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Nonlinear degradation-enhanced transport of morphogens performing subdiffusion
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We study a morphogen gradient formation under nonlinear degradation and subdiffusive transport. In the
long-time limit, we obtain the nonlinear effect of degradation-enhanced diffusion, resulting from the interaction
of non-Markovian subdiffusive transport with a nonlinear reaction. We find the stationary profile of power-law
type, which has implications for robustness, with the shape of the profile being controlled by the anomalous
exponent. Far away from the source of morphogens, any changes in the rate of production are not felt.
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I. INTRODUCTION

During the development of an organism, a key stage is
the differentiation of cell types [1]. It is known that the
differentiation of these identical cells into different and distinct
cell types is controlled by a signaling molecule called a
morphogen [2]. One of the most widely studied organisms
in the field of morphogenesis is the Drosophila, the common
fruit fly, and particularly the development of its wings. The
wings begin as a multinucleated mass of identical cells within
a membrane, in the early embryo, called an imaginal disk.
A morphogen from the TGF-β superfamily called decapenta-
plegic (Dpp) is secreted by a narrow strip of cells, from which
it diffuses in essentially one dimension and degrades, causing a
concentration gradient to form. The production, diffusion, and
degradation of morphogens are controlled by a complex set
of positive and negative feedback loops [3]. The cells in the
imaginal disk react to the concentration gradient at discrete
levels [4], enabling them to determine their position within
the disk. From knowing their position, the cells are able to
differentiate themselves to carry out different functions within
the developed wing. Thus, to prevent mutations it is essential
that the concentration gradient built up is robust to fluctuations
in the secretion rate due to genetic alterations, temperature
changes, or any other environmental effects [5].

There are differing thoughts on the mechanism behind the
diffusion of the morphogen, such as whether the transport
is primarily extracellular or intracellular [6], whether it is
able to diffuse freely through the essentially two-dimensional
(2D) plane of the imaginal disk, or whether the molecules
are passed over between neighboring cells, a process called
transcytosis [7]. It is thought that some morphogens require
intracellular trafficking, while others may diffuse freely [8].
However, regardless of the specific mechanism, it is known
that morphogens do form long-range concentration gradients,
and that the robustness of the concentration gradient is of the
utmost importance [1,3,7].

The standard model for morphogen transport is the diffusion
equation with the degradation term,

∂ρ

∂t
= D

∂2ρ

∂x2
− θρ, (1)

where ρ(x,t) is the density of the morphogen, D is the
diffusion coefficient, and θ is the degradation rate. This
equation, together with the boundary condition with the
constant source term at x = 0, gives a stationary concentration

distribution which decays exponentially. It has been argued
that an exponential profile cannot be robust to fluctuations in
environmental conditions and production rate [9]. Therefore,
the aforementioned authors argued that a power-law profile
is preferable. Experiments have shown that in some circum-
stances, a power-law decay is observed for the morphogen
profile [10]. One way to obtain this profile is to assume that
the morphogens must decay rapidly close to their source while
decaying at a much slower rate over the rest of the area. In
other words, the degradation rate is an increasing function
of the local concentration of diffusing morphogens. In this
case, the only modification to (1) is the nonlinear rate θ (ρ).
The topic has been tackled in [5,9], where the authors dubbed
this the “self-enhanced degradation” of morphogens.

The robust stationary profile can be found from

D
d2ρst(x)

dx2
= kρ2

st(x), (2)

with the boundary condition at x = 0: −Ddρst/dx = g. This
leads to algebraic decay in the tails of the spatial distribution,

ρst(x) ∼ A

x2
, x → ∞, (3)

where the amplitude A is independent of the production term
g. In [9], the authors take the independence of the production
rate from the amplitude of the profile to be a key indicator
of the robustness of the profile. A nonlinear degradation rate
can arise from the situation in which the morphogen increases
the production of a molecule, which in turn increases the rate
of morphogen degradation. In the example of the Drosophila
fly, the morphogen Shh is responsible for the expression of a
receptor that both transduces the Shh signal and mediates the
degradation of the morphogen [11,12].

