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Propagating fronts in reaction–transport systems with memory
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Abstract

In reaction–transport systems with non-standard diffusion, the memory of the transport causes a coupling of reactions and transport. We
investigate the effect of this coupling for systems with Fisher-type kinetics and obtain a general analytical expression for the front speed. We apply
our results to the specific case of subdiffusion.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Propagating fronts are nonequilibrium phenomena that oc-
cur in many areas of physics, chemistry, biology, ecology, and
other fields [1–3]. A particularly well-studied class of applica-
tions consists of reaction–diffusion systems, where the combi-
nation of reaction processes and dispersal through diffusion is
able to support a shape preserving and uniformly translating so-
lution under certain well-understood conditions [2,4].

Recently, emphasis has focused on understanding front
propagation in complex systems where the dispersal of particles
differs from Brownian motion or standard diffusion. To remedy
the unphysical nature of Fickian diffusion, namely transport
with infinite speed, hyperbolic evolution equations, such as
reaction random walks [5], time-delayed hyperbolic reaction–
diffusion equations [6–8], and reaction–telegraph equations
[9,10], have been introduced and analyzed in the context of
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front propagation. Front propagation in systems where the dis-
persal is through anomalous diffusion has also been the subject
of recent investigations [11–15].

An approach employed in several studies consists of replac-
ing the standard Fickian relation between the flux, J (x, t), and
the gradient of the concentration for a species, ρ(x, t),

(1)J (x, t) = −D∂xρ(x, t),

by a more general form [16],

(2)J (x, t) = −
t∫

0

θ(t − t ′)∂xρ(x, t ′) dt ′,

through the introduction of the memory kernel θ(t). Invoking
the continuity equation for the concentration,

(3)∂tρ(x, t) + ∂xJ (x, t) = f
(
ρ(x, t)

)
,

one arrives at a generalization of the standard reaction–diffusion
equation:

(4)∂tρ(x, t) =
t∫

0

θ(t − t ′)∂xxρ(x, t ′) dt ′ + f
(
ρ(x, t)

)
.
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The reaction term f (ρ) plays the role of a source in the continu-
ity condition (3). A delta function form for the memory kernel
results in the recovery of the standard reaction–diffusion equa-
tion, while exponential decay and fractional derivative kernels
lead to a hyperbolic reaction–diffusion equation and to a frac-
tional reaction–diffusion equation, respectively.

In both the standard reaction–diffusion picture, and its gen-
eralization, Eq. (4), the effects of reactions and dispersal are
separable and combine additively to influence the total spatio-
temporal evolution of the concentration field of a given species.
However, in a recent work [17] we have shown that this is not
true for non-standard diffusive transport. Memory effects asso-
ciated with such transport lead to the coupling of transport and
reactions. The main goal of this Letter is to analyze the influ-
ence of the coupling between reactions and dispersal on front
propagation.

2. Generalized reaction–transport equations

In this section we briefly recapitulate the results of Ref. [17],
based upon which we write down a generalized Fick’s first law
taking into account the coupling between reaction processes
and dispersal. In Ref. [17] we employed as our starting point a
mesoscopic approach, namely the formalism proposed by Vlad
and Ross based on continuous time random walks (CTRWs)
with reactions [18]. In this formalism, the concentration fields
of the various species obey a set of nonlinear, age-dependent
evolution equations that account for the transport and transfor-
mation processes in the system. The long-time and large-spatial
scale limit (“diffusive limit”) of those equations results in the
following generalized reaction–diffusion equations governing
the evolution of a system with reactions and spatial dispersal,
see Eq. (27) in Ref. [17],

∂ρi(x, t)

∂t
= R+

i

(
ρ(x, t)

) − R−
i

(
ρ(x, t)

)

+ σ 2
i ∂xx

{ t∫
0

Θi(t − t ′)ρi(x, t ′)

(5)× exp

[
−

t∫
t ′

R−
i (ρ(x, t ′′))
ρi(x, t ′′)

dt ′′
]
dt ′

}
.

