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1. Introduction

An essential feature of the currently dominant option pricing theory proposed by

Black and Scholes is the existence of a dynamic trading strategy in the underlying

asset that exactly replicates the derivative contract payoff [1–4]. However, in gene-

ral, the market is not complete, the contingent claim is not a redundant asset and

therefore its price cannot be determined by the no-arbitrage argument alone. The

reasons that give rise to an incompleteness of market might be very different, for

example, mixed jump-diffusion price process for an asset [1, 5], stochastic volatility

[6], etc.

In recent years there has been a substantial theoretical effort to give the pricing

formula for a derivative security for which an exact replicating portfolio in the

underlying asset ceases to exist. The typical example involving incompleteness is a

∗E-mail: sergei.fedotov@umist.ac.uk
†E-mail: mihailov@uni-wuppertal.de

179



December 28, 2000 17:0 WSPC/104-IJTAF 00091

180 S. Fedotov and S. Mikhailov

model in which the stock volatility is a stochastic process. Several approaches to

the valuation of the contingent claim under random volatility have been suggested

in the literature [6–11]. Typically the pricing formulas involve the unobservable

parameter, so-called market price of volatility risk. This fundamental difficulty has

led researches to accept the idea of uncertain volatility when all prices for contingent

claim are possible within some specified range [12–15].

An alternative method for the derivative pricing in the incomplete markets has

been proposed in a series of papers by mathematicians Müller, Fölmer, Sondermann,

Schweizer and Schäl [16–20] and by physicists Bouchaud and Sornette [21] (see also

[22–25]). The basic idea is that the fair price of a contingent claim can be found

through a risk minimization procedure. Different criteria for measuring the risk

inherent in writing an option have been suggested, including the global and local

variance of the cost process [16–18], and the variance of the global operator wealth

[19, 21–23].

Although significant progress has already been made in the option pricing theory

involving the risk minimization procedure, there still exist many open problems

including how to derive an effective algorithm giving the option price and trading

strategy involving stochastic volatility with uncertainty, adaptive decision process,

forecast, transaction costs, etc. The basic purpose of this paper is to present such

an algorithm that can be used in practice. In particular we intend to show: (i)

how the problem of option pricing based on the risk minimization analysis can be

reformulated in terms of Maier’s problem and (ii) how the stochastic optimization

procedure [26] based on the Bellman equation can be implemented to give a reli-

able numerical technique for determining both the derivative price and the optimal

trading strategy. It should be noted that the application of dynamic programming

approach to option pricing can be found in [18, 28, 29, 35].

2. Statement of the Problem

We consider a model of (S,B) market handling at discrete times n = 0, 1, . . . , N .

The market consists of two assets: a stock Sn, risky asset, whose price dynamics is

governed by the stochastic difference equation

Sn+1 = (1 + ξn)Sn , S0 > 0 , (1)

where ξn is a sequence of independent random variables, and a bond,Bn, the riskless

asset, whose price dynamics is given by recurrent relation

Bn+1 = (1 + r)Bn , B0 > 0 (2)

with interest rate r > 0.

We assume that at time zero an investor sells an European-style option with

the strike price X for C0 and invests this money in a portfolio containing ∆0 shares

and θ0 bonds. The initial value V0 of this portfolio is given by

V0 = C0 = ∆0S0 + θ0B0 . (3)
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The investor is interested in constructing the self-financing strategy to hedge the

option exposure. Since for incomplete markets the exact replication of the option

payoffs by a portfolio of traded securities is not possible, the investor cannot com-

pletely neutralize the risk inherent in writing the option. Hence the problem is to

find such a trading strategy that reduces total risk to some intrinsic value [16–25].

