial distribution of particles
�0�x� is set up in such a way that a random walk for all
particles starts at t=0 �no aging effects� �33�. Equation �6� is
the conservation law for the particles that arrive at point x
exactly at time t. The first term on the RHS of Eq. �7� rep-
resents the particles that are at the point x−z at time t=0.
Their density increases with the rate r��� during time interval
�0, t� and they jump to the point x at time t. The second term
describes the particles that arrive at the point x−z at some
time �� t and react up to time t at which the particles jump
to position x. It should be noted that Eqs. �6� and �7� are
mesoscopic mean-field equations. We neglect the internal
fluctuations due to the finite number of particles. In general
random fluctuations could modify the macroscopic behavior
of the reaction-transport systems �see, for example, �34,35� �.

B. Nonlinear Master equation

Let us now derive the evolution equation for the density
��x , t�. Since balance Eqs. �6� and �7� are nonlinear, we can-

not apply directly the standard technique of Fourier-Laplace
transforms. Instead, we differentiate the density ��x , t� given
by Eq. �6� with respect to time

��

�t
= j�x,t� + r���� − �0�x�e�0

t r���x,u��du��t�

− �
0

t

j�x,��e��
t r���x,u��du��t − ��d� . �8�

The last two terms can be interpreted as the density of par-
ticles that leave the point x exactly at time t,

i�x,t� = �0�x�e�0
t r���x,u��du��t� + �

0

t

j�x,��e��
t r���x,u��du��t − ��d� .

�9�

It follows from Eqs. �7� and �9� that

j�x,t� = �
R

i�x − z,t�w�z�dz . �10�

Then Eq. �8� can be rewritten as

��

�t
= �

R
i�x − z,t�w�z�dz − i�x,t� + r���� . �11�

This equation has a very simple meaning of a balance of
particles at point x. The first term on the RHS gives the
number of particles coming to x from different positions x
−z, where the jump size z has the distribution w�z�. The
second term gives the rate at which the particles leave the
position x. The last term describes the growth of particles
due to chemical reactions. In the linear case, a similar equa-
tion has been used �12,13�. The advantage of having this
equation is that we do not need the Fourier transform to get
the closed equation for the density ��x , t�. We can now find
an expression for the density i�x , t� in terms of ��x , t�. We
divide Eqs. �6� and �9� by the factor exp��0

t r���x ,u��du� and
take the Laplace transform of both equations

L���x,t�e−�0
t r���x,u��du� = ��0�x� + L�j�x,t�e−�0

t r���x,u��du���̃�s� ,

L�i�x,t�e−�0
t r���x,u��du� = ��0�x� + L�j�x,t�e−�0

t r���x,u��du���̃�s� ,

where �̃�s�=L���t�� and �̃�s�=L���t��. From these equa-
tions, we obtain

L�i�x,t�e−�0
t r���x,u��du� =

�̃�s�

�̃�s�
L���x,t�e−�0

t r���x,u��du� .

Inverse Laplace transform gives

i�x,t� = �
0

t

K�t − ����x,��e��
t r���x,u��dud� , �12�

where K�t� is the standard memory kernel defined by its
Laplace transform
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K̃�s� =
�̃�s�

�̃�s�
=

s�̃�s�

1 − �̃�s�
. �13�

Substitution of Eq. �12� into Eq. �11� gives us the nonlinear
Master equation

��

�t
= �

0

t

K�t − ��	�
R

��x − z,��e��
t r���x−z,u��duw�z�dz

− ��x,��e��
t r���x,u��du
d� + r���� . �14�

This nonlinear equation is the main result of this paper. For
some particular cases, it can be reduced to known equations
in the literature. For example, when the reaction rate r���
=r=constant, Eq. �14� takes the form

��

�t
= �

0

t

K�t − ��er�t−��	�
R

��x − z,��w�z�dz − ��x,��
d�

+ r� , �15�

and this model with constant rate r has been formulated in
�15�. Since the effective memory kernel K�t−��er�t−�� de-
pends on the reaction rate, it is tempting to conclude that this
equation describes the coupling of chemical reaction and
transport. We believe that this conclusion is misleading. In
fact this equation describes the complete decoupling of trans-
port with memory effects and linear reaction. To show this,
let us make a substitution

��x,t� = n�x,t�ert. �16�

Then we obtain the Master equation for n�x , t�,

�n

�t
= �

0

t

K�t − ��	�
R

n�x − z,��w�z�dz − n�x,��
d�

�17�

which is independent of the reaction and describes the trans-
port of passive particles. So we have a complete decoupling
in which the density ��x , t� is the product of the density of
passive particles n�x , t� and the exponential factor ert due to
the chemical reaction.