Here, ρi(x, t) is the concentration field of species i, and the
species undergo reactions, birth-and-death processes, with a
birth rate R+

i (ρ(x, t)) � 0 and a death rate R−
i (ρ(x, t)) � 0,

where ρ(x, t) = (ρ1(x, t), ρ2(x, t), . . . , ρn(x, t)). The total
reaction terms are defined as fi(ρ(x, t)) ≡ R+

i (ρ(x, t)) −
R−

i (ρ(x, t)). The operator σ 2
i ∂xx has its origins in the underly-

ing spatial jump probability distribution, λi(x), which has the
form λi(k) = 1 − σ 2

i k2 in conjugate Fourier space. The ker-
nel Θi(t) is related to the waiting time probability distribution
function (PDF), φi(t), of the underlying CTRW through

(6)Θ̂i(u) ≡ uφ̂i(u)

1 − φ̂i (u)
in conjugate Laplace space, where the Laplace-transformed
function is denoted by a hat. The presence of both the ker-
nel Θi(t − t ′), related to the waiting time PDF of the CTRW,
and the death rate R−

i (ρ(x, t)) in the memory term in Eq. (5)
indicates that the effects of reaction and non-standard diffu-
sive transport are not separable, in contrast to the standard
reaction–diffusion equation or its generalization (4). It is worth
noting that Eq. (5) simplifies to a standard reaction–diffusion
equation if the CTRW is Markovian, i.e., the waiting times
are exponentially distributed, φi(t) = (1/ηi)e

−t/ηi . In this case
Θ̂i(u) = 1/ηi , and therefore, Θi(t) = δ(t)/ηi .

The Vlad–Ross formalism and the generalized reaction–
diffusion equation (5) are mean-field equations, i.e., they rep-
resent a deterministic, continuum description of a system that
is discrete at the microscopic level, and are valid in the ther-
modynamic limit as the number of particles goes to infinity.
Systems with a finite number of particles display internal fluc-
tuations. For standard reaction–diffusion systems, the effect of
these fluctuations on the dynamics of propagating fronts has
been studied numerically and analytically [19–23].

The generalized reaction–diffusion equation (5) suggests
that one can write down a generalized Fick’s first law that takes
into account the coupling between reactions and dispersal,

J (x, t) = −σ 2∂x

t∫
0

Θ(t − t ′)

(7)× exp

[
−

t∫
t ′

R−(ρ(x, t ′′))
ρ(x, t ′′)

dt ′′
]
ρ(x, t ′) dt ′.

Invoking the continuity equation (3) and substituting Eq. (7)
into it, we recover Eq. (5). For a general transport process with
memory, the flux at the present time does not instantaneously
follow the gradient in concentration, nor does it follow the gra-
dient in concentration at previous times, but rather the gradi-
ent in concentration at previous times weighted by the specific
death rate.

3. Front propagation in generalized reaction–transport
equations

Having shown that the proper generalization of a reaction–
diffusion equation for non-standard diffusive transport couples
the reaction and transport processes, we seek to analyze the
influence of this coupling on front propagation. For simplic-
ity we examine Eq. (5) for a single species i = 1 and drop the
suffix 1. Moreover, the nonlinear kinetic term f (ρ(x, t)) is as-
sumed to be of the Fisher–Kolmogorov–Petrovskii–Piskunov
(FKPP) type [24], i.e., maxρ∈(0,1) f (ρ)/ρ = U , f (0) = 0, and
f (1) = 0, where U is the constant growth rate. We will in par-
ticular address the case of subdiffusive transport.

The effect of subdiffusion on front propagation has been
investigated previously, using CTRW-based formalisms other
than the Vlad–Ross formalism [11,13–15]. Those approaches
are valid as long as the kinetic term can be interpreted as a
source term, i.e., as the rate with which new particles are cre-
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ated. This requires that f (ρ) � 0 for the range of densities
considered. If the kinetic term results from separate birth and
death processes, the situation usually encountered in chemical
systems, then, as we will show below, the predictions of those
approaches remain valid, as long as the death rate depends non-
linearly on the density.