To proceed further we need an equation governing the dynamics of the self-

financing hedged portfolio. First we consider the case of frictionless trading. The

case involving the transaction costs will be considered in Sec. 4. The value of the

portfolio Vn at time n may be written as

Vn = ∆nSn + θnBn , (4)

where ∆n is the number of shares of the underlying asset and n the number of

bonds during the time interval [n, n+ 1). By using (4) we can find the variation of

portfolio at two successive moments of time in the form,

Vn+1 − Vn = ∆n(Sn+1 − Sn) + θn(Bn+1 −Bn) , (5)

where we use self-financed trading strategy condition

(∆n+1 −∆n)Sn+1 + (θn+1 − θn)Bn+1 = 0. (6)

The intuitive interpretation of the last equation is simple: movement of the capital

in a bank account (θn+1 − θn)Bn+1 can occur only due to identical alteration of

capital in stock (∆n+1 −∆n)Sn+1. Substitution of Sn+1 and Bn+1 in (5) from (1)

and (2) gives

Vn+1 = (1 + r)Vn + ∆n(ξn − r)Sn . (7)

Following [19] we propose that the investor’s purpose is to maintain a self-

financed portfolio (4) in such a way that at the expiration date N the terminal

value of this portfolio

VN = (1 + r)VN−1 + ∆N−1(ξN−1 − r)SN−1 (8)

should be as close as possible to the option payoff

PX(SN ) ≡ max(SN −X, 0) . (9)

One way to achieve this purpose is to require that the expectation value of the

difference between the option value and the value of hedged portfolio at expiration

is equal to zero

E{PX(SN )− VN} = 0 (10)

while the variance of this difference

R = E{(PX(SN )− VN )2} (11)

as a measure of the risk should be minimized by the proper choice of the trading

strategy {∆0, . . . ,∆N−1}. The operator E{·} denotes expectation with respect to

the distributions of ξ0, ξ1, . . . , ξN−1.
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It follows from (7) that the portfolio at the terminal date N can be written in

the form

VN = (1 + r)NC0 +
N−1∑
n=0

(1 + r)N−n−1∆n(ξ − r)Sn . (12)

The initial investment C0 required to fund the dynamical hedged portfolio is nothing

else but the price of the option which should also minimize the risk R in (11),

that is

∂R/∂C0 = 0 . (13)

By using (11) and (12) we can find that

∂R/∂C0 = 2(1 + r)NE{PX(SN )− VN} . (14)

It follows from (14) that the requirements (10) and (13) are equivalent and therefore

we only consider here the risk minimization problem

min
∆1···∆N−1,C0

E{(PX(SN )− VN )2} . (15)

3. Stochastic Optimization

According to the ideas of dynamic programming [26, 27], the proper choice of the

sequence controls ∆n should involve the information aggregation, i.e. the optimal

choice of trading strategy at each of N time periods should be based on available

information about the current values of asset price and hedged portfolio. From a

mathematical point of view it means that one has to find a sequence of functions

(so-called optimal control policy)

∆∗n = ∆∗n(Sn, Vn) (16)

that minimizes the total risk. In what follows we will use (4) to find an optimal

value of θn, that is

θ∗n(Sn, Vn) = (Vn −∆∗n(Sn, Vn)Sn)B−1
n . (17)

Let us consider the problem of minimizing the risk-function

R = E{(PX(SN )− VN )2} .

Following the dynamic programming approach, we first consider the last time period

and proceed backwards in time. If at the beginning of the last trading period N −1

the stock price is SN−1 and the value of portfolio is VN−1, then no matter what

happened in the past periods, the investor should choose such a trading strategy

∆N−1, θN−1 that minimizes the risk for the last time period.

Let us introduce the minimal risk for the last period, which is a function of the

stock price SN−1 and the value of the portfolio VN−1

RN−1(SN−1, VN−1) = min
∆N−1

EξN−1{(PX(SN )− VN )2} . (18)
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It follows from (1) and (8) that RN−1 can be rewritten as

RN−1(SN−1, VN−1) = min
∆N−1

EξN−1{(PX(SN−1 + ξN−1SN−1)

− (1 + r)VN−1 −∆N−1(ξN−1 − r)SN−1)
2} . (19)

By calculating this function we obtain the optimal value of ∆N−1 and thereby the

optimal trading policy ∆∗N−1(SN−1, VN−1), θ
∗
N−1(SN−1, VN−1) for the last period.

