
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

The effects of distributed life cycles on the dynamics of viral infections

Daniel Campos a,�, Vicenc- Méndez b, Sergei Fedotov a

a Department of Applied Mathematics, School of Mathematics, The University of Manchester, Manchester M60 1QD, UK
b Grup de Fı́sica Estadı́stica, Departament de Fı́sica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
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a b s t r a c t

We explore the role of cellular life cycles for viruses and host cells in an infection process. For this

purpose, we derive a generalized version of the basic model of virus dynamics (Nowak, M.A., Bangham,

C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74–79) from

a mesoscopic description. In its final form the model can be written as a set of Volterra

integrodifferential equations. We consider the role of distributed lifespans and a intracellular (eclipse)

phase. These processes are implemented by means of probability distribution functions. The basic

reproductive ratio R0 of the infection is properly defined in terms of such distributions by using an

analysis of the equilibrium states and their stability. It is concluded that the introduction of distributed

delays can strongly modify both the value of R0 and the predictions for the virus loads, so the effects on

the infection dynamics are of major importance. We also show how the model presented here can be

applied to some simple situations where direct comparison with experiments is possible. Specifically,

phage–bacteria interactions are analyzed. The dynamics of the eclipse phase for phages is characterized

analytically, which allows us to compare the performance of three different fittings proposed before for

the one-step growth curve.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The interactions between viruses and cells in an infection
process can be seen as an ecological system within the infected
host. The mathematical description of these systems has attracted
increasing interest in the last years (Wodarz, 2006), especially
concerning the characteristics of the immune response after a
viral attack. A decade ago, Nowak and Bangham (1996) presented
what has been called thereafter the basic model of virus dynamics
(BMVD). This model has become quite popular among theorists
and experimentalists (see Nowak and May, 2000 or Perelson,
2002). The interplay between the BMVD and the effect of an
immune response has proved useful to describe the dynamics of
chronic HIV infections (Perelson, 2002). Furthermore, it has
provided interesting results concerning topics such as the
performance of drug therapies (Bonhoeffer et al., 1997; Wodarz
and Nowak, 1999) and lymphocyte exhaustion (Wodarz et al.,
1998).

The BMVD describes the time evolution of non-infected cells
(X), infected cells (Y) and viruses (V) by the system of equations:

dX

dt
¼ l� dX � bXV

dY

dt
¼ bXV � aY

dV

dt
¼ kY � bXV � uV (1)

The infection process is governed by the parameter b, which
determines the rate of successful contacts between the target cells
and the viruses. Mortality terms for the three species are
considered with constant death rates d, a and u, respectively.
The parameter k measures the rate at which virions are released
from a single infected cell. Finally, new target cells are produced
by the host at a constant rate l.

Despite the success achieved by the BMVD, it is clear that the
model described in (1) is just a first approximation to the real
underlying process. One of the simplifications made in the model
is that it assumes that the death rates are exponentially
distributed (i.e., mortalities are considered as Markovian random
processes) and therefore do not take into account the details of
the cellular life cycles. However, delays and structured life cycles
are expected to play a very significant role in the dynamics of viral
infections. For example, the infection process involves an
intracellular phase of the virus, also known as the eclipse phase,
which is not explicitly considered in (1). For this reason, in the
recent years some works have explored the effects of constant and
distributed delays in the BMVD and in the cases where an
immune response is considered. Herz et al. (1996) showed for the
first time the importance of delays in order to explain the virus
loads observed in HIV patients under drug treatment. This delayed
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model was later explored from a more formal point of view by
Tam (1999). Similar ideas, with different expressions for the
infection term, were considered by Culshaw and Ruan (2000), Fort
and Méndez (2002) and Li and Wanbiao (1999). The effect of
distributed delays has been explored for different models of virus
dynamics by Kirschner and Webb (1997), Mittler et al. (1998),
Lloyd (2001), Banks et al. (2003), Nelson et al. (2004) and Rong et
al. (2007). Finally, the role of a delayed immune response has been
the subject of extensive research. Some examples are the works by
Buric et al. (2001), Canabarro et al. (2004), Wang et al. (2007) and
the references there in, which focused on the chaotic patterns
which can appear in these systems.

The papers mentioned above have helped us to understand
how delays can modify the cell–virus and virus–immune system
dynamics. However, most of those works focused on the case
where only one of the processes (usually the intracellular phase)
is delayed. So, they do not considered the possibility of different
delays for each process, whose combined contributions could
modify the dynamical behavior of the system.