The specific chemical scheme we consider here is the
branching-coalescence scheme,

B + X −→ X + X,

(8)X + X −→ B + X,

where the species B is a pool chemical, i.e., its concentration
is kept constant. The suitably nondimensionalized mass-action
rate term of this scheme is given by the logistic kinetic term

(9)f (ρ) = Uρ(1 − ρ) = R+(ρ) − R−(ρ),

which is the most commonly used form of FKPP-type kinet-
ics. For the branching-coalescence scheme (8), the birth rate is
R+(ρ) = Uρ, and the death rate is R−(ρ) = Uρ2. The evolu-
tion equation for this kinetic scheme is

∂ρ(x, t)

∂t
= Uρ(x, t) − U

[
ρ(x, t)

]2

+ σ 2∂xx

{ t∫
0

Θ(t − t ′)ρ(x, t ′)

(10)× exp

[
−

t∫
t ′

Uρ(x, t ′′) dt ′′
]
dt ′

}
.

We choose “natural” initial conditions, i.e., initial condi-
tions that are localized or that decay faster than exponentially,
e.g., Heaviside initial conditions, ρ(x,0) = 1 for x � 0 and
ρ(x,0) = 0 for x > 0. Our choice of initial conditions ensures
that the propagation speed of such a front is minimal. We em-
ploy the Hamilton–Jacobi approach [11] to derive the speed of
propagating fronts exhibited by Eq. (10). This approach relies
on a hyperbolic scaling x → x/ε and t → t/ε, with the rescaled
concentration, ρε(x, t) = ρ(x/ε, t/ε) written in terms of an ac-
tion functional Gε as ρε(x, t) = exp[−Gε(x, t)/ε]. In terms
of Gε , Eq. (10) takes the form,

−∂tG
ε = σ 2

t/ε∫
0

Θ(t ′)
{
e−[Gε(x,t−εt ′)−Gε(x,t)]/ε

× [
∂xG

ε(x, t − εt ′)
]2 + O(ε)

}

× exp

[
−

t/ε∫
t/ε−t ′

Ue−Gε/ε dt ′′
]
dt ′

(11)+ f
(
e−Gε/ε

)
/e−Gε/ε.

The equation for the evolution of G(x, t) is obtained by taking
the limit ε → 0 [15], resulting in

(12)−∂tG = (∂xG)2σ 2

∞∫
Θ(t ′)et ′∂tG dt ′ + U.
0

Identifying a Hamiltonian H = −∂tG and a generalized mo-
mentum p = −∂xG, one can rewrite Eq. (12) as

(13)H = p2σ 2Θ̂(H) + U,

where Θ̂(H) is the Laplace transform of Θ(t), and the Hamil-
tonian is the conjugate variable in Laplace space. After solving
Hamilton’s equations, and realizing that at the front position
G(x, t) = 0, we find that the front speed is given by [15]

(14)v(H) = H

√
σ 2Θ̂(H)

H − U
,

∂p

∂H
= p

H
.

It is interesting to note that performing the hyperbolic scal-
ing analysis of Eq. (4) with logistic kinetics [15] leads to the
same evolution equation for G(x, t), namely Eq. (12). There-
fore, Eq. (4) with no coupling between reaction and dispersal,
and Eq. (10) with the coupling present, exhibit fronts with the
same speed of propagation, leading to the conclusion that the
coupling has no effect on the speed of front propagation. This
conclusion, however, is only true for certain forms of the reac-
tion term f (ρ), namely if the death rate R−(ρ) is nonlinear.

To show this, we consider a generalization of the branching-
coalescence scheme (8), namely the first Schlögl model [25]:

B + X −→ X + X,

X + X −→ B + X,

(15)A + X −→ C,

where A and C are also pool chemicals. An appropriately scaled
version of this scheme leads to a rate term of the form f (ρ) =
bρ − aρ − (b − a)ρ2 (b > a > 0), with the birth rate R+ =
bρ and the death rate R− = aρ + (b − a)ρ2. Clearly, ρ = 0
and ρ = 1 are steady states for this model, as is the case for
the branching-coalescence model. However, the Schlögl model
contains separate linear birth and death terms, which results in
the evolution equation

∂ρ(x, t)

∂t
= (b − a)ρ(x, t) − (b − a)

[
ρ(x, t)

]2

+ σ 2∂xx

{ t∫
0

Θ(t − t ′)ρ(x, t ′)

(16)

× exp

[
−

t∫
t ′

{
(b − a)ρ(x, t ′′) + a

}
dt ′′

]
dt ′

}
.