C. Subdiffusive transport

Now consider slow anomalous diffusion for which the
waiting time probability density function �pdf� ��t� has a
power-law tail: ��t����0 / t�1+	 with 0�	�1 as t→�.
Clearly, the first moment �0

�t��t�dt is divergent for 0�	
�1. As a result, the mean-square displacement �x2 depends
on time t as t	 �1�. Here we use the following expression for
the survival probability:

��t� = E		− � t

�0
�	
, 0 � 	 � 1, �18�

where E	�x�=�0
�xn /
�	n+1� is the Mittag-Leffler function.

The waiting time pdf ��t�=− d
dtE	�−� t

�0
�	� has singular be-

havior t	−1 as t→0. The Laplace transforms of ��t� and ��t�
are

�̃�s� =
�0�s�0�	−1

1 + �s�0�	 , �̃�s� =
1

1 + �s�0�	 . �19�

The advantage of using the Mittag-Leffler function is that we
can find the fractional reaction-transport equation without
passing to the long-time large-distance limit. We find from
Eq. �13� that the Laplace transform of the memory kernel is

K̃�s� =
s1−	

�0
	 . �20�

Equation �14� takes the form of a nonlinear fractional equa-
tion

��

�t
=

e�0
t r���x−z,u��du

�0
	 Dt

1−	��
R

��x − z,t�e−�0
t r���x−z,u��duw�z�dz�

−
e�0

t r���x,u��du

�0
	 Dt

1−	���x,t�e−�0
t r���x,u��du� + r���� , �21�

where Dt
1−	 is the Riemann-Liouville fractional derivative

defined as

Dt
1−	��x,t� =

1


�1 − 	�
�

�t
�

0

t ��x,��d�

�t − ��	 .

Now assume that the dispersal kernel w�z� is an even and
rapidly decaying function for large z. We expand the expres-
sion in the brackets �Eq. �14�� for small z and truncate the
Taylor series at the second moment. We obtain

��

�t
=

�2

2

�2

�x2�
0

t

K�t − ����x,��e��
t r���x,u��dud� + r���� ,

�22�

where �2=�Rz2w�z�dz. Note that a similar nonlinear equation
has been derived in �16,18�.

By using Laplace transform �20� and Eq. �22�, we obtain
the nonlinear reaction-subdiffusion equation,

��

�t
= D�	�e�0

t r���x,u��duDt
1−	 �2

�x2��x,t�e−�0
t r���x,u��du + r���� ,

�23�

where D�	�=�2 /2�0
	 is the anomalous diffusivity.

III. MODEL B

Model B deals with the case when the transport process
described by CTRW depends on the chemical reaction. This
model was considered by Vlad and Ross �2�. They intro-
duced the notion of the age of the particle as the transition
time between two successive jumps. The particles have zero
age when they just arrive at some point x from which they
will jump later. The main assumption for model B is that the
newborn particles produced with the rate r+���� have zero
age. In other words, when a new particle is born, it is given
a new waiting time for a jump �zero age�. The density j�x , t�
for model B can be interpreted as a zero-age density of par-
ticles arriving at the point x exactly at time t. The particles
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arrive at the point x because of the jumps in space and a birth
process with the rate r+���. Since the nonlinear reaction rate
r��� is the difference between the birth rate r+��� and the
death rate r−���, the balance equations for the densities j�x , t�
and ��x , t� can be written as

��x,t� = �0�x�e−�0
t r−���x,u��du��t�

+ �
0

t

j�x,��e−��
t r−���x,u��du��t − ��d� �24�

and

j�x,t� = r+���� + �
R

�0�x − z�e−�0
t r−���x,u��duw�z���t�dz

+ �
0

t �
R

j�x − z,��e−��
t r−���x,u��duw�z���t − ��dzd� .

�25�

This system of equations has been derived in �2,16�. The
authors employed the Markov model with age-dependent
density ��x , t ,�� such that ��x , t�=�0

���x , t ,��d�. Of course,
Eqs. �24� and �25� can be formulated directly as the balance
equations without introduction of ��x , t ,��. Equation �24� is
the conservation law for the particles at point x at time t.
Equation �25� describes the situation when the particles with
zero age at point x are either produced with a rate r+��� or
arrive at point x from other positions. By using the method
developed for model A, one can derive the nonlinear Master
equation for the density ��x , t�

��

�t
= �

0

t

K�t − ��	�
R

��x − z,��e−��
t r−���x−z,u��duw�z�dz

− ��x,��e−��
t r−���x,u��du
d� + r+���� − r−���� . �26�

Note that Vlad and Ross stated that the balance Eqs. �24� and
�25� could not be reduced to a nonlinear Master equation as
Eq. �26� due to the nonlinear term exp�−��

t r−���x−z ,u��du�
�2�. However, Yadav and Horsthemke managed to overcome
this difficulty by using the large-spatial scale and long-time
limits �16�. They used the standard asymptotics for the Fou-
rier transform of jump density w�k�=1−�2k2+o�k2� and ne-
glected the initial conditions in the long-time limit. If we
expand ��x−z ,�� in Eq. �26� for small z, then we obtain the
equation derived in �16�

��

�t
=

�2

2

�2

�x2�
0

t

K�t − ����x,��e−��
t r−���x,u��dud�

+ r+���� − r−���� . �27�

Thus, the Master Eq. �26� can be considered as the generali-
zation of Eq. �27� derived in �16� for the arbitrary jump
distribution w�z�.