Hornung, Berkowitz, and Barkai [13] published the first
paper in which the subdiffusion of morphogens was con-
sidered. Subdiffusion is an observed natural phenomenon,
seen in the diffusion of proteins in the cytoplasm and the
nucleus of eukaryotic cells [14,15], along the surface of a
cell membrane [16,17], and it has been suggested to explain
morphogen movement in a heterogeneous environment of
HSPG proteins. For the anomalous subdiffusion, the mean-
squared displacement grows sublinearly with time 〈x2(t)〉 ∼
tμ, where μ < 1 is the anomalous exponent. Following
Hornung et al. [13], several attempts have been made to
take into account subdiffusion for the analysis of morphogen
gradient formation [18–21]. Kruse and Iomin [18] developed
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a microscopic model of the receptor-mediated transport in a
subdiffusive medium. They found subdiffusive and superdif-
fusive spreading of morphogens. Yuste et al. [19] analyzed
the gradient formation of subdiffusive morphogens by using
the reaction-subdiffusion equation obtained from a classical
continuous time random walk (CTRW),

∂ρ

∂t
= Dμ

∂2

∂x2

{
e−θ(x)tD1−μ

t [eθ(x)t ρ(x,t)]
} − θ (x)ρ, (4)

where Dμ is the fractional diffusion coefficient, and D1−μ
t

represents the Riemann-Liouville fractional derivative of
order 1 − μ,

D1−μ
t f (x,t) = 1

�(μ)

∂

∂t

∫ t

0

f (x,t ′)
(t − t ′)1−μ

dt ′. (5)

The main difference of this work from that of [13] is that
here the particles are not protected during trapping events.
A stationary profile does not exist in the model of [13]; the
authors obtained only a nonstationary exponential profile in
space, with a power-law decay of amplitude in time. Yuste,
Abad, and Lindenberg [19] found the stationary exponential
profile and analyzed the interaction of subdiffusion and space-
dependent degradation. A diffusion equation with a power-
law density-dependent diffusion coefficient and nonlinear
degradation has been analyzed in the recent paper [20]. The
modified fractional Fokker-Planck equation was used for the
analysis of morphogen gradient formation in [21], where the
authors employed the random death process in such a way that
the degradation term acts like a tempering of the waiting time
distribution. This leads to the unusual effect of the dependence
of the diffusion coefficient on the degradation rate. The authors
considered only a linear death process and did not consider
feedback effects in the degradation rate, and indeed many
current models do not either.

The main purpose of this work is to analyze the interaction
of the nonlinear degradation with non-Markovian subdiffu-
sion, and its implications on the stationary structure. The
result of this interaction is degradation-enhanced diffusion
in the long-time limit. The gradient profile can be found
from the nonlinear stationary equation for which the diffusion
coefficient is a nonlinear function of the nonlinear reaction
rate θ (ρst(x)),

d2

dx2
[Dθ (ρst(x))ρst(x)] = θ (ρst(x))ρst(x). (6)

Here the diffusion coefficient Dθ is

Dθ (ρst(x)) = a2 [θ (ρst(x))]1−μ(x)

2τ0
μ(x)

, (7)

τ0 is the time parameter, and μ(x) the space-dependent
anomalous exponent. This unusual form of the nonlinear
diffusion coefficient is a result of the interaction between
non-Markovian transport and nonlinearity. The interaction
leads directly to a degradation-enhanced diffusion. This effect
does not exist for the Markovian random-walk model presented
in [20]. We also would like to direct the reader to the interesting
paper on the influence of coupling between diffusion and
degradation on the morphogen gradient formation [22].