At the beginning of time periodN−2 when the stock price is SN−2 and the value

of the portfolio is VN−2, the investor should readjust the position in a such way that

∆N−2 minimizes the risk EξN−2{RN−1(SN−1, VN−1)}. The dynamic programming

algorithm thus takes the form of the recurrence equation

RN−2(SN−2, VN−2) = min
∆N−2

EξN−2{RN−1(SN−2 + ξN−2SN−2, (1 + r)VN−2

+ ∆N−2(ξN−2 − r)SN−2)} . (20)

By calculating RN−2(SN−2, VN−2) we obtain the optimal function ∆∗N−2(SN−2,

VN−2).

Repeating these arguments we can get the Bellman equation for the period n

Rn(Sn, Vn) = min
∆n

Eξn{Rn+1(Sn + ξnSn, (1 + r)Vn + ∆n(ξn − r)Sn)} . (21)

At the last stage the option price C0, a number of stocks in optimal portfolio ∆0

and the residual risk R0 can be obtained from minimum condition

R0(S0) = min
∆0,C0

Eξ0{R1(S0 + ξ0S0, (1 + r)V0 + ∆0(ξ0(ξ0 − r)S0)} . (22)

The attractive feature of the dynamic programming algorithm is the relative

simplicity with which the optimal trading policy ∆∗n(Sn, Vn), θ∗n(Sn, Vn) can be

computed. The basic advantage of the general algorithm (21) over the functional

derivative technique [21] is that the original problem (15) is reduced to a sequence

of minimization problems, each of which is much simpler than the original one.

It might seem that the better choice of control in (21) would be a pair (∆n, θn)

giving the control policy ∆∗n(Sn), θ
∗
n(Sn) as functions of the asset price Sn only.

However the self-financing condition gives rise to the restriction (5) that makes the

control problem in terms of the pair (∆n, θn) rather difficult.

4. Transaction Costs

Let us now consider the problem of finding the optimal trading strategy and the

option price in the presence of transaction costs. We know that the effects of trans-

action costs on the contingent claim pricing might be very complex depending

on the size of bid-offer spreads, the structure of payoff functions, etc. [4, 30–35].

Here we suggest a new algorithm for a valuation of option price based on the risk

minimization procedure.
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We assume a bid-offer spread in which the investor buys the stock for the offer

price S(1+k) and sells it for the bid price S(1−k) admitting a loss of 2kS in cash.

Again we formulate the problem in terms of an investor who sells the European

option with payoff PX(SN ) and who employs the trading strategy to hedge the

derivative. At time zero a hedged portfolio is constructed by purchasing ∆0 shares

at the offer price S0(1 + k) and θ0 bonds so that the amount of money spent for

this portfolio including the effect of transaction cost can be written as

V0 = ∆0S0 + θ0B0 + k∆0S0 .

It is assumed here that the investor has no initial position in the underlying asset.

The investor’s purpose is to maintain a dynamic portfolio strategy in such way

that the risk of his liability (11) is minimal. To proceed further we need an equa-

tion governing the dynamics of the self-financing hedged portfolio. We consider the

trading with transactions costs. The transaction costs of trading ∆n+1−∆n shares

is k|∆n+1 −∆n|Sn+1 therefore the value of portfolio Vn at time n may be written

as

Vn = ∆nSn + θnBn + k|∆n −∆n−1|Sn . (23)

In contrast to frictionless trading (3)–(8) each trading gives a loss of k|∆n+1 −
∆n|Sn+1 in cash. Therefore in this case the self-financing requirement (6) has the

following form

(∆n+1 −∆n)Sn+1 + (θn+1 − θn)Bn+1 = −k|∆n+1 −∆n|Sn+1 . (24)