For standard diffusion, i.e., a delta function form of the kernel
Θ(t), and identifying U = b − a in Eq. (16), we recover the
usual reaction–diffusion equation with a logistic growth term.
Here the linear birth term and the linear death term combine to
provide an effective linear growth term Uρ. However, for non-
standard diffusive transport, the linear growth term and the lin-
ear death term play different roles in the way they influence the
evolution of the concentration ρ(x, t). The coupling between
reactions and dispersal for non-standard diffusive transport is
mediated by the combined death term with aρ as the linear com-
ponent.
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Performing a hyperbolic scaling analysis of Eq. (16), we ob-
tain the governing equation for G(x, t);

(17)−∂tG = (∂xG)2σ 2

∞∫
0

Θ(t ′)et ′∂tG−t ′a dt ′ + U,

or

(18)H = p2σ 2Θ̂(H + a) + U,

where the front speed is now given by

(19)v(H) = H

√
σ 2Θ̂(H + a)

H − U
,

∂p

∂H
= p

H
.

As has been noted previously [26], the Hamilton–Jacobi hy-
perbolic scaling approach is equivalent to a linear marginal
stability analysis [27,28] used to obtain the selected speed of
front propagation, where ∂H/∂p = H/p is the existence con-
dition for a minimum speed. If the coupling between reactions
and dispersal is purely nonlinear, as is the case with Eq. (10),
the Hamilton–Jacobi approach by virtue of being equivalent to
a linear analysis does not incorporate the contribution of this
purely nonlinear coupling. Hence, the linear marginal speed of
front propagation is uninfluenced by a purely nonlinear cou-
pling term. However, if the kinetic term contains separate linear
birth and death terms, the coupling between reactions and dis-
persal includes a linear part and has a nontrivial effect on the
linear marginal speed of front propagation. This is clearly seen
in Eq. (19) through the shifting of the Laplace transform of the
memory kernel by the linear death rate a. A similar shifting
has been found in a two-component reaction–transport model
for the migration–proliferation dichotomy in the spreading of
tumor cells [29].

A propagating front with non-zero speed only exists if v(H)

is a monotonically increasing function of H . Then the mini-
mum speed is either provided by v(H ∗), where H ∗ is the solu-
tion of ∂H/∂p = H/p, which is equivalent to

(20)
d

dH

(
H − U

Θ̂(H + a)

)
= 2(H − U)

HΘ̂(H + a)
,

or the value of v(H → ∞). The Laplace transform of the
expansion e−atΘ(t) = Θ(0)e−at + e−at Θ̇(0)t + e−at Θ̈(0) ×
t2/2 + · · · , where the overdot indicates a temporal derivative,
is given by Θ̂(H + a) = Θ(0)(H + a)−1 + Θ̇(0)(H + a)−2 +
Θ̈(0)(H + a)−3 + · · · . Therefore in the limit H → ∞,
Θ̂(H + a) ∼ Θ(0)(H + a)−1, and v(H → ∞) = √

σ 2Θ(0).
Summarizing, we have

(21)v =
⎧⎨
⎩H ∗

√
σ 2Θ̂(H ∗+a)

H ∗−U
, Θ(0) = 0,

min
[
H ∗

√
σ 2Θ̂(H ∗+a)

H ∗−U
,
√

σ 2Θ(0)
]
, Θ(0) 	= 0.

4. Speed of reaction–subdiffusion fronts

We now examine the effects of the coupling between reac-
tions and dispersal on front propagation for the case of dispersal
by anomalous diffusion, specifically subdiffusion. We consider
in the following CTRWs with short-range jump length PDFs
λ(r), e.g., a Gaussian, and long-tailed waiting time PDFs, e.g.,
a PDF derived from a Mittag–Leffler function for the survival
probability, l(t) = 1 − ∫ t

0 φ(t ′) dt ′ = Eα(−tα) with 0 < α < 1
[30]. The asymptotic behavior of the waiting time PDF is given
by φ(t) ∼ t−(1+α) as t → ∞. To take the long-time limit, we
consider the scaled waiting time PDF [30]:

(22)φ(t) → φ(t/η)

η
, η > 0,

which results in

(23)φ̂(u) → 1 − (uη)α + o
(
ηα

)
.