II. SUBDIFFUSIVE TRANSPORT AND NONLINEAR
DEGRADATION

We describe a random morphogen molecule’s movement
in an extracellular surrounding as follows. We assume that
molecules are produced at the boundary x = 0 of the semi-
infinite domain [0,∞) at the given constant rate g, and we
perform the classical continuous-time random walk involving
symmetrical random jumps of length a with random waiting
time Tx between jumps. If we assume that this random time
is exponentially distributed with the rate parameter λ, then on
the macroscopic level we obtain the classical diffusion term
in (1) with diffusion coefficient D = λa2/2. In this paper, we
consider the subdiffusive behavior for morphogen molecules
when the residence time Tx has the survival probability
	(x,t) = Pr [Tx > t] given by the Mittag-Leffler function [23]

	(x,t) = Eμ(x)

[
−

(
t

τ0

)μ(x)]
, 0 < μ(x) < 1. (8)

The Mittag-Leffler distribution is characterized by its interpo-
lation between short-time stretched exponential and long-time
power-law asymptotics,

	(x,t) �
⎧⎨
⎩

1
�(1+μ(x))e

−( t
τ0

)−μ(x)

, t 	 1,

1
�(1−μ(x))

(
t
τ0

)−μ(x)
, t → ∞.

(9)

This distribution leads to the divergence of the mean waiting
time,

T̄x = −
∫ ∞

0
t
∂	(x,t)

∂t
dt, 0 < μ(x) < 1, (10)

which explains the slow subdiffusive behavior. This emerges
from the CTRW scheme when a molecule becomes immobi-
lized in a region of space and the mean escape time diverges.
The reasons for trapping are many, and vary depending on the
circumstance. The particles could be trapped in intracellular
space while cell surface receptors are occupied [3,18]. It could
be that a particle enters a region with a very complicated ge-
ometry, such as a dendritic spine, and struggles to escape [24].
It could be immobilized by some chemical reactions.

We describe the morphogen degradation by the mass action
law involving the nonlinear reaction term

θ (ρ)ρ, (11)

where the reaction rate θ (ρ) depends on the mean
density ρ. The importance of a nonlinear reaction rate lies
in the effect of self-enhanced ligand degradation, which
underlies the robustness of morphogen gradients [5,9] (see
also [12]). It should be noted that the authors of [13] consider
a very different model in which morphogen molecules are
protected during the trapping time Tx and degradation occurs
instantaneously at the end of a waiting time with a given
probability.

Our assumptions lead to the following nonlinear reaction-
subdiffusion equation for the mean density of morphogen
molecules [25]:

∂ρ

∂t
= ∂2

∂x2

[
Dμ(x)e− ∫ t

0 θ(ρ)dsD1−μ(x)
t

(
e
∫ t

0 θ(ρ)dsρ(x,t)
)]

− θ (ρ)ρ, (12)
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where

Dμ(x) = a2

2τ
μ(x)
0

, (13)

a is the jump length, and τ0 is the time parameter. See also [26],
pp. 48–52. The main characteristic of this reaction-transport
equation is that the reaction and transport are not additive.
Due to the non-Markovian nature of subdiffusion, it is not
possible to separate reaction as an extra term on the right-hand
side (RHS), as is the case for a regular diffusion such as (1).
Instead, reaction terms also appear mixed in the derivative term
as an exponential factor, as seen above. The presence of the
Riemann-Liouville derivative indicates a long memory in the
process, presenting itself in the integral over time, making it
strongly non-Markovian.

It turns out that in the long-time limit this equation leads
to a nonlinear diffusion with a diffusion coefficient depending
on the nonlinear degradation. Note that nonlinear diffusion has
been analyzed in [20], where the authors introduced a nonlinear
dependence of the diffusion coefficient of the density indepen-
dent from the reaction. Moreover, this nonlinear diffusion is
independent from degradation. In this paper, we show how
nonlinear diffusion emerges naturally from the microscopic
random walk for which the nonlinear diffusion and degradation
are not independent. We also take into account a spatially
nonuniform distribution of anomalous exponent μ(x). We have
shown previously that any spatial variation in the anomalous
exponent μ leads to a drastic change in the stationary behavior
of the fractional subdiffusive equations [27], a phenomenon
called anomalous aggregation [28]. Note that the robustness
of the stationary profile of diffusing morphogens is the most
important feature [5].

