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Non-Markovian random processes and traveling fronts in a reaction-transport system
with memory and long-range interactions

Sergei Fedotov and Yuki Okuda
Department of Mathematics, UMIST—University of Manchester Institute of Science and Technology,

Manchester M60 1QD, United Kingdom
~Received 20 April 2002; published 28 August 2002!

The problem of finding the propagation rate for traveling waves in reaction-transport systems with memory
and long-range interactions has been considered. Our approach makes use of the generalized master equation
with logistic growth, hyperbolic scaling, and Hamilton-Jacobi theory. We consider the case when the waiting-
time distribution for the underlying microscopic random walk is modeled by the family of gamma distribu-
tions, which in turn leads to non-Markovian random processes and corresponding memory effects on mesos-
copic scales. We derive formulas that enable us to determine the front propagation rate and understand how the
memory and long-range interactions influence the propagation rate for traveling fronts. Several examples
involving the Gaussian and discrete distributions for jump densities are presented.
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I. INTRODUCTION

The problem of calculating the propagation rate for tra
eling waves in reaction-transport systems with an unsta
state has attracted widespread interest from the scien
community in recent years. This interest is due to the w
variety of problems, examples include population grow
and dispersion, the spread of epidemics, combustion wa
and magnetic front propagation, etc.@1–8#. The simplest
model used is the Fisher-Kolmogorov-Petrovskii-Piskun
~FKPP! equation]n/]t5D]2n/]x21Un(12n), whereD is
the diffusion coefficient andU is the reaction rate paramete
@1–3#. However, there exist certain deficiencies in the abo
model, in particular asU→` the propagation rate for trav
eling wavesu52(UD)1/2 becomes infinite, and this clearl
contradicts the physical fact that the rateu should be finite.
This shortcoming of the FKPP equation is due to the dif
sion approximation for the transport process. Several stu
have focused on modifications to the classical diffus
model that include more information about the particles
namics on a microscopic level@4–7#.

Very recently there have been some important deve
ments in the theory of wave propagation for the integ
differential equations and integro-difference equations
volving a space integral@4,6,7,9#. These equations provid
more realistic models for various wave phenomena in ph
ics, chemistry, biology, etc. Various examples of the sp
integral terms describing long-range interactions and th
physical and biological meanings can be found in an ex
lent book ~p. 481 of Ref.@1#!. The macroscopic transpo
process comes from the overall effect of many particles~tur-
bulent eddies, bacteria, animals, etc.! performing very com-
plex random movements on a microscopic level. The cla
cal diffusion term in the FKPP equation is just a
approximation for this transport in the long-time larg
distance parabolic scaling limit. In other words, microsco
random walks are modeled by Brownian motion that has
jumps and inertia or characteristic relaxation time. It h
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been shown@4–9# that in general the diffusion approxima
tion for a transport process is not correct for problems
volving traveling waves for which the appropriate scali
must be hyperbolic. The basic idea is that production te
described by the logistic growthUn(12n) is very sensitive
to the tails of a concentration profile, while these tails a
typically ‘‘nonuniversal,’’ ‘‘nondiffusional’’ and dependen
on the microscopic details of the transport processes. Wh
on average, transport processes may behave diffusively,
stable media are more affected by the weak tails of the tra
port process. As a result, the macroscopic dynamics of fro
propagating into an unstable state of the reaction trans
system ought to be dependant upon the particular rand
walk model underlying the transport process. The deta
discussion of this idea can be found in Refs.@6,7#. From a
practical point of view, this is a very important conclusio
showing simple models based on reaction-diffusion id
used in physics, mathematical biology, etc., do not wo
properly in general. Hence it is desirable to extend th
results by considering more realistic models for the transp
processes based on integro-differential and integro- dif
ence equations.

