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Abstract
We propose a Markov model with an ergodic two-component switching
mechanism that dynamically generates anomalous diffusion. The first
component plays the role of a hidden parameter. The second one is the
switching component generating the superdiffusion of a random walker and
is itself non-Markovian. The model is studied numerically using the Monte
Carlo technique.
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1. Introduction

Anomalous diffusion has important applications in many areas in physics, chemistry and life
sciences (see, for example, [3, 19, 20] and references therein). It can be characterized by
the variance Var {Y (t)} of the particle position Y (t) that increases with time as tγ for large
t. The case with 0 < γ < 1 is known as the subdiffusion regime, γ = 1 corresponds to the
normal diffusion, and γ > 1 is known as the superdiffusion regime. A variety of techniques
are available for the description of anomalous transport including the continuous time random
walk (CTRW) [24], kinetic equations with fractional space and time derivatives [28, 30] and
stochastic differential equations involving non-Markovian random processes [29].

The CTRW model is a standard tool for studying the anomalous diffusion [19, 20].
In CTRW, each step is characterized by a waiting time τ and a displacement (jump) r
which are distributed according to the joint probability density function (pdf) �(τ, r); hence
ψ(τ) = ∫

�(τ, r) dr is the pdf of waiting time. In the case of the decoupled density
function �(τ, r) = ψ(τ)λ(r), i.e. when the waiting time and the individual displacement are
independent, the subdiffusion regime occurs if the mean waiting time τ̄ = ∫ ∞

0 τψ(τ) dτ is
infinite and the symmetrical pdf λ(r) has a finite variance σ 2 = ∫

r2λ(r) dr < ∞. If the
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asymptotic behaviour for the waiting-time density ψ(τ) for large τ is τ−1−ζ with 0 < ζ < 1,

then the mean waiting time is infinite and the mean-square displacement of the walker is
EY 2(t) ∼ σ 2t ζ . When τ̄ is finite, we have the normal diffusion EY 2(t) ∼ Dt, where
D = σ 2/2τ̄ . Such a decoupling model is inappropriate for a superdiffusion regime [26]. One
has to assume that the waiting time and displacement are correlated. For instance, one can
introduce the joint pdf as �(τ, r) = δ(τ − |r|/v)λ(r). It corresponds to the random walk
when the particle moves with a constant speed v; hence the waiting time τ depends on the
displacement. When the pdf λ(r) has a long tail, i.e. λ(r) ∼ r−µ with 2 < µ < 3 as r → ∞,

this random walk is referred to as a Levy walk [26, 31]. The mean-square displacement for
the Levy walk is EY 2(t) ∼ t4−µ, i.e. the Levy walk is a superdiffusive process.

An alternative approach to superdiffusion is based on the differential equation for a particle
position:

dY

dt
= µ(t), (1.1)

where µ(t) is a stationary random process with zero mean [29]. From (1.1), one can derive
the equation for the mean-square displacement

d

dt
EY 2(t) = 2

∫ t

0
Cµ(s) ds, (1.2)

where Cµ(t) is the autocorrelation function for µ(t): Cµ(t) = E (µ(t)µ(0)) . It follows
from (1.2) that the normal diffusion occurs when the autocorrelation function Cµ(t) decreases
quickly enough to make the integral in (1.2) finite as t → ∞. In this case, the asymptotic
behaviour of EY 2(t) for large t is 2Dt , where the diffusion coefficient D is given by the
well-known Kubo formula D = ∫ ∞

0 Cµ(s) ds. Superdiffusion arises when the autocorrelation
function Cµ(t) decays slowly as t → ∞ so that the integral in (1.2) diverges. If this is the
case, then the random process µ(t) is said to have long memory [2]. For the normal diffusion,
there exists the characteristic time scale ϑ = C−1

µ (0)
∫ ∞

0 Cµ(s) ds, while for superdiffusion
this time is infinite. If the autocorrelation Cµ(t) tends to zero as the power law t−ζ when
t → ∞, 0 < ζ < 1, then the integral diverges as t → ∞ and the mean-square displacement
exhibits superdiffusive behaviour EY 2(t) ∼ t2−ζ [3]. Let us note that very often the long-
memory correlations Cµ(t) ∼ t−ζ are introduced into the model (1.1) phenomenologically.
An interesting example of a model with a dynamically generated long-memory effect is
considered in [3].