The fractional reaction-transport equation (12) can be
rewritten in the compact form

∂ρ

∂t
= a2

2

∂2i(x,t)

∂x2
− θ (ρ)ρ(x,t), (14)

where i(x,t) is the total escape rate from the point x. It follows
from Eq. (12) that it can be written as

i(x,t) = e− ∫ t

0 θ(ρ)ds

τ0
μ(x)

D1−μ(x)
t

[
e
∫ t

0 θ(ρ)dsρ(x,t)
]
. (15)

Different choices for the form of the escape rate can lead to
many interesting equations in the diffusion limit [29].

III. STATIONARY MORPHOGEN PROFILE

A. Linear degradation

In a previous publication [21], we gave full details on
how the linear version of reaction-subdiffusion equation (12)
approaches a stationary diffusion. In this section, we will recap
this and extend to the current nonlinear consideration. The
linear reaction-subdiffusion equation considered in [21] differs
from (14), with the total escape rate i being given by

i(x,t) = e−θ(x)t

τ0
μ(x)

D1−μ(x)
t [eθ(x)t ρ(x,t)]. (16)

To obtain a stationary solution for the system, it is necessary
to introduce a flux of new particles, g. We choose to implement

this on the boundary x = 0. This directly corresponds to the
morphogen problem, where particles are produced from a
point source. For conservation reasons, the logical choice for
production rate is g = ∫ ∞

0 θ (x)ρst(x)dx [19].
The Laplace transform of the integral escape rate (16) is

found by the shift theorem:

î(x,s) =
∫ ∞

0
i(x,t)e−st dt = [s + θ (x)]1−μ(x)

τ0
μ(x)

ρ̂(x,s). (17)

The limit t → ∞ corresponds to the limit s → 0 of the Laplace
variable. We write for the stationary total escape rate ist(x),

ist(x) = lim
s→0

sî(x,s) = θ (x)1−μ(x)

τ0
μ(x)

ρst(x), (18)

where ρst(x) = lims→0 sρ̂(x,s). This follows from the standard
final value theorem stating that when limt→∞ f (t) exists,
then limt→∞ f (t) = lims→0 sf̂ (s). Note that Eq. (18) has a
Markovian form, since the escape rate can be written in the
form ist(x) = λρst(x), where λ = θ (x)1−μ(x)/τ0

μ(x) now de-
pends upon the degradation rate. This shows the transition from
subdiffusive dynamics to asymptotically normal diffusion.

Consider for contrast that if the death rate is constant in time
and space, and independent of ρ, and the drift is zero, then we
find an analytic result for the stationary gradient distribution
as an exponential function [19]. The stationary profile is
given by

ρst(x) = g√
θ2−μDμ

exp

[
−

√
θμ

Dμ

x

]
, (19)

and, as mentioned, the full details can be found in [21].

B. Nonlinear degradation

It has been argued that even for subdiffusion, a stationary
exponential morphogen profile cannot be robust to fluctuations
in both environmental effects and production rate [5,9]. The
purpose of this subsection is to show that a robust stationary
morphogen profile can be found as a result of the interaction of
non-Markovian subdiffusion and nonlinear degradation. The
question now is how to take into account a nonlinear reaction
term. Actually, it turns out that the same techniques can be used
as were used for the previous linear case. From the total escape
rate (15) we seek to use the Laplace transform shift theorem
and the Tauberian theorem to find the stationary behavior. If
the stationary distribution exists, then

lim
t→∞

1

t

∫ t

0
θ (ρ(x,s))ds = θ (ρst(x)). (20)

As a result, e− ∫ t

0 θ(ρ(x,s))ds → e−θ(ρst(x))t as t → ∞. This
argument makes the shift theorem directly applicable, leading
to the stationary escape rate for the nonlinear case,

ist(x) = [θ (ρst(x))]1−μ(x)

τ
μ(x)
0

ρst(x). (21)

Note that similar arguments have been made in [30]. For this
escape rate, Eq. (14) can be rewritten in a stationary form as

a2

2

d2ist(x)

dx2
= θ (ρst(x))ρst(x). (22)
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Finally, the stationary nonlinear reaction-subdiffusion equa-
tion takes the form of a nonlinear second-order ordinary
differential equation (ODE),

d2

dx2

(
a2[θ (ρst(x))]1−μ(x)

2τ0
μ(x)

ρst(x)

)
= θ (ρst(x))ρst(x). (23)

This equation has the form of Eq. (6), where the diffusion
coefficient Dθ is an increasing function of the nonlinear
reaction rate (7).