It would be interesting now to consider the integrodiffe
ential equations with the time integral as well. An advanta
being that this will allow us to take into account the memo
effects associated with non-Markovian random processe
is clear that due to non-Markovian character of the mic
scopic movements of animals, bacteria, etc., their rand
walks cannot be approximated by Brownian motion in ge
eral. Memory effect is a significant feature in many areas
physics, chemistry, and biology, but may often be ignor
through the difficulties of how to deal with it@1,8,10#. In
fact, only Markov random processes have been considere
Refs.@6,7#. The main purpose of this paper is to find out ho
non-Markovian random processes with long-range inter
tions and associated memory effects influence the prop
tion of traveling waves into an unstable state of a reacti
transport system.
©2002 The American Physical Society13-1
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II. MESOSCOPIC DESCRIPTION: GENERALIZED
MASTER EQUATION WITH LOGISTIC GROWTH

To take into account memory effects and long-range
teractions, we consider the following generalized mas
equation with logistic growth:

]n

]t
5E

0

tE
2`

`

@K~x,z,t2s!n~s,z!2K~z,x,t2s!n~s,x!#dzds

1Un~12n! ~1!

with the frontlike initial condition

n~0,x!5u~x!, ~2!

whereu(x) is the Heaviside function:u(x)51 for x<0 and
u(x)50 for x.0.

Equation~1! can be considered as a natural generaliza
of the FKPP equation in the case when the memory
long-range interactions are taken into account. In what
lows we assume thatn(t,x) is the mesoscopic concentratio
of particles at positionx at time t. The problem here is to
give an explicit expression for the kernelK(x,z,t2s). In this
paper we restrict ourselves to the case of the factorized
nel only,

K~x,z,t2s!5a~ t2s!w~x2z!. ~3!

In particular, when K(x,z,t2s)52Dd(t2s)@1/2d(z21)
11/2d(z11)# one can get a discrete version of the FKP
equation, namely,

]n

]t
5D@n~ t,x11!22n~ t,x!1n~ t,x21!#1Un~12n!.

~4!

The aims of this paper are~i! to find the propagation rate
for the traveling waves described by the integro-differen
equation~1! with initial condition ~2! and ~ii ! to find the
connection between themesoscopicdescription of the par-
ticles concentration in terms of the integral operator in E
~1! and themicroscopicrandom walk of one particle. In par
ticular, we are going to consider the case when the waiti
time distribution for the underlying random walk is model
by the family of gamma distributions, which in turn leads
non-Markovian random processes and correspond
memory effects on a mesoscopic scale. To the auth
knowledge, this paper is the first attempt to take into acco
both memory effects and long-range interactions in the pr
lem of wave propagation into an unstable state of a react
transport system.

III. MICROSCOPIC DESCRIPTION

A. Underlying microscopic random walk model

In this section we discuss the underlyingmicroscopicran-
dom walk models corresponding to the transport operato
Eq. ~1!. The key question when using the integro-different
equation~1! with the kernel~3! to modelmesoscopicdynam-
ics of particles concentration is to determine the functio
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a(t2s) andw(z) in terms of the statistical characteristics
the underlying random walk. For this reason let us consi
the following one dimensional random process. Suppos
particle starts from some initial position, where it remains
some random time before performing a jump of rando
length, it remains here for some random time before p
forming another jump of random length and so on. Letc(t)
be the probability density function~PDF! of the waiting time
between successive jumps. Letw(z) be the probability den-
sity function of jump size, which we assume to be indepe
dent of time. The problem of this kind, when the growth
absent (U50), was dealt with extensively in literature~see,
for example, Ref.@13#!, and is often termed the continuou
time random walk~CTRW!. If we apply the Fourier trans-
form in space and Laplace transform in time for the cor
sponding probability density functionn(t,x),

ñ~E,k!5E
2`

` E
0

`

e2Et1 ikxn~ t,x!dtdx, ~5!

then @12,13#

ñ~E,k!5
@12ĉ~E!#ñ~0,k!

E@12ĉ~E!w̃~k!#
, ~6!

where ĉ(E) is the Laplace transform ofc(t), and w̃(k) is
the Fourier transform ofw(z). For the CTRW there is an
associated integro-differential equation of the form@12,13#

]n~ t,x!

]t
5E

0

t

a~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds,

~7!

where n(t,x) is defined to be the probability of a particl
being at a sitex at time t. Recall the well known Kenkre
Montroll, and Shlesinger result, which states that there ex
a relationship between the memory kernela(t) in Eq. ~7!
and the waiting time PDFc(t), namely@12#,

ĉ~E!5
â~E!