Stochastic switching has been of much interest since it is one of the basic processes in
many areas of natural sciences, e.g., switching between two metastable states in stochastic
resonance theory [10, 18], two-state model for anomalous diffusion [27, 29], two-state gating
process for ion channels [11], stochastically driven two-level quantum systems [12], etc.
The standard model for switching is a continuous time Markov chain with an exponential
distribution of residence times. Its simplest version is the classical telegrapher process which
was introduced by Kac [16] and used to analyse the Dirac equation [9]. In this model, the
velocity µ(t) in (1.1) is a dichotomous Markov process taking two values a and −a and
switching from one to the other with the constant rate q. The autocorrelation function is
exponential: Cµ(t) = a2 exp(−2qt), so we have normal diffusion as t → ∞. To model
anomalous diffusion, non-Markovian processes have been considered in the recent years. One
usually implements the standard renewal theory with arbitrary non-exponential residence time
distributions such as stretched exponential ψ(τ) ∼ d

dτ
exp[−(qτ)α] or power law ψ(τ) ∼ τ−ζ

[11].
The main purpose of this paper is to set up a Markov model with a switching

mechanism which dynamically generates anomalous diffusion. The developed Markov
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switching mechanism induces long-range temporal correlations such that the integral of the
corresponding autocorrelation function is divergent as t → ∞. Thus, we do not use given non-
exponential residence time distributions; instead we introduce the auxiliary random variable
X varying in the interval (0, 1). It obeys the stochastic equation (see section 3)

dX

ds
= a(X,µ), (1.3)

where µ is a chain taking two values µ1 and µ2. The essential feature of this model is that the
infinitesimal characteristics q1 and q2 of the chain µ depend on the value of the random process
X. We note that this dependence makes the switching component µ(t) non-Markovian. At the
same time, the pair (X,µ) defines a Markov process. The particle position Y (t) is determined
by the stochastic equation

dY

ds
= b(µ), (1.4)

where b takes two values b1 = b(µ1) and b2 = b(µ2), respectively. We note that the triple
(X,µ, Y ) is a Markov process as well, and therefore the conventional Markovian techniques
can be used to study the non-Markovian switching component µ(t) and the random position
Y (t). In particular, we consider the stochastic equation (see section 4)

dX

ds
=

{
(1 − X)1+α, if µ = µ1,

−X1+α, if µ = µ2,
(1.5)

with the following infinitesimal characteristics of the chain µ(t):

q1(x) = (1 − x)β, q2(x) = xβ. (1.6)

The Markov process (X,µ) is ergodic and has a unique stationary distribution. It follows
from (1.5) and (1.6) that the value of the random variable X determines the ‘strength’ of the
states µ1 and µ2. In particular, if X(t) is close to zero, then the transition probability is very
small and therefore the system is ‘trapped’ in the regime with µ = µ2. This can induce a long-
range temporal correlation of b(µ) and ultimately the anomalous behaviour of the random
process Y (t). One of the main results of this paper is that the mean-square displacement
EY 2(t) can exhibit the superdiffusive behaviour, namely, EY 2(t) ∼ tγ as t → ∞ with the
exponent 1 < γ < 2.

The switching mechanism suggested in this paper is of interest itself. Let us give an
example related to the ion channels in the biological membranes [15]. These channels
are stochastically switched between the closed and open states depending on the external
conditions. There is experimental evidence that the observed two-state ion channel gating
is non-Markovian (see [11] and references therein). The Markov process (X,µ) and its
generalizations can be used to analyse the non-Markovian character of ion channel gating.
One can think of the random variable X as the concentration of some ligand regulating
the two-state gating process. The Markov process (X,µ) with a non-Markovian switching
component µ can also be useful for an analysis of the cancer cells of two phenotypes with
random switching between cell proliferation and migration [8]. Another possible application
of our model is a state-mediated biased random walk for which switching probabilities for a
velocity-jump process depend on internal state dynamics [13, 25].