Let us consider the commonly studied case of an n-fold
superlinear reaction term in the stationary nonlinear reaction-
subdiffusion equation (23), corresponding to a reaction term

θ (ρ) = kρn−1, (24)

where k is the reaction constant. In what follows, we consider
only μ(x) = μ = const. Here, the total escape rate is given by

i(x,t) = e−k
∫ t

0 ρn−1ds

τ0
μ

D1−μ
t

[
ek

∫ t

0 ρn−1dsρ(x,t)
]
. (25)

We can write the nonlinear equation (23) as

Dμk1−μ d2

dx2
{[ρst(x)](n−1)(1−μ)+1} = kρn

st(x), (26)

where

Dμ = a2

2τ0
μ
. (27)

The boundary conditions are given by

−Dμk1−μ d

dx
{[ρst(x)](n−1)(1−μ)+1}

∣∣∣∣
x=0

= g (28)

at x = 0 and limx→∞ ρst(x) = 0.
Equation (23) is written in the form of a balance equation

between reaction and transport, however for a reaction-
subdiffusion equation the two cannot be separated. The RHS
of Eq. (23) is a pure reaction, balanced with the mixed reaction
transport on the other side. We can make the interesting
observation that if we multiply both sides of the equation
by kμ−1, then we obtain exactly the same form for the
equation as from the nonlinear theory [20]. In their model, the
nonlinear diffusion is completely separate from the reaction.
The authors introduced two nonlinear functions F and G

into their Markovian random-walk model. However, in our
non-Markovian model the nonlinear diffusion and the reaction
are not independent and cannot be separated. We showed
that the assumption of a nonlinear reaction leads directly to
a “degradation enhanced diffusion.” This comes about from
the nontrivial interaction between subdiffusion and reaction,
which is a result of the long-range memory of the underlying
random-walk model. In regular diffusion, such as in the
model [20], a stationary profile can be obtained by simply
equating the time derivative to zero; in subdiffusion, that
is not the case [see Eq. (12)]. Note that here the nonlinear
diffusion dependence on the reaction rate is not postulated, but
it emerges naturally from the interaction of subdiffusion and
nonlinear reactions. Despite the essential differences between
the non-Markovian equation (12) and that which was presented
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FIG. 1. (Color online) Stationary profile (29) with the following
parameters: n = 2, μ = 0.9, τ0 = 0.001, g = 10, and a = 0.01.

in [20], the stationary equations (26) are similar and can be
solved in the same way,

ρst(x) = ρst(0)

(
1 + x

x0

)− 2
μ(n−1)

, (29)

where

ρst(0) =
(

g∗
√

α + n

2α

) 2
α+n

, g∗ = g√
Dμk2−μ

,

x0 = 2α

n − α
(g∗)−

n−α
α+n

(
α + n

2α

) α
α+n

√
Dμ

kμ
, (30)

α = (n − 1)(1 − μ) + 1.

When x/x0 � 1, we obtain the power-law profile,

ρst(x) ∼ A

x
2

μ(n−1)

, x → ∞, (31)

where the amplitude

A = ρst(0)x
2

μ(n−1)

0 (32)

is independent of the morphogen production rate g. In the tails,
this profile has an inverse dependence on the constant degrada-
tion rate k, as illustrated in Fig. 1. The effect of decreasing μ is
a decrease in the amplitude of the tails. This should be expected
since the interpretation of μ is as a parameter controlling the
strength of the spatial trapping of particles, with decreasing
μ increasing trapping strength, as seen in the behavior of the
survival function (9). To counteract the trapping, the rate of
diffusion is increased by the degradation rate, which we term
degradation-enhanced diffusion. Comparing the tail behavior
in the standard diffusion (3) with that of subdiffusion (31), the
impact of μ is clear.