E1â~E!
or â~E!5

Eĉ~E!

12ĉ~E!
, ~8!

where â(E) is the Laplace transform ofa(t). It is easy to
see that in the caseU50 Eq.~7! is equivalent to Eq.~1! with
the kernel~3!.

Following Ref.@14# one can derive the following equatio
for the probability densityn(t,x) with the linear logistic
growth (UÞ0):

n~ t,x!5C~ t !n~0,x!1E
0

tE
2`

`

c~ t2s!n~s,x1z!w~z!dzds

1UE
0

t

C~ t2s!n~s,x!ds, ~9!

where
3-2
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C~ t !512E
0

t

c~s!ds ~10!

is the probability that the particle does not move up to timt
@14#. It should be noted that Eq.~8! still holds, and Eq.~9! is
equivalent to

]n~ t,x!

]t
5E

0

t

a~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds

1Un~ t,x!. ~11!

B. The family of gamma distributions

To model the waiting time densityc(t) we use here the
family of gamma distributions with parametersm andl,

Gm,l~ t !5
lmtm21e2lt

G~m!
, mPN, ~12!

whereG(m) is the gamma function. Our motivation for suc
a choice of the waiting time densityc(t) is that whenm
51 we have the exponential pdf@c(t)5le2lt#, the only
‘‘memoryless’’ type PDF, whereas for all othermPN we
have non-Markovian dynamics for the underlying rando
walk. Our aim is to investigate how the front propagati
rate changes through the introduction of non-Markovian
fects.

When U50, one can derive the following partial differ
ential equation involving time derivatives up to orderm ~see
Appendix A!:

~Dt1l!mn~ t,x!5lmE
2`

`

n~ t,x1z!w~z!dz, ~13!

whereDt is the partial derivative operator with respect tot,
i.e., Dtn(t,x)5]n/]t, Dt

2n(t,x)5]2n/]t2, etc.
When UÞ0 and m51, one can get from Eqs.~8! and

~12! that ĉ(E)5l/(l1E), hence, â(E)5l that is a(t
2s)5ld(t2s). Substitution of this expression into Eq.~11!
gives a classical Feller-Kolmogorov equation with a line
growth @14#,

]n~ t,x!

]t
5lF E

2`

`

n~ t,x1z!w~z!dz2n~ t,x!G1Un~ t,x!.

~14!

The casem52 corresponds to a non-Markovian rando
walk. One can find that the Laplace transformĉ(E)
5l2/(l1E)2, henceâ(E)5l2/(E12l), that is,

a~ t2s!5l2exp@22l~ t2s!#. ~15!

Equation~11! takes the form

]n~ t,x!

]t
5l2E

0

t

e22l(t2s)F E
2`

`

n~s,x1z!w~z!dz

2n~s,x!Gds1Un~ t,x!. ~16!
02111
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IV. PROPAGATION RATE FOR TRAVELING WAVES

In this section, we consider the problem of calculating t
propagation rate of traveling waves for the integr
differential equation~1! when the waiting time PDF is given
by a member of the family of gamma distributions~12!. The
frontlike initial condition ~2! ensures the minimal speed o
propagation@1#. The standard way to deal with the abov
problem is to find a traveling wave solution in the for
n(t,x)5 f (x2ut). Here we consider the problem in the h
drodynamic limit where the problem of wave propagati
into an unstable state can be reduced to a problem of
dynamics of the reaction front@2,6,7,11#. If we make a hy-
perbolic scalingt→t/«, x→x/« , where« is a small param-
eter we encounter the Cauchy problem for a rescaled
ticles concentrationn«(t,x)5n(t/«,x/«). We expect that
n«(t,x) tends to a step function as«→0 @2,11#. The idea
now is to derive the eikonal equation governing the posit
of front. If we first replacen«(t,x) by an auxiliary field
G(t,x)>0 by using the exponential transformationn«(t,x)
5exp@2G(t,x)/«#, then expanding to leading order we ca
deduce the Hamilton-Jacobi equation]G/]t1H(]G/]x)
50. When the reaction rate parameterU is independent of
space, one can find thatG(t,x)5px2H(p)t, which we rec-
ognize as the action functional of a free particle. Taking in
accountx5ut we find from G„t,x(t)…50 the propagation
rateu @6,7#,

u5
]H

]p
, pu5H~p!. ~17!