This paper is organized as follows. In section 2, we recall the required facts about
chains interacting with ordinary differential equations. In section 3, we consider and analyse
a random walk generated by the Markovian switching mechanism. Based on the results of
section 3, we propose a concrete model in section 4, for which anomalous diffusion can be
observed. This model is studied numerically by the Monte Carlo technique in section 5. A
summary of the obtained results is given in section 6.
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2. Preliminaries

2.1. Interaction of chains with ordinary differential equations

Consider the system of ordinary differential equations interacting with a chain:

dX

ds
= a(X,µ), (2.1)

where X = (X1, . . . , Xd)
�, a(x, µ) = (a1(x, µ), . . . , ad(x, µ))� are d-dimensional vectors

and µ is the chain with m states µ1, . . . , µm. Let the functions ai(x, µj ), i = 1, . . . , d, j =
1, . . . , m, x ∈ Rd , satisfy the Lipschitz condition and grow at infinity not faster than a linear
function of x. We assume the infinitesimal matrix Q of the chain µ to depend on the state x
of X:

Q =




−q1(x) q12(x) · · · q1m(x)

q21(x) −q2(x) · · · q2m(x)

...
... · ...

qm1(x) qm2(x) · · · −qm(x)


 ,

where qi(x) and qij (x) are the continuous non-negative functions bounded in Rd and the
relations ∑

j �=i

qij (x) = qi(x) (2.2)

are fulfilled. Then the system (2.1) generates a Markov process (X,µ) with the infinitesimal
generator (see, e.g., [22, 21] and references therein):

Ag(x, µi) =
d∑

k=1

ak(x, µi)
∂g

∂xk

(x, µi) − qi(x)g(x, µi) +
∑
j �=i

qij (x)g(x, µj ),

i = 1, . . . , m, x ∈ Rd . (2.3)

Due to (2.3), the following Cauchy problem for the system of hyperbolic equations,

∂ui

∂t
=

d∑
k=1

ak(x, µi)
∂ui

∂xk

+ k(x, µi)ui − qi(x)ui +
∑
j �=i

qij (x)uj + c(x, µi), (2.4)

ui(0, x) = f (x, µi), i = 1, . . . , m, (2.5)

admits a probabilistic representation for its solution. The representation has the form (the
Feynman–Kac formula)

ui(t, x) = Ef (Xx,µi
(t), µx,µi

(t)) exp

(∫ t

0
k(Xx,µi

(s), µx,µi
(s)) ds

)

+ E

∫ t

0
exp

(∫ s

0
b(Xx,µi

(ϑ), µx,µi
(ϑ)) dϑ

)
c(Xx,µi

(s), µx,µi
(s)) ds, t � 0,

(2.6)

where Xx,µi
(s), µx,µi

(s) is a realization of the Markov process (X,µ) starting from X(0) = x,

µ(0) = µi. Formula (2.6) is valid, for instance, under the assumption that the functions
fi(x) = f (x, µi), ki(x) = k(x, µi), ci(x) = c(x, µi) and the partial derivatives ∂fi/∂xj

are continuous bounded functions in Rd . The probabilistic representation (2.6) is useful for
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numerics exploiting the Monte Carlo approach (see section 5). In a broader context, see [23]
for the use of probabilistic representations in stochastic numerics.

Let an initial distribution of (X,µ) be given by a density λi(x), i.e.

P {X(0) ∈ H,µ(0) = µi} =
∫

H

λi(x) dx, i = 1, . . . , m.

We assume that λi(x)ak(x, µi) have continuous partial derivatives ∂(λiak)/∂xk and the
integrals

Ii =
∫

Rd

d∑
k=1

∂(λi(x)ak(x, µi))

∂xk

dx, i = 1, . . . , m, (2.7)

absolutely converge. Then the density ψi(s, x) of (X,µ) at time s satisfies the system of
differential equations

∂ψi

∂s
= −

d∑
k=1

∂(ψiak(x, µi))

∂xk

− qi(x)ψi +
∑
j �=i

qji(x)ψj , ψi(0, x) = λi(x). (2.8)

As a consequence, we obtain that λi(x) is the stationary distribution, provided the integrals
(2.7) absolutely converge, if and only if it satisfies the system

−
d∑

k=1

∂(λiak(x, µi))

∂xk

− qi(x)λi +
∑
j �=i

qji(x)λj = 0. (2.9)

It should be noted that all what has been said above is correct if one takes some open set
D ⊆ Rd instead of Rd provided Xx,µi

(t) ∈ D for any x ∈ D, i = 1, . . . , m, t � 0. In addition,
let us observe that the Markov process (X,µ) is related to the piecewise-deterministic Markov
processes considered in [4–6].