C. Robustness

Let us now discuss the robustness of the profile (29) with
respect to the morphogen production rate g. It is convenient to
write (29) in the following way:

ρst(x) = A

(x0 + x)
2

μ(n−1)

, (33)
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where A is defined in (32). The only parameter in (33) which
is dependent on g is x0,

x0 = B

g
n−α
n+α

, (34)

where the parameter B is independent of g, and n−α
n+α

> 0.
From (33) and (34), it is clear that a change in g produces a
uniform shift in the stationary profile along the x axis.

The robustness of the profile (29) to changes in the
morphogen production rate g can be assessed with a standard
sensitivity analysis involving the relation

δρst(x) = ∂ρst(x)

∂g
δg, (35)

where δg is a small change in the production rate. The
nondimensional robustness parameter R can be introduced in
several ways (see, for example, [7,9,19]). We choose to define
this measure from the following relation:

δρst(x)

ρst(x)
= 1

R

δg

g
, (36)

where
1

R
= g

ρst(x)

∂ρst(x)

∂x

∂x0

∂g
. (37)

This relates the relative change in the density at a given point
x with respect to the relative change in g. For large values of
R, the system is robust. For the profile given by (33), we find
the expression for R to be

R = n + α

n − α

λ

x0
, (38)

where λ is the local spatial decay length defined as

λ = − ρst(x)
∂
∂x

ρst(x)
= μ

2
(n − 1)(x0 + x). (39)

Notice that this expression for the decay length (39) depends
explicitly on the anomalous exponent μ. The exponential
profile (19) has a corresponding value of R = 1 and it is not
robust to changes in g. From (34), (38), and (39), it is clear
that R → ∞ as either of the parameters g → ∞, x → ∞.
This indicates that power-law profile (29) is robust to changes
in the production rate g. This can also be seen in Fig. 2, where
increasing values of the production rate cause convergence
to the robust power-law profile even for smaller values of x.
Additionally, for the values of log10(x) > 10, we have almost
complete convergence. As mentioned by previous authors [9],
this is an important quality for the morphogen gradient.

IV. DISCUSSION AND CONCLUSION

We studied the formation of a stationary morphogen
gradient resulting from the non-trivial interaction of

g 1
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g 100

g 1000

0.5 1.0 5.0 10.0
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1.0

1.5
log10 A

log10 x
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g 1

0
x2
Μ
Ρ s

t
x

FIG. 2. (Color online) log10[x2/μρst(x)] as a function of log10(x)
illustrating convergence to the robust profile ρst(x) ∼ x2/μ. The effect
of varying the production rate g for Eq. (29) with parameters is
shown: n = 2,μ = 0.9, τ0 = 0.001, k = 1, a = 0.01. The parameter
A is defined in (31).

subdiffusion with a non-linear degradation. In particular,
this interaction leads to the phenomenon of a degradation-
enhanced diffusion in the long-time limit. We see that an
increase in the rate of degradation actually leads to an increase
in diffusion. Additionally, we have shown that the stationary
profile is no longer of exponential type, rather it is of power-law
type. The shape of the tails (31) is determined by the anomalous
exponent μ. The stationary solution as x → ∞ is actually
independent of the effects of the production rate entirely. It
is well known that the importance of the power-law profile is
due to its robustness to fluctuations in the production rate of
morphogens, and also to other environmental effects.

We made a connection between the non-Markovian sub-
diffusive model with nonlinear reaction and the Markovian
nonlinear reaction-diffusion equations [20]. When, in the frac-
tional formulation, we assume a constant value of anomalous
exponent μ and a power-law ansatz for the reactive term,
the steady-state reaction-subdiffusion equation takes the same
form as that obtained from the nonlinear reaction-diffusion
equation. The essential point of our paper is that that we have
not just studied nonlinear diffusion, but we also derived the
nonlinear dependence of diffusion on the nonlinear reaction in
the long-time limit. In fact, we should note that this result can
be extended to the general non-Markovian transport process.
This is a subject for future work.
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F. Jülicher, Phys. Rev. Lett. 94, 018103 (2005).
[8] A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis, T. Bittig,
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