It follows from (1), (2), (23) and (24) that the difference equation for portfolio

dynamics can be written as

Vn+1 = (1 + r)Vn + ∆n(ξn − r)Sn − (1 + r)k|∆n −∆n−1|Sn . (25)

Above we have derived a Bellman equation (21) when the asset price and the

value of portfolio have been chosen as the dynamical variables, while the number of

shares in the portfolio has played the role of the control parameter. In the presence

of transaction costs it is necessary to introduce a new state variable Ωn such that

Ωn+1 = ∆n , (26)

so that the dynamical variable Vn obeys the stochastic difference equation

Vn+1 = (1 + r)Vn + ∆n(ξn − r)Sn − (1 + r)k|∆n − Ωn|Sn ,
V1 = (1 + r)V0 + ∆0(ξ0 − r)S0 − (1 + r)k∆0S0 .

(27)

Now we are in a position to formulate the basic problem. If we introduce the minimal

risk for the last period which is a function of SN−1, VN−1 and ΩN−1

RN−1(SN−1, VN−1,ΩN−1) = min
∆N−1

EξN−1{(PX(SN )− VN )2} ,
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it follows from (1) and (27) that

RN−1(SN−1, VN−1,ΩN−1) = min
∆N−1

EξN−1{(PX(SN−1 + ξN−1SN−1)

− (1 + r)VN−1 −∆N−1(ξN−1 − r)SN−1

+ (1 + r)k|∆N−1 − ΩN−1|SN−1)
2} . (28)

By a minimization procedure we obtain the optimal value of ∆N−1 and thereby

the optimal trading policy ∆∗N−1(SN−1, VN−1,ΩN−1) for the last period. It is clear

from (26) that the optimal control policy ∆∗N−1 is a function of the present state

(SN−1, VN−1) as well as past control ∆N−2.

The principle of optimality yields the general recurrence relation

Rn(Sn, Vn,Ωn) = min
∆n

Eξn{Rn+1(Sn + ξnSn, (1 + r)Vn + ∆n(ξn − r)Sn

− (1 + r)k|∆n − Ωn|Sn,∆n)} . (29)

Let us denote by R0(S0, V0, ) the minimal risk that can be achieved by starting

from the arbitrary initial state S0, V0

R0(S0, V0) = min
∆0···∆N−1

E{(PX(Sn)− VN )2} ,

then

R0(S0, V0) = min
∆0

Eξ0{R1(S0 + ξ0S0, (1 + r)V0 + ∆0(ξ0 − r)S0

− (1 + r)k∆0S0,∆0} . (30)

Clearly, the initial investment V0 determining a fair option price can be found from

∂R0(S0, V0)

∂V0
= 0 . (31)

5. Stochastic Volatility with Uncertainty: Adaptive Control

In this section we illustrate the usefulness of the multistage character of a stochastic

optimization approach by considering the case in which the volatility is a stochastic

variable and there is some uncertainty about it. We assume that the standard

deviation (volatility)

σn =

∫
(ξ − 〈ξ〉)2ρn(ξ)dξ (32)

is a random sequence (〈ξ〉 is a mean value).

For simplicity let us consider the case when the random variables σn are inde-

pendent from state to state and all have the same statistical properties, namely, σ

may have only two values σ1 and σ2 such that

σ =

{
σ1 with the probability p ,

σ2 with the proabability 1− p ,
σ1 > σ2 (33)
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where the probability p is not known in advance. The idea is to use an adaptive

decision process [26] by which the uncertainty regarding p can be reduced by

the information gathered from the observation/calculation of current volatility.

The basic idea is that the more decisions an investor makes, the more knowledge

he gains about the stochastic dynamics of share prices, namely, volatility, and the

better his subsequent decisions regarding trading strategy can become.