2.2. One-dimensional system with two-state chain

Let us treat the case when equation (2.1) is scalar (d = 1),X ∈ (0, 1), the chain µ takes two
values µ1 and µ2 and a1(x) := a(x, µ1) > 0, a2(x) := a(x, µ2) < 0, q1(x) > 0, q2(x) > 0 in
the entire interval (0, 1). Clearly, due to (2.2), we have q12(x) = q1(x) and q21(x) = q2(x). In
[1], the behaviour of the process (X(t), µ(t)) is studied. The approach of [1] in many respects
repeats the well-known investigation of the one-dimensional diffusion on the bounded interval
due to Feller (see, for instance, [7, 14]). We are interested in the case when the ends of
the interval (0, 1) are unattainable in finite time for the process X (i.e. D = (0, 1)) and in
ergodicity of the process. Here we follow [17], where such questions were considered for
diffusion equations.

Let τ
y,µj

x,µi
be the first time when the process (Xx,µi

(t), µx,µi
(t)) attains (y, µj ). We

recall that the process (X,µ) is called recurrent if for any two points (x, µi), (y, µj ), x, y ∈
(0, 1), i, j = 1, 2,

P
{
τ

y,µj

x,µi
< ∞} = 1.

Denote

k1(x) = q1(x)

a1(x)
, k2(x) = q2(x)

a2(x)
,

k(x) = k1(x) + k2(x), m(x) = 1

a1(x)
− 1

a2(x)
.

Due to the assumptions made above, we have k1(x) > 0, k2(x) < 0 and m(x) > 0 in the entire
interval (0, 1).
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Introduce the integrals

I (0, r] = −
∫ r

0
k2(ξ) exp

(
−

∫ r

ξ

k(ζ ) dζ

)
dξ, 0 < r < 1, (2.10)

I [l, 1) =
∫ 1

l

k1(ξ) exp

(∫ ξ

l

k(ζ ) dζ

)
dξ, 0 < l < 1. (2.11)

Note that both boundedness and unboundedness of the integrals (2.10) and (2.11) do not
depend on the choice of r and l. It is shown in [1] that if

I (0, r] = ∞, I [l, 1) = ∞, (2.12)

the ends of the interval (0, 1) are unattainable in finite time for the process X. The following
theorem is proved in [1].

Theorem 2.1. The process (X,µ) is recurrent if and only if condition (2.12) is fulfilled.

It is also proved in [1] that

Eτ
y,µj

x,µi
< ∞

for any two points (x, µi) and (y, µj ) if and only if

K :=
∫ 1

0
m(ξ) exp

(
−

∫ ξ

c

k(ζ ) dζ

)
dξ < ∞, 0 < c < 1. (2.13)

Clearly, convergence of this integral does not depend on the choice of c.

The following theorem holds (see [1]).

Theorem 2.2. The process (X,µ) is ergodic if

I (0, r] = ∞, I [l, 1) = ∞, K < ∞. (2.14)

In the case (2.14), the process (X,µ) has a stationary measure with the density

λ1(x) = L

a1(x)
exp

(
−

∫ x

c

k(ζ ) dζ

)
= 1

a1(x) · ∫ 1
0 m(ξ) exp

( ∫ x

ξ
k(ζ ) dζ

)
dξ

,

(2.15)

λ2(x) = − L

a2(x)
exp

(
−

∫ x

c

k(ζ ) dζ

)
= − 1

a2(x) · ∫ 1
0 m(ξ) exp

( ∫ x

ξ
k(ζ ) dζ

)
dξ

,

where the constant L is equal to 1/K with K from (2.13).

3. Random walk generated by the switching component µ of the Markov process (X , µ)

3.1. Mean and variance of the random walk

Consider the system

dX

ds
= a(X,µ),

dY

ds
= b(µ), (3.1)

where b takes two values b1 = b(µ1) and b2 = b(µ2), respectively. The system (3.1) defines
the Markov process (X,µ, Y ), and the component Y is a random walk on the real axis y. Let
X(0) = x, Y (0) = y and µ(0) = µi . The functions

ui(t, x, y) := EYx,y,µi
(t) = y + E

∫ t

0
b(µx,µi

(s)) ds, i = 1, 2,
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satisfy the system of forms (2.4) and (2.5). From this, we easily derive that the functions

ui(t, x) := ui(t, x, 0) = E

∫ t

0
b(µx,µi

(s)) ds, i = 1, 2

satisfy the system

∂ui

∂t
= ai(x)

∂ui

∂x
− qi(x)ui + qi(x)uj + b(µi), j �= i,

(3.2)
ui(0, x) = 0, i = 1, 2.