These two equations together with the appropriate Ham
tonian H(p) give the complete solution to the problem
front propagation@6,7#. Recall that the Hamiltonian for the
FKPP equation is given byH(p)5Dp21U @2,11# thus from
Eq. ~17! we can obtain the classical propagation rateu
52ADU. Let us note that the same results can be derived
using marginal stability analysis@3#.

Now we are in a position to find the Hamiltonian functio
H(p) corresponding to the integro-differential equation~1!
with the kernel~3!. It is well known that the rateu at which
the traveling wave propagates into an unstable state dep
on the leading edge of the scalar field profile wheren(t,x)
→0 @1–3#. Therefore to findu it is sufficient to consider the
linearized version of Eq.~1!. By similar methodology used to
obtain Eq.~13!, we can derive the equation for the particl
concentrationn(t,x) with growth (UÞ0) ~see Appendix B!,

~Dt1l!mn~ t,x!5lmE
2`

`

n~ t,x1z!w~z!dz

1U(
r 51

m S m

r D lm2r~Dt!
r 21n~ t,x!.

~18!

After making a hyperbolic scalingt→t/«, x→x/« we obtain
for n«(t,x)5n(t/«,x/«),
3-3
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~«Dt1l!mn«~ t,x!5lmE
2`

`

n«~ t,x1«z!w~z!dz

1U(
r 51

m S m

r D lm2r~«Dt!
r 21n«~ t,x!.

~19!

We seek a solution of Eq.~19! as «→0 of the exponential
form n«(t,x)5exp@2G(t,x)/«#. Substituting this expressio
into Eq. ~19! we find that the leading order behavior as«
→0 is given by the Hamilton-Jacobi equation forG(t,x),

]G

]t
1HS ]G

]x D50, ~20!

whereH(p) represents the Hamiltonian associated with E
~19! and can be found from

@H~p!1l#m5lmf ~p!1U(
r 51

m S m

r D lm2r@H~p!# r 21,

~21!

where f (p)5*2`
` e2zpw(z)dz is the bilateral Laplace trans

form of the PDFw(z), also known as the moment generati
function. By using Eqs.~17! and ~21!, we can now find the
propagation rateu when the waiting densityc(t) is given by
a member of the family of gamma distributionsGm,l(t), m
PN.

Remark. It is interesting to note that when the growth
absent, i.e.,U50, the HamiltonianH(p) can be shown to be

H~p!5l@ f ~p!1/m21#, ~22!

in particular, if we suppose that the jump densityw(z) is
given by the normal distributionN(0,s2), then f (p)
5exp(p2s2/2) and so the Hamiltonian is now given by

H~p!5lFexpS p2s2

2m D21G . ~23!

Thus, the effect of changing the waiting density fromG1,l(t)
to G r ,l(t) say, can be replicated by changing the jump d
sity from N(0,s2) to N(0,s2/r ).

A. Example 1 „no memory…

As our first example let us consider the case when
waiting density c(t) is of the exponential form,G1,l(t)
5le2lt. Let us also suppose that the jump densityw(z) is
given by the normal distributionN(0,s2). From Eq.~21! one
can find the Hamiltonian

H~p!5lFexpS p2s2

2 D21G1U. ~24!

If we denote the propagation rate byu1 then

u15
]H~p!

]p
5ls2p expS p2s2

2 D , ~25!
02111
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where the momentump can be found from~17!

~12p2s2!expS p2s2

2 D512
U

l
. ~26!

It follows from Eqs.~25! and~26! that the introduction of the
long-range interactions without memory leads to the incre
of the speed of traveling fronts~see Sec. IV C!.

B. Example 2 „with memory effects…

Now consider the case when the waiting densityc(t) is
given by G2,l(t)5l2te2lt, and the jump densityw(z) is
given by the normal distributionN(0,s2). From Eq.~21! we
have a quadratic equation forH(p),

@H~p!1l#25l2ep2s2/21U„H~p!12l….