With enough information from the past history, the investor is supposed to

have a priori probability density function q = q(p) for p. We assume that from

observation of the current state of volatility the investor can revise his subjective

probability density function (pdf) q(p). This is a basic idea of an adaptive or learning

process. A posteriori probability density function Q(p) can be determined as follows

Q(p) =

{
Q1[q(p)] if σ1 occurs ,

Q2[q(p)] if σ2 occurs .
(34)

In particular, one can adopt the following rule [26]

Q1 =
pq(p)

〈p〉 , Q2 =
(1− p)q(p)

1− 〈p〉 , 〈p〉 =

∫ 1

0

pq(p)dp . (35)

Let us introduce the minimal risk RN that can be achieved by starting from

the arbitrary initial state S0, V0 with a priori probability density function q(p) (no

transaction costs)

RN (S0, V0; q(p)) = min
∆0···∆N−1

E{(PX(SN )− VN )2} , (36)

then for one-stage process (N = 1)

R1(S0, V0; q(p))

= 〈p〉min
∆0

∫
{PX(S0 + ξS0)− (1 + r)V0 −∆0(ξ − r)}2ρ(ξ, σ1)dξ

+(1− 〈p〉)min
∆0

{∫
PX(S0 + ξS0)− (1 + r)V0 + ∆0(ξ − r)S0

}2

ρ(ξ, σ2)dξ , (37)

where 〈p〉 is determined in (35). The recurrence relation for the dynamic program-

ming solution for N ≥ 2 is

RN (S0, V0; q(p)) = 〈p〉min
∆0

∫
RN−1(S0+ξS0, (1+r)V0−∆0(ξ−r);Q1(P ))ρ(ξ, σ1)dξ

+ (1− 〈p〉)min
∆0

∫
RN−1(S0 + ξS0, (1 + r)V0

+ ∆0(ξ − r)S0;Q2(p))ρ(ξ, σ2)dξ . (38)

This is the functional equation for the solution of the random volatility adaptive

problem. It can be simplified if we assume a particular adaptive procedure to revise

a priori probability density function q(p). In particular, for the transformation (35),
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after m+ n stages in which m times σ1 and n times σ2 are observed, a priori pdf

q(p) is transformed into

pm(1− p)nq(p)∫ 1

0 p
m(1− p)nq(p)dp

.

As a result of this transformation, instead of pdf q(p) one can use the numbers

m and n. It should be noted that the resulting functional equations are of higher

dimensionality that for an equivalent stochastic process without adaptation. We

believe that the stochastic optimization approach involving adaptive processes con-

sidered here is a promising way to deal with situations when there is an uncertainty

about future security price and its volatility [12–15].

6. Forecasting Process

In this section we consider the case in which the investor can make an accurate

prediction at the beginning of the period [n-1,n) that the value of the random

parameter ξn (see (1)) will be distributed in accordance with a particular probability

density function among the set of given functions [27]. For simplicity we assume that

the forecast, can take only the values 1 and 2. If the forecast is 1, then the random

parameter ξn is distributed in accordance with ρ
(1)
n (ξ), if the forecast is 2, then the

pdf for ξn is ρ
(2)
n (ξ). Of course we need to specify a priori probability for the forecast

itself. We assume that at the time n the forecast 1 occurs with probability pn, and

the forecast 2 occurs with the probability the probability 1 − pn. The forecasting

process can be described by the simple recurrence relation

Zn+1 = Yn , (39)

where Yn can take only two values 1 and 2 with corresponding probabilities pn+1

and 1− pn+1.

Let us denote by Rn(Sn, Vn, Zn) the minimal risk for an (N−n) stage investor’s

problem starting with the portfolio Vn the security price Sn and the forecast Zn at

time n and ending at time N .

Rn(Sn, Vn, Zn) = min
∆n,...,∆N−1

E{(PX(SN )− VN )2} , (40)

where E is the expectation operator over all ξn and Yn.