Analogously, considering the solution of the system

dX

ds
= a(X,µ),

dY

ds
= b(µ(s)),

dZ

ds
= 2b(µ(s))Y,

starting from X(0) = x, Y (0) = 0, Z(0) = 0, µ(0) = µi, it is not difficult to derive that

vi(t, x) := EZx,0,0,µi
(t) = EY 2

x,0,µi
(t) = E

[∫ t

0
b(µx,µi

(s)) ds

]2

, i = 1, 2, (3.3)

satisfy the system

∂vi

∂t
= ai(x)

∂vi

∂x
− qi(x)vi + qi(x)vj + 2b(µi)ui, j �= i,

(3.4)
vi(0, x) = 0, i = 1, 2.

Let the initial data X(0), µ(0) be random and let the initial distribution of (X,µ) be given
by a density λi(x). Introduce the functions

u(t) = EE

[∫ t

0
b(µX(0),µ(0)(s)) ds|X(0), µ(0)

]
=

∫ 1

0
(u1(t, x)λ1(x) + u2(t, x)λ2(x)) dx,

(3.5)

v(t) = EE

[(∫ t

0
b(µX(0),µ(0)) ds

)2

|X(0), µ(0)

]
=

∫ 1

0
(v1(t, x)λ1(x) + v2(t, x)λ2(x)) dx.

(3.6)

Now suppose that the process (X,µ) is ergodic and the density λi(x) is stationary. Then
(see (3.2)),

du

dt
=

∫ 1

0

(
∂u1

∂t
λ1(x) +

∂u2

∂t
λ2(x)

)
dx

=
∫ 1

0

[
a1(x)

∂u1

∂x
− q1(x)u1 + q1(x)u2 + b(µ1)

]
λ1(x) dx

+
∫ 1

0

[
a2(x)

∂u2

∂x
− q2(x)u2 + q2(x)u1 + b(µ2)

]
λ2(x) dx

= a1(x)λ1(x)u1|10 +
∫ 1

0

[
−∂(a1λ1)

∂x
u1 − q1λ1u1 + q1λ1u2 + b(µ1)λ1

]
dx

+ a2(x)λ2(x)u2|10 +
∫ 1

0

[
−∂(a2λ2)

∂x
u2 − q2λ2u2 + q2λ2u1 + b(µ2)λ2

]
dx. (3.7)
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If ai(0)λi(0) = ai(1)λi(1) = 0, i = 0, 1 (this is a rather natural assumption, see, e.g., the
model in the following section), the substitutions in (3.7) vanish. Because the density λi(x)

satisfies (2.9), we get

du

dt
=

∫ 1

0
(b(µ1)λ1(x) + b(µ2)λ2(x)) dx. (3.8)

One can assume that∫ 1

0
(b(µ1)λ1(x) + b(µ2)λ2(x)) dx = 0 (3.9)

without loss of generality for further analysis. Due to this assumption, v(t) is the variance of
the random walk Y (t) when the process (X,µ) starts from the stationary distribution.

Analogously, we can derive

dv

dt
= 2

∫ 1

0
(b(µ1)u1(t, x)λ1(x) + b(µ2)u2(t, x)λ2(x)) dx. (3.10)

The right-hand side of (3.9) can be transformed as

dv

dt
= 2

∫ 1

0
(b(µ1)E

∫ t

0
b(µx,µ1(s)) ds · λ1(x) + b(µ2)E

∫ t

0
b(µx,µ2(s)) ds · λ2(x)) dx

= 2
∫ t

0
Eb(µ(0))b(µ(s)) ds = 2

∫ t

0
r(s) ds,

where for any ϑ � 0

r(s) = Eb(µ(0))b(µ(s)) = Eb(µ(ϑ))b(µ(ϑ + s))

is the covariance function of the component µ of the stationary process (X,µ) starting from
the distribution defined by the density λi(x).

3.2. Normal and anomalous diffusion

If µ does not depend on X, i.e. q1, q2 are positive constants (µ is a classic Markov chain in
this case), the variance v(t) can be easily evaluated (for simplicity, we take q1 = q2 = q,

b(µ1) = 1, b(µ2) = −1):

v(t) = 1

q
t − 1

2q2
(1 − e−2qt ) (3.11)

and

lim
t→∞

ln v(t)

ln t
= 1. (3.12)

Equality (3.12) is fulfilled for many random walks and, in particular, for the Brownian motion.
One usually calls such random walks the normal diffusion.