Solving this equation,

H~p!5
U

2
2l1AU2

4
1Ul1l2,ep2s2/2

we can find the propagation rateu2,

u25
]H~p!

]p
5

l2s2pep2s2/2

2AU2

4
1Ul1l2ep2s2/2

, ~27!

wherep has to be found from Eq.~17!,

s2p2ep2s2/2

2AU2

4l2
1

U

l
1ep2s2/2

5
U

2l
211AU2

4l2
1

U

l
1ep2s2/2.

~28!

One can show that the introduction of memory effects le
to a decrease of the propagation rate~see the following sec-
tion!.

C. Comparison with the FKPP equation

Here we compare the propagation speeds generated b
waiting densities:G1,l(t), G2,l(t), and G3,l(t), denoted by
u1 , u2, andu3, respectively, and the FKPP propagation ra
u,

u52AUD, ~29!

where

D5
^z2&
2t

, ^z2&5E
2`

`

z2w~z!dz ~30!

and t is defined to be the mean time between succes
jumps. For the waiting densityGm,l(t), the mean timet is
m/l. It is convenient to write the FKPP propagation rate
the form
3-4
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u5u0A2Ut, u05
^z2&1/2

t
, ~31!

whereu0 can be regarded as the characteristic speed of
random walk. It turns out thatum /u depends only upon the
parameterUt.

In Figs. 1 and 2, we showum /u plotted againstUt for
various values ofm when the jump densityw(z) is given by
~1! 1

2 d(t1a)1 1
2 d(t2a) and ~2! N(0,s2), respectively. In

both figures we see that for the case whenc(t)5G1,l(t)
5l exp(2lt) the propagation rateu1 is greater thanu, and
the ratio u1 /u increases asUt increases. This should b
expected, since the FKPP equation implicitly involves a s
ond order approximation for the jump densityw(z), i.e., up
to ^z2&/2. In fact, if we suppose thatUt!1, then by writing
~1! f (p)5cosh(ap)'11a2p2/2 and ~2! f (p)5exp(p2s2/2)
'11p2s2/2, one can show that the propagation rateu1 is
equal to the FKPP propagation rateu. However, forUt&1
this approximation is not appropriate, and so we have to t
into account the tails ofw(z) which contribute to the in-
crease in the propagation rate. From Fig. 1 we can conc
that, when the waiting densityc(t) is given byG2,l(t) and
G3,l(t), with propagation rateu2 andu3 respectively, bothu2
and u3 become slower thanu as Ut increases. This differ-

FIG. 1. Dependencies of the ratioum /u on Ut for various val-
ues ofm when the jump densityw(z) is 1

2 d(t1a)1
1
2 d(t2a).

FIG. 2. Dependencies of theum /u on Ut for various values of
m for the jump densityw(z) given by the normal distribution
N(0,s2).
02111
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ence explicitly demonstrates that the introduction
‘‘memory effects’’ into our random walk model decreases t
propagation rate of the traveling wave. In Fig. 2, we obse
a similar phenomenon, with the exception that forc(t)
5G2,l(t) the propagation rateu2 is still greater thanu,
whereas form.2, the propagation rate decreases. Fr
these two simple examples, we can conclude that altho
the introduction of memory effects and long-range inter
tions certainly affect the propagation rate of the traveli
wave, it is not immediately clear as to whether this rate w
be more or less than the propagation rate calculated by
FKPP equation.

V. SUMMARY

In this paper we have investigated the problem of de
mining the propagation rate for traveling waves in a reacti
transport system with memory and long-range interactio
In particular, we have used the family of gamma distrib
tions to model the waiting-time density in order to gain
understanding of how non-Markovian dynamics affects
behavior of the traveling fronts. Using a generalized mas
equation with logistic growth, hyperbolic scaling, an
Hamilton-Jacobi theory we have derived formulas which e
able us to determine the front propagation rate. By using
simple examples we have shown that for the case when
characteristic growth timeU21 is much larger than the mea
time between successive jumpst (Ut!1), the FKPP equa-
tion is an appropriate model in determining the propagat
rate. However, whenUt<1 the inability of the FKPP mode
to take into account the tails of the jump density and mem
effects induced by non-Markovian densities, leads to
overestimation/underestimation of the propagation rate.
have shown that it is not immediately clear as to whether
propagation rate will be greater or less than that found
the FKPP equation, and detailed study of both the jump d
sity and waiting-time density is required before this conc
sion can be made.