In this situation the stochastic optimization algorithm takes the following form

Rn(Sn, Vn, Zn) = pn+1 min
∆n

Eξn{Rn+1(Sn + ξnSn, (1 + r)Vn

+ ∆n(ξn − r)Sn, 1)}+ (1− pn+1)min
∆n

Eξn{Rn+1(Sn

+ ξnSn, (1 + r)Vn + ∆n(ξn − r)Sn, 2)} , (41)

where the average procedure Eξn is taken in accordance with the probability density

function p(Zn)(ξ).
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Clearly this dynamic programming functional equation is analytically insolvable,

but it is well suited to numerical solution. In order to solve (41) it is necessary to

specify RN which is

RN (SN , VN , ZN ) = (PX(SN )− VN )2 . (42)

It follows from (41) that the optimal trading strategy at time is a function of

the current value of share price Sn, portfolio Vn, and the current forecast Zn, that

is, ∆∗n = ∆∗n(Sn, Vn, Zn).

7. Analytical Numerical Simulation.

The stochastic optimization problems can be solved analytically only in the simplest

cases, for example, an one step model or a linear-quadratic problem. To this end we

have developed a software package for the option pricing in an incomplete market

based on the stochastic optimization procedure describe above. It consists of two

parts: analytical and numerical. The analytical part has been designed by means of

the computer-algebra package Maple, the numerical part has been written in C. The

main feature of this approach is a flexible combination of analytical and numerical

procedures. Namely, the solution of Bellman Eq. (21) has been constructed analy-

tically by Maple in the form of recurrence equations.

7.1. Single step option pricing model

As an introduction to multistep systems, let us first consider a simple one step

model. The dynamic of the stock price is governed by S1 = (1 + ξ)S, where ξ is a

random variable. The variation in the value of portfolio for one step can be written

as V1 = (r+1)V +∆ηS, η = ξ−r. The option payoff is P = max(S1−X, 0), where

X is the exercise price. The expectation value

E{(P − (r + 1)V −∆ηS)2} (43)

should be minimized as a measure of risk. In (43) the expectation is taken with

respect to the distribution of the random variable ξ. After averaging, the following

expression for the residual risk can be obtained

R = min
V,∆
{(r + 1)2V 2 + 2(r + 1)E(η)SV∆ +E(η2)S2∆2

−2(r + 1)E(P )V − 2E(Pη)S∆ +E(P 2)} . (44)

After minimization one can get the option price

C = V =
E(P )E(η2)−E(η)E(Pη)

(r + 1)V ar(η)
, (45)

the optimal trading strategy

∆ =
E(Pη) −E(P )E(η)

V ar(η)S
, (46)
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and residual risk

R =
E(P 2)V ar(η) −E2(Pη) + 2E(Pη)E(P )E(η) −E2(P )E(η2)

V ar(η)
. (47)

These expressions give the general solution of the single step problem for an

arbitrary ξ. As an example, let us consider the binominal tree model. The random

variable ξ has the following properties:

ξ =

{
u with probability p ,

d with probability 1− p .
(48)

Expectation in the formulas (45)-(47) for the binomial model can be written as

E(η) = (d− r)(1 − p) + (u− r)p , E(P ) = C1(1− p) + C2p ,

E(η2) = (d− r)2(1− p) + (u− r)2p , E(P 2) = C2
1 (1− p) + C2

2p , (49)

E(ηP ) = C1(d− r)(1− p) + C2(u− r)p .

By substituting (49) in (45)–(47) we obtain the option price

C =
(r − d)C2 + (u− r)C1

(1 + r)(u− d) (50)

and optimal trading strategy

∆ =
C2 − C1

S(u− d) . (51)

The option price and trading strategy are independent of probability p, while the

residual risk for the binomial tree model is equal to zero. It is clear that the ex-

pressions (50) and (51) are the same as the well-known Cox, Ross and Rubinstein

formulae [2].

7.2. Multistep option pricing model

The multistep model can be explored using the analytical-numerical software

package. The stochastic optimization problem may be solved exactly by using

computer-algebra package Maple for the arbitrary random sequence ξn (see (1)).