The essence of the model B and the main difference with
model A is that it describes the situation when the newborn
particles are given the new waiting time for a jump. One can
think of a situation in which the trapping mechanism has

been induced by chemical binding of newborn molecules. In
this case we have to take into account the aging effects. Of
course, we should make a clear distinction between the age
of a jump event and the age of a particle from t=0. The latter
effect is not considered in this paper.

IV. MODEL C

This model corresponds to the phenomenological gener-
alization of the CTRW model for the case when the chemical
reaction is taken into account. We can incorporate the local
growth rate of diffusing particles by adding a term
�0

t r+���x , t−�����x , t−������d� to the balance equation for
the density of particles. We write

��x,t� = ��x,0���t� + �
0

t �
R

��x − z,t − ��w�z�����dzd�

+ �
0

t

r+���x,t − �����x,t − ������d� . �28�

This equation has been used in �3,4� as a starting point.
Henry et al. modified it in �15� and pointed out that the
model C is not justified at the mesoscopic level and what is
more its interpretation is not clear. The purpose of this sec-
tion is to show that model C has a very natural physical
interpretation.

Here we assume that the reaction is a pure birth process:
r+���, and j�x , t� is a zero-age density of particles arriving at
the point x exactly at time t. The balance equations are

��x,t� = �0�x���t� + �
0

t

j�x,t − ������d� �29�

and

j�x,t� = r+���� + �
R

�0�x − z�w�z���t�dz

+ �
0

t �
R

j�x − z,t − ��w�z�����dzd� . �30�

These equations do not involve nonlinear terms inside the
integrals. Therefore, the standard technique of Fourier-
Laplace transforms can be employed to reduce two balance
Eqs. �29� and �30� to a single equation for ��x , t�. It turns out
that this equation can be written as a phenomenological bal-
ance Eq. �28�. So Eq. �28� corresponds to a mesoscopic situ-
ation when the newborn particles are given a new waiting
time for a jump. Note that it has been found �15� that we
cannot use balance Eq. �28� with negative reaction term,
since it leads to the negative density for the subdiffusive
transport. Of course, model C is just a particular case of
model B when the death rate r−���=0.

From Eq. �28� one can obtain the Master equation for the
density ��x , t� in the following form:

��

�t
= �

0

t

K�t − ��	�
R

��x − z,��w�z�dz − ��x,��
d� + r+����

in which the transport term does not directly depend on the
chemical reaction as in models A and B.
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V. SPEED OF TRAVELING WAVES

In this section we address the problem of wave-front
propagation for model A. We assume that the reaction rate
r��� is of the Kolmogorov-Petrovskii-Piskunov �KPP� type
�10,36�,

max
0�1

r��� = r�0� � 0, r�1� = 0. �31�

Note that the standard logistic growth corresponds to r���
=1−� �37�. We start with the nonlinear Master equation for
the density ��x , t�,

��

�t
=

�2

2

�2

�x2�
0

t

K�t − ����x,��e��
t r���x,u��dud� + r����

�32�

with an initial condition in the form of a step function

��x,0� = ��x� , �33�

where ��x�=1 for x0 and ��x�=0 for x�0. This condition
describes the initial segregation of an unstable state ��=0�
for x�0 and a stable state ��=1� for x0.

The purpose is to find the traveling-wave solution ��x , t�
= f�x−vt� of the initial value problem �Eqs. �32� and �33��.
Here v is the speed at which the wave profile f invades the
unstable state with �=0. When the memory kernel K�t−��
=�0

−1��t−��, then Eq. �32� becomes the KPP equation �Fisher
equation�

��

�t
= D

�2�

�x2 + r���� �34�

with the diffusion coefficient D=�2 /2�0. This case
corresponds to the exponential waiting time pdf ��t�
=� exp�−�t� with �=�0

−1. It is well known �37� that the mini-
mal propagation speed v for Eq. �34� is 2�Dr�0�.

To find the propagation rate for the non-Markovian initial
value problem �Eqs. �32� and �33��, we use the Hamilton-
Jacobi approach �23,36�. The starting point is to apply hy-
perbolic scaling x→x /�, t→ t /� with �→0 which corre-
sponds to the long-time large-distance behavior of the
traveling wave. When the scaling parameter �→0, the res-
caled density ���x , t�=��x /� , t /�� can take only two values 0
and 1 everywhere except in the narrow front region where
the transport and reaction terms are balanced. In another
words, the wave profile f��x−vt� /�� tends to a unit step
function ��x−vt�. The aim is to find the location of the front
and rate at which it moves.