Consequently, the long-time limit corresponds to setting φ̂(u) =
1 − (uη)α with η → 0.

With this choice of the waiting time PDF, the memory kernel
Θ̂(H), defined by Eq. (6), takes the form, Θ̂(H) = [Hη]1−α/η.
Thus,

(24)Θ̂(H + a) = [
(H + a)η

]1−α
/η.

To evaluate the propagation speed, we solve Eq. (20) with the
memory kernel given by Eq. (24). The physically acceptable
solution of the resulting quadratic equation is

(25)H ∗ = a + U(α − 3) − W

2(α − 2)
,

where

(26)W =
√

8aU(2 − α) + (−a + 3U − Uα)2,

and the front speed is obtained by substituting H ∗ into Eq. (21).
The second solution of the quadratic equation is rejected on
physical grounds, since it leads to negative front speeds. More-
over, since Θ(0) does not exist, the selected front speed is

(27)v = H ∗
√

σ 2Θ̂(H ∗ + a)/(H ∗ − U).

As expected, choosing α = 1 and defining as usual the dif-
fusion coefficient D = σ 2/η, we recover v = 2

√
σ 2U/η =

2
√

DU , the speed of front propagation for the case of classical
diffusion. Eq. (27) is derived from the generalized reaction–
diffusion equation (5) and is valid in the “diffusive” regime,
which is attained if the chemical times 1/U , 1/a and 1/b are
large compared to the transport time scale η, i.e., Uη ∼ aη ∼ bη

are small. This condition is well known from the study of hy-
perbolic reaction–diffusion systems [5,31]. It simply reflects the
fact that “diffusive” behavior results from the accumulation of
many jumps of the random walk on a time scale much larger
than η. Therefore large reaction rates U require corresponding
small values of η. For subdiffusive transport, the condition that
Uη ∼ aη ∼ bη are small ensures that the speed is a monotoni-
cally increasing function of α. This is the correct physical be-
havior because the transport is faster as α tends to 1 and slower
as α tends to 0. A typical plot of this behavior is shown in Fig. 1.
As illustrated by Fig. 1, choosing a = 0 always results in the un-
derestimation of the propagation speed.

It is important to note that the propagation speed for
reaction–subdiffusion fronts may be rewritten in terms of a gen-



378 A. Yadav et al. / Physics Letters A 371 (2007) 374–378
Fig. 1. The gray curve is a plot of v as a function of α when a = 0. The black
curve is a plot of v vs. α for a = 0.9. The values of the other parameters are:
U = 1.5, σ = 1.0, and η = 0.05.

eralized diffusion coefficient Kα ≡ σ 2/ηα [32],

(28)v = H ∗√Kα

√
(H ∗ + a)1−α

(H ∗ − U)
.

This is of significance in experimental contexts where only the
value of the subdiffusion coefficient Kα , and not the underlying
CTRW time scale η, is measurable [33].

5. Conclusions

The memory inherent in non-standard diffusive transport in-
duces a coupling between reaction and dispersal processes. We
have suggested a generalization of Fick’s first law for reaction–
transport systems with non-standard diffusion that accounts for
this coupling. The effect of memory on front propagation is in-
vestigated by carrying out a hyperbolic scaling for the general-
ized reaction–diffusion equation with FKPP-type kinetics. Be-
sides deriving a general, analytical expression for the minimal
speed, we focus in particular on the case where the dispersal
is governed by anomalous diffusion, namely subdiffusion. For
FKPP-type kinetics, the front speed is determined by the linear
marginal stability criterion, and the coupling between transport
and reactions only plays a role for kinetic schemes with linear
death rates. Neglecting the coupling in the latter case results in
an underestimation of the front propagation speed for subdif-
fusive transport. We conclude by mentioning an open problem
that deserves further attention. The effect of coupling between
reactions and dispersal needs to be explored for propagating
fronts where the linear marginal stability analysis is not applica-
ble. We expect the coupling to effect the speed of such fronts
even if the death rate is nonlinear.
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