In general, we have

0 < lim inf
t→∞

ln v(t)

ln t
� lim sup

t→∞
ln v(t)

ln t
� 2.

If

lim
t→∞

ln v(t)

ln t
= 2,

one says that ballistic motion takes place. One says that we have anomalous diffusion if

1 < lim inf
t→∞

ln v(t)

ln t
� lim sup

t→∞
ln v(t)

ln t
< 2
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(superdiffusion), or if

0 < lim inf
t→∞

ln v(t)

ln t
� lim sup

t→∞
ln v(t)

ln t
< 1 (subdiffusion).

If there exist the limits

γx,µi
= lim

t→∞
ln vi(t, x)

ln t
= lim

t→∞
ln E

[ ∫ t

0 b(µx,µi
(s)) ds

]2

ln t
,

γ = lim
t→∞

ln v(t)

ln t
= lim

t→∞
ln E[E

[ ∫ t

0 b(µX(0),µ(0)) ds
]2|X(0), µ(0)]

ln t
,

then the variance of Y at large time t is approximately proportional to tγx,µi or tγ , respectively.
Apparently, as a rule, γx,µi

= γ for any x, µi.

Although we have undertaken a number of serious attempts to find the exponents γ and
γx,µi

analytically, we could not obtain any sufficiently complete results. We believe that this
problem is both difficult and interesting from the analytical point of view. In this paper,
we restrict ourselves to the numerical investigation of the problem. For calculating vi(t, x)

and v(t, x), one can use both the probabilistic approach and the deterministic one. The
deterministic approach consists in solving the system (3.4). Another deterministic approach
rests on the Laplace transform. Here we use the Monte Carlo technique which is very simple
and gives accurate results in calculating the function

γ (t) := ln v(t)

ln t
, 0 � t � T ,

for sufficiently large T . The results allow us to derive correct (from the practical point of view)
conclusions for infinite time.

4. Model

In this section, we give a concrete realization of the Markovian switching mechanism proposed
in the previous section. Consider the scalar equation in the interval (0, 1)

dX

ds
= a(X,µ) =

{
a1(X) = (1 − X)1+α, if µ = µ1,

a2(X) = −X1+α, if µ = µ2,
(4.1)

with the infinitesimal characteristics of the chain µ:

q1(x) = (1 − x)β, q2(x) = xβ.

We have

k1(x) = (1 − x)β−1−α, k2(x) = −xβ−1−α,

k(x) = (1 − x)β−1−α − xβ−1−α, m(x) = 1

(1 − x)1+α
+

1

x1+α
,

and

I (0, r] = exp

(
− 1

α − β
((1 − r)β−α + rβ−α)

)

×
∫ r

0
exp

(
1

α − β
((1 − ξ)β−α + ξβ−α)

)
ξβ−1−α dξ, β �= α,

I (0, r] = r(1 − r)

∫ r

0

dξ

ξ 2(1 − ξ)
, β = α.

We see from here that I (0, r] = ∞ iff β � α. Analogously, I [l, 1) = ∞ iff β � α. In this
case, the process (X,µ) is recurrent (see theorem 2.1).
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Further,

K = exp

{
1

α − β
((1 − c)β−α + cβ−α)

}∫ 1

0

(
1

(1 − ξ)1+α
+

1

ξ 1+α

)

× exp

{
− 1

α − β
((1 − ξ)β−α + ξβ−α)

}
dξ, β �= α,

K = 1

c(1 − c)

∫ 1

0

(
ξ

(1 − ξ)α
+

1 − ξ

ξα

)
dξ, β = α,

and we see that the conditions of theorem 2.2 are fulfilled iff β < α or β = α < 1. So, we get
the following proposition.

Proposition 4.1. If β < α or β = α < 1, then the process (X,µ) generated by equation (4.1)
is ergodic and its stationary distribution is defined by the density λi(x), where in the case
β < α

λ1(x) = C

(1 − x)α+1
exp

{
− 1

α − β
((1 − x)β−α + xβ−α)

}
,

λ2(x) = C

xα+1
exp

{
− 1

α − β
((1 − x)β−α + xβ−α)

}
,

C =
[∫ 1

0

(
1

(1 − ξ)α+1
+

1

ξα+1

)
exp

{
− 1

α − β
((1 − ξ)β−α + ξβ−α)

}
dξ

]−1

,

and in the case β = α < 1

λ1(x) = (1 − α)(2 − α)

2

x

(1 − x)α
, λ2(x) = (1 − α)(2 − α)

2

1 − x

xα
.