APPENDIX A: DERIVATION OF EQ. „13…

We write the generalized master equation in the form@13#

]n~ t,x!

]t
5E

0

t

a~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds.

~A1!

We know from Eq.~8! that the Laplace transform ofa(t) is

â~E!5
Eĉ~E!

12ĉ~E!
.

If we introduce the auxiliary function

f̂ ~E!5
ĉ~E!

12ĉ~E!
,

then a(t) can be written in terms of the inverse Lapla
transformL21,
3-5
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a~ t !5L21@â~E!#5
d

dt
$L21@ f̂ ~E!#%1 f ~0!d~ t !.

~A2!

Sinceuĉ(E)u,1, one can write

f̂ ~E!5
ĉ~E!

12ĉ~E!
5(

j 51

`

@ĉ~E!# j . ~A3!

For the waiting time PDFc(t), we choose a member of th
gamma family of densities~12!. The Laplace transform o
Gm,l(t) is given by

Ĝm,l~E!5S l

l1ED m

. ~A4!

It follows from Eqs.~A3! and ~A4! that

f ~ t !5L21F (
j 51

`

@ĉ~E!# j G
5L21F (

j 51

` S l

l1ED jmG
5(

j 51

`

G jm,l~ t ! ~A5!

and f (0)5l, for m51, while f (0)50, for m.1. Note that

drGm,l~ t !

dtr
5l r (

j 50

r S r

j DGm2 j ,l~ t !~21!r 2 j , r<m,

~A6!

where G0(t)50. Let us fix m, and define a new function
Al(t) as an infinite sum of certain gamma densities, wher
the first term in the sum isG l ,l(t), the secondG l 1m,l(t), the
third G l 12m,l(t), etc. From Eqs.~A5! and ~A6! we have

f (r )~ t !5l r (
j 50

r S r

j DAm2 j~ t !~21!r 2 j , r<m ~A7!

and f (r )(0)5lm for r 5m21, while f (r )(0)50, for r ,m
21. One can show that

(
r 50

m S m

r D lm2r f (r )~ t !50. ~A8!

The case whenm51 has already been considered in S
III B. Let us further suppose thatm.1, thus f (0)50. It
follows from Eqs.~A1! and ~A2! that

]n

]t
5E

0

t

f (1)~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds.

Further partial differentiation with respect to time gives

] rn

]t r
5E

0

t

f (r )~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds,
02111
y

.

r<m21, ~A9!

]mn

]tm
5E

0

t

f (m)~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds

1lmF E
2`

`

n~ t,x1z!w~z!dz2n~ t,x!G . ~A10!

Now we obtain from Eqs.~A9! and ~A10!

(
r 50

m

lm2r S m

r D ] rn

]t r
5lmE

2`

`

n~ t,x1z!w~z!dz.

This equation can be rewritten as

~Dt1l!mn~ t,x!5lmE
2`

`

n~ t,x1z!w~z!dz.

APPENDIX B: DERIVATION OF EQ. „18…

Our procedure here is the same as in Appendix A, with
exception that Eq.~A1! is modified through the addition o
the linear logistic growth term

]n~ t,x!

]t
5E

0

t

a~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds

1Un~ t,x!. ~B1!

Thus Eqs.~A9! and ~A10! become

] rn

]t r
5E

0

t

f (r )~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds

1U
] r 21n

]t r 21
, r<m21, ~B2!

]mn

]tm
5E

0

t

f (m)~ t2s!F E
2`

`

n~s,x1z!w~z!dz2n~s,x!Gds

1U
]m21n

]tm21
1lmF E

2`

`

n~ t,x1z!w~z!dz2n~ t,x!G .
~B3!

From Eqs.~B2! and ~B3! one can obtain

(
r 50

m

lm2r S m

r D ] rn

]t r
5lmE

2`

`

n~ t,x1z!w~z!dz

1U(
r 51

m

lm2r S m

r D ] r 21n

]t r 21
.
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