We introduce the action functional G� as

���x,t� = exp	−
G��x,t�

�

 . �35�

It follows from Eq. �35� that if the function G�x , t�
=lim�→0 G��x , t� is positive, the rescaled density ���x , t�
→0 as �→0. The boundary of the set G�x , t��0 can be
regarded as the reaction front �23,36�. Then, the front posi-
tion x�t� can be determined by the equation G�x�t� , t�=0.
Since we are interested in the leading edge of the traveling

wave ����0�, we write the equation for the rescaled density
in the linear form

���

�t
=

��2

2

�2

�x2�
0

t/�

K���er�0�����x,t − ���d� +
r�0���

�
.

�36�

Substituting Eq. �35� into Eq. �36� and taking the limit
�→0, we obtain

�G

�t
+

�2

2
� �G

�x
�2�

0

�

K���er�0��e���G/�t�d� + r�0� = 0. �37�

This is the Hamilton-Jacobi equation for the action func-
tional G�x , t� �see �3,23,28��. If we introduce the Hamil-
tonian H=− �G

�t and the generalized momentum p= �G
�x , then

Eq. �37� can be written as

H + K̃�H − r�0��
�2p2

2
− r�0� = 0, �38�

where K̃�s� is the Laplace transform of the memory kernel
K�t�. This equation is different from the analogous one in
�3,28�.

The propagation rate v can be found from �23�

v =
�H

�p
=

H

p
. �39�

Solving quadratic Eq. �38� for p, we obtain from Eq. �39�
that

v = H���K̃�H� − r�0��
2H� − 2r�0�

, �40�

where H� is the solution of

�

�H� �H − r�0��

K̃�H − r�0��
� =

2�H − r�0��

HK̃�H − r�0��
. �41�

Front propagation rate for subdiffusive transport

Let us consider the reaction-subdiffusion case for which
the Laplace transform of the waiting time pdf ��t� is

�̃�s� =
1

1 + �s�0�	 , 0 � 	 � 1

and the Laplace transform of the memory kernel is given by
Eq. �20�. Then Eq. �41� has the solution H�=2r�0� / �2−	�.
Substitution of this solution into Eq. �40� gives the propaga-
tion rate v corresponding to Master Eq. �32� with initial con-
dition �33�. We introduce the following notations for the
propagation speeds: vA for model A; vB and vC for model B
and model C respectively. The minimal propagation speed vA
for model A with Eqs. �32� and �33� is

vA =� 2r�0�2−	�2

�0
	�2 − 	�2−			

. �42�

For simplicity, we consider the case when the death rate
r−��� obeys r−�0�=0. For Schlögl first model �3�, it means
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that k3=0 �see Eq. �4��. Then for model B and model C we
have �3,28�

vB = vC =�r�0�2−	�2�3 − 	�3−	

2�0
	�2 − 	�2−	

. �43�

The case k3�0 was considered in �28�.
For 	=1, we have the classical result v=2�Dr�0� with

D=�2 /2�0 that corresponds to the KPP equation �Fisher
equation� �Eq. �34��. For 0�	�1, the propagation speed vB
is greater than vA. This is because the newborn particles in
model B and model C are given new waiting times for the
jump event. As a result the overall transport process and the
propagation rate for model A are slower than those of model
B and model C. It is also interesting to compare our results
with those obtained in �29�. The authors considered the irre-
versible autocatalytic reaction A+X→2X with subdiffusion.
They found that the minimal propagation is zero. This find-
ing seems to contradict with our result of finite speed propa-
gation �42�. In fact, model A and the subdiffusion-reaction
model studied in �29� are different. In our model we keep the
concentration of one of the component constant, while Fro-
emberg et al. considered two-component system of equations
for which both reactants A and X vary in space and time. For
example, in our paper the density �A of the catalyst A in Eq.
�3� is assumed to be constant.

VI. CONCLUSIONS

In this paper we have given a mesoscopic description of a
reaction-transport system of particles performing a continu-
ous time random walk �CTRW� with nonexponential waiting
time distributions. Our main objective has been to implement
a nonlinear kinetic term into non-Markovian transport equa-
tions. We have considered three different CTRW models
with reactions which have been discussed in the literature.
We have derived nonlinear Master Eqs. �14� and �26� for the
mesoscopic density of reacting particles corresponding to
CTRW with arbitrary jump and waiting time distributions.
We have applied the theory to the problem of front propaga-
tion in reaction-transport systems with KPP kinetics and non-
Markovian diffusion. We have found an explicit expression
for the speed of the propagating front in the case of subdif-
fusion transport.
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