We note that here we give the simple and natural realization of the switching mechanism
from section 3. To reflect specific features of a particular physical system, one can adjust the
choice of a and of the characteristics of the chain µ.

5. Numerical analysis

In this section, we study the model (3.1) and (4.1) numerically. For definiteness, in (3.1) we
take

b(µ) =
{−1, if µ = µ1,

1, if µ = µ2.
(5.1)

We first briefly describe the numerical algorithm used in this study and then present the
numerical results.

We approximate the Markov process (X,µ, Y ) from (3.1), (4.1) and (5.1) with X(0) = x,

µ(0) = µ0 and Y (0) = 0, respectively, by the chain (X̄, µ̄, Ȳ ) as follows. We choose a fixed
time step h > 0. We start the chain from the given values: X̄(0) = x, µ̄(0) = µ0, Ȳ (0) = 0
and assign θ0 = 0. We simulate the random time τ1 according to the exponential distribution
with the parameter λ = qµ̄(θ0)(X̄(θ0)). If τ1 > h, we put the time increment �θ1 = h and
µ̄(θ1) = µ̄(θ0), θ1 = θ0 + �θ1; otherwise �θ1 = τ1 and µ̄(θ1) is assigned the other state
than µ̄(θ0). We exactly integrate the system (3.1), (4.1), (5.1) in the interval [0, θ1] with the
initial data X̄(θ0) = x, µ̄(θ0) = µ0, Ȳ (θ0) = 0, respectively, and thus obtain X̄(θ1), Ȳ (θ1).

Starting from X̄(θ1), µ̄(θ1), Ȳ (θ1) and doing analogously to the simulation at the first step,
we obtain X̄(θ2), µ̄(θ2), Ȳ (θ2), respectively, and so on. In order to simulate characteristics
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Figure 1. A sample trajectory of X(t) for α = 0.9 and β = 0.2 (left) and β = 0.8 (right). The
simulation is done with h = 0.01, X(0) = 0.5, Y (0) = 0 and µ(0) = µ1.

of the random walk, e.g. Var(Y ), on the time interval [0, T ], we perform M independent
Monte Carlo runs. During each Monte Carlo run m = 1, . . . , M, we get the sequence
θ

(m)
l , X̄(m)(θ

(m)
l ), µ̄(m)(θ

(m)
l ), Ȳ (m)(θ

(m)
l ), l = 0, . . . , �(m), with θ

(m)

�(m) being the first moment
that is larger than T . Then we put X̄(m)(tk), µ̄

(m)(tk), Ȳ
(m)(tk), k = 0, . . . , N,N = T/h,

equal to X̄(m)(θ
(m)
l ), µ̄(m)(θ

(m)
l ), Ȳ (m)(θ

(m)
l ), respectively, with θ

(m)
l being the closest time

moment to tk. When (x, µ0) is distributed with a given density λi(x), i = 1, 2, we start the
Monte Carlo procedure by simulating µ

(m)
0 equal to µ1 or µ2 with probability 1/2 and then

by drawing x(m) according to the density λ
µ

(m)
0

(x). It is quite clear that for sufficiently small h

the obtained X̄(tk), µ̄(tk), Ȳ (tk) are close to the exact values X(tk), µ(tk), Y (tk), respectively.
We calculate the variance Var(Yx,0,µ0(T )) as

Var(Y (T )) ≈ 1

M

M∑
m=1

[
Ȳ

(m)

x(m),0,µ
(m)
0

(T )
]2 −

[
1

M

M∑
m=1

Ȳ
(m)

x(m),0,µ
(m)
0

(T )

]2

.

Now we present some results of the numerical experiments. We take α, β from the range
0 < β < α which ensures ergodicity of (X,µ) (see proposition 4.1). We note that the case
α = β < 1 (which is on the boundary of the set of values (α, β) for which the chain (X,µ) is
ergodic) is difficult from the numerical point of view, and it is not considered here.