Consider the share price S(t) dynamics in the form

dS/S = µ(S, t)dt+ σ(S, t)dW . (52)

To simulate S(t) for which the drift and volatility are the functions of S(t) and

time t we use a trinomial tree (TT) pricing model. First, we need to establish

the relationship between the random process governed by (52) and a discrete-time

version of the price dynamic (1). We denote by N , the number of trading dates,

and T , the time to maturity. Let us suppose that trading occurs only at equidistant

moments of time {0, t1, . . . , tN−1, T} with time step ∆t = tn+1 − tn = T/N . The



December 28, 2000 17:0 WSPC/104-IJTAF 00091

190 S. Fedotov and S. Mikhailov

dynamics of the stock price is then governed by Sn+1 = (1 + ξn)Sn, where ξn has

the following properties:

ξn =


u with probability p1

m with probability p2

d with probability 1− p1 − p2

(53)

such that −1 < d < m < u.

The discrete-time version of (52) can be written in the form

(Sn+1 − Sn)/Sn = µ(Sn, tn)∆t+ σ(Sn, tn)ε
√

∆t , (54)

where ε is the random variable with standardized normal distribution.

It is natural to assume that the relative expected return and its variance are

the same for both processes (53), and (54), that is

µ∆t = E{ξn} , (55)

σ2∆t = E{ξ2
n} − (E{ξn})2 . (56)

The Eqs. (55) and (56) allow us to find the expressions for µ and σ in terms of

u,m, d, p1, p2 and ∆t:

µ∆t = p1u+ p2m+ (1− p1 − p2)d , (57)

σ2∆t = p1u
2 + p2d

2 + (1− p1 − p2)d
2 − (µ∆t)2 . (58)

Here we consider the so called recombinant trinomial tree [36]. This tree has 2n+1

nodes at time tn. The necessary and sufficient condition for the tree to recombine

is

(1 + u)(1 + d) = (1 +m)2 . (59)

Summarising, we have two probabilistic Eqs. (57) and (58) and one geometric

Eq. (59) for the six parameters u,m, d, p1, p2 and ∆t. It is traditional to allow

the time step to remain free and we use two residual degrees of freedom to model

the random process (52) for which the local relative expected return and variance

are dependent on the asset price and time.

First of all we solve the systems of Eqs. (57) and (58) with respect to p1 and

p2. The solutions are

p1 = (md+ σ2∆t+ (µ∆t)2 − (m+ d)µ∆t)/(u−m)/(u− d) , (60)

p2 = (ud+ σ2∆t+ (µ∆t)2 − (d+ u)µ∆t)/(u− d)/(u−m) . (61)

We define geometrical tree parameters u,m, d from the following conditions:

u = σ̃
√

∆t+ µ̃∆t, , (62)

d = −σ̃
√

∆t+ µ̃∆t , (63)

m =
√

(1 + u)(1 + d)− 1 , (64)
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where σ̃ and µ̃ are new parameters. These parameters can be defined from the

stability analysis so that the probabilities p1 and p2 are non-negative and less then

one. By choosing the parameters σ̃ and µ̃, the time step ∆t, extreme values of drift

parameter µmax, µmin and volatility σmax, σmin we determine the geometrical tree

parameters u,m, and d from (62)–(64). After that we can calculate the probabilities

p1 and p2 in each node of the tree according to (60) and (61). It should be noted

that p1 and p2 for (54) are the functions of the stock price and time

pi,n1 = p1(S
i
n, tn) , pi,n2 = p2(S

i
n, tn) , (65)

where n is the time variable and i is the height of the tree. The details of this

procedure can be found in [36].