Figure 1 gives typical behaviour of X(t) for different values of α and β while figure 2
illustrates typical behaviour of Y (t). When γ is essentially larger than 1 as in the case
α = 0.9, β = 0.8 (cf table 1), the trajectory Y (t) has a clear Levy-flight effect (see occasional
very large steps in figure 2(right)). In the case α = 0.9, β = 0.2 the exponent γ is close to
1 and the walk has behaviour very close to the normal diffusion (see figure 2 (left)). We also
see in figure 1 that X(t) has more persistency in the case of α = 0.9, β = 0.8 than in the case
α = 0.9, β = 0.2.

Figure 3 demonstrates the behaviour of γ (t)

γ (t) ≈ γ̄ (t) = ln VarȲ (t)

ln t
,

for various α and β on a long time interval, while table 1 gives the values of γ̄ (T ) for T = 104.

We see that for a long period of time, the random walker Y (t) has the superdiffusion regime.
It follows from the experiments (see table 1) that for a fixed α the exponent γ (T )

decreases with the decrease of β, while for a fixed β the exponent γ (T ) slightly decreases
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Figure 2. A sample trajectory of Y (t) for α = 0.9 and β = 0.2 (left) and β = 0.8 (right). The
other parameters are the same as in figure 1.
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Figure 3. Behaviour of γ̄ (t). Left: α = 0.9 and β = 0.2 (curve 1), β = 0.4 (curve 2), β = 0.8
(curve 3). Right: β = 0.4 and α = 0.9 (curve 1), α = 0.6 (curve 2), α = 0.5 (curve 3). The other
parameters are the same as in table 1.

Table 1. The values of γ̄ (T ) = ln Var(Ȳx,0,µ0 (T ))/ ln T for T = 104, h = 0.02,M = 105 and for
various α and β; the initial data (x, µ0) are distributed according to the stationary density λi(x).
Here the Monte Carlo error of Var(Ȳx,0,µ0 ) is not larger than 1.5%.

α = 0.4 α = 0.5 α = 0.6 α = 0.9 α = 1.5 α = 3

β = 0.2 1.08 1.07 1.07 1.05 1.04 1.03
β = 0.4 – 1.19 1.16 1.12 1.09 1.06
β = 0.8 – – – 1.46 1.21 1.12
β = 1 – – – – 1.31 1.16
β = 2 – – – – – 1.85

with the increase of α. With β tending to 0, the behaviour becomes closer and closer to the
normal diffusion, which is natural since for β = 0 the infinitesimal characteristics of the chain
µ do not depend on x and µ is a classic Markov chain in this case (see (3.10) and (3.11)). For
a fixed β and α tending to ∞, the behaviour also becomes closer and closer to the normal
diffusion.



Superdiffusion of a random walk driven by an ergodic Markov process with switching 5781

-400

-300

-200

-100

0

100

-300 -200 -100 0

Figure 4. A sample phase trajectory (Y1(t), Y2(t)) starting from (0, 0) at t = 0. The simulation is
done for α = 0.5, β = 0.4 and 0 � t � 10 000 and with h = 0.01

Figure 4 gives a sample phase trajectory (Y1(t), Y2(t)), where Yi(t) are independent
and modelled by (3.1), (4.1) and (5.1). The presented trajectory corresponds to α = 0.5
and β = 0.4, when γ̄ (t) ≈ 1.19 (see table 1). One can observe the typical superdiffusion
behaviour: there are long, rare steps which mostly determine the overall position of the
particle.

6. Conclusions

In this paper, we develop the Markov model with a switching mechanism that dynamically
generates the superdiffusive behaviour of a random walker. The model involves three
components: the ‘hidden’ variable X, the non-Markovian switching component µ and the
random walker position Y. The main feature of this model is that the transition probabilities
of the switching component µ depend on the variable X. This dependence can induce a long-
temporal correlation of the component µ and ultimately the superdiffusion of the random
walker. We obtain the conditions under which the Markov process (X,µ) is ergodic. We also
find explicit expressions for the corresponding stationary distributions. By using the Monte
Carlo technique, we demonstrate that the variance of Y is proportional to tγ with γ > 1 for
large t.

The model can be generalized in many ways, e.g., by modelling the ‘hidden’ variable X
via a stochastic differential equation instead of the ordinary one used here. We believe that
the proposed Markov model with a non-Markovian switching component can be useful for a
variety of physical and biological applications including the gating process for ion channels,
migration and proliferation dichotomy in tumour cell invasion, stochastic resonance theory,
anomalous diffusion, etc.
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