7.3. Results of numerical simulations

We assume here that the opening price of the underlying asset is $100, the strike is

$90, the maturity of the option is 90 days, the interest rate is 0.05, the volatility for

the discrete-time Black–Scholes (BS) model is 0.3, the tree drift parameter µ̃ is 0.05

and the tree volatility parameter σ̃ is 0.55. In the discretetime world the BS model

corresponds to the binomial tree. We can get a binomial tree in the framework

of trinomial tree model by assuming p2 = 0. It is well-known that for the BS

model market is complete. This means that there exists a dynamic trading strategy

in the underlying asset that exactly replicates the derivative contract payoff. The

BS option price does not depend upon the expected return µ and probability p1,

while the residual risk is equal to zero. Here our purpose is to compare option

prices calculated according to discrete-time BS pricing model and the trinomial tree

(TT) pricing model based on the stochastic optimization techniques. We assume

that the volatility is a function of the share price σ = σ(S). The volatility profile

implemented is shown in Fig. 1.

This volatility profile reflects the “rational behavior” of market-makers. If the

market goes up then the volatility decreases, if the stock declines then the volatility

grows. In each variant we fix all the basic parameters of the model except one, and

represent the difference between the options prices for BS and TT models as the
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Fig. 1. Volatility as a function of stock price.
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function of this (not fixed) variable. For the TT model we also evaluate the risk,√
R, as a function of the same variable.

Figure 2 shows the typical option price and the residual risk convergence pattern

for the TT pricing model as the number of tree nodes increases. The horizontal line

corresponds to the numerical solution to the TT model with 2000 steps.

In Figs. 3 and 4 we show the difference between TT and discrete-time BS option

price and residual risk as functions of the opening stock price S0 and the strike price

X respectively.
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Fig. 2. Typical convergence pattern for TT pricing model.
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Fig. 3. The difference between TT and discrete-time BS option prices and residual risk as func-
tions of the opening stock price.
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Fig. 5. TT-BS option price and risk as a function of time to expiry.

From Fig. 4 it can been seen that the TT pricing model with a volatility profile

traced in Fig. 1 gives higher option prices with respect to BS prices in out-the-

money and at-the-money zones. Within the in-the-money region the TT prices are

less than BS prices. However, the relative difference is rather small in all regions.

Note that the value of residual risk becomes very small for the far out-of-the-money

region. The same pattern of the residual risk was observed in [23].

In Fig. 5 we show the TT-BS price difference and residual risk for different time

intervals to expiration.

The basic advantage of using the trinomial model over the classical binomial

model is that it allows us to simulate the stock price dynamics using the drifts and

volatilities that depend on the value of the underlying security. But TT models

are much more difficult to work with. In the case of the trinomial tree there is

no dynamic trading strategy in the underlying security that exactly replicates the

derivative contract payoff and as a result there exists a risk that should be minimized

by optimal hedging. However, the numerical simulations show that the trinomial

model gives an option price that is only slightly different from that of the binomial

model. This may explain why the binomial models (which are simple and robust)

are so popular among practitioners.

8. Summary

To conclude, an effective algorithm based on the discrete stochastic optimization

approach has been presented that gives the option price and optimal trading stra-

tegy for the incomplete market in which the risk incurred by selling an option

cannot be completely hedged by dynamic trading. We illustrate the usefulness of the

multistage optimization procedure by considering the effects of transaction costs,

stochastic volatility with uncertainty, adaptive and forecasting processes. It should

be noted that the usual way to cope with our ignorance of future security prices is

to introduce the random processes with known statistical characteristics. However

it is very easy to imagine a situation when so little is known about future prices in

advance that it is simply impossible to suggest the exact statistics. We believe that
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the stochastic optimization approach involving adaptive and forecasting processes

considered here is a promising way to deal with such situations.

A program package for the option pricing in an incomplete market has been

developed. The package consists of two parts: analytical (Maple) and numerical

(C). The stochastic optimization problem has been solved analytically by using

Maple in the form of recurrent equations. The numerical part consists of rather

simple calculations of recurrent equations.

There are several future directions to explore by using the method presented

here. First, one may study the case with imperfect state information regarding

the asset prices by using a stochastic game approach. Also, one can study various

adaptive and forecast control problems. It should be noted that the preliminary

work done here might be of big practical importance and it therefore merits further

investigation including the computational aspect of our formalism.
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