On the other hand, the introduction of delays in the virus
dynamics has been usually based on phenomenological (not
always rigorous) arguments. Only in Banks et al. (2003), Fort and
Méndez (2002) and Wearing et al. (2005) a more formal
discussion was provided. We stress that the implementation of
delays into dynamical models is sometimes tricky, as memory
effects can lead to the breakdown of hypothesis that are well
established for Markovian processes. In fact, there is currently a
very active research on this subject from the point of view of
statistical mechanics (see, for example, Allegrini et al., 2003,
2007; Rebenshtok and Barkai, 2007 and the references therein).
Due to the subtleties involved in the formulation of delayed
models, we think that a rigorous physical approach is necessary to
reach an accurate description of virus dynamics. Here, we propose
a system of Volterra integrodifferential equations which is a
generalization of the BMVD. This system of equations is derived
from a mesoscopic approach where balance equations for each
species (X, Y and V ) are considered explicitly. Mesoscopic
descriptions as that considered here (based on Continuous-Time
Random Walk processes) have become common tools for the
description of physical and biological processes. At this stage, they
have proved useful for the study of heat transport (Emmanuel and
Berkowitz, 2007), tumor cell growth (Fedotov and Iomin, 2007),
solute transport in porous media (Berkowitz et al., 2000),
earthquake dynamics (Helmstetter and Sornette, 2002), financial
markets (Masoliver et al., 2006) and many other applications.
Here we will explore for the first time their application to the field
of virus dynamics.

So, the aim of this paper is to use an integrodifferential
approach to show how distributed lifespans and distributed times
to viral production can strongly influence the predictions from the
BMVD. As a result, we shall show that the value of the basic
reproductive ratio R0 and the virus load can be altered, in
accordance with similar conclusions found in (Lloyd, 2001; Nelson
et al., 2004; Rong et al., 2007). Furthermore, the advantage of
using such a general formalism as the one proposed here is that
different situations of interest can be analyzed as particular cases
of the model. According to this, we show how our model can be
used to fit and characterize the one-step growth curve observed in
phage–bacteria interactions. Three fittings proposed before by
different authors are compared. We find that, although the three
approaches fit the one-step growth curve reasonably well, their
predictions concerning the dynamics of the eclipse phase are
slightly different.

In the following, we show how a generalized version
of the BMVD can be obtained using a mesoscopic description. In
Section 2 we present our model, whose formal derivation is given

in Appendix A for the sake of clarity. In Section 3 we explore the
equilibrium states and their stability, which let us define the basic
reproductive ratio R0. After that, we consider specific situations of
special interest in virus dynamics. Specifically, the effects of a
constant delay in the phase eclipse (Section 4) and distributed
delays in the mortalities of cells and viruses (Section 5) are
studied. We also show how the model derived in Section 2 works
in the case of phages–bacteria dynamics (Section 6), and we
provide some examples using experimental data extracted from
the literature. Finally, the main conclusions obtained from our
study are summarized in Section 7.

2. The age-structured BMVD

The interest of introducing age-structured effects into a virus
dynamics model is not merely academic. Experimentally, it is
known that both the phase eclipse and the times to death of cells
can exhibit in general complicated time distributions. Specifically,
times to death are usually fitted to peaked curves as gamma,
Weibull or lognormal functions. So that, we shall propose a model
which can capture, in contrast with the classical BMVD, the effects
resulting from these life cycles.

The model we consider here is depicted in Fig. 1. It follows the
same scheme as the BMVD but some of the random processes
(those indicated by the dotted lines) are statistically governed by
some probability distribution functions (PDFs). So that, jXðtÞ

represents the probability that a target cell X dies at age t, with
equivalent definitions for jY ðtÞ and jV ðtÞ for infected cells and
viruses. Similarly, the function fðtÞ determines the viral produc-
tion since infection: a cell that becomes infected at time t0 can
release fðtÞ viruses at time t0 þ t.

The Volterra integrodifferential equations corresponding to the
scheme in Fig. 1 read

dXðtÞ

dt
¼ l� bXðtÞVðtÞ �

Z t

0
Xðt � t0ÞCXðt

0ÞOXðt � t0; tÞdt0

dYðtÞ

dt
¼ bXðtÞVðtÞ �

Z t

0
Yðt � t0ÞCY ðt

0Þdt0

dVðtÞ

dt
¼ � bXðtÞVðtÞ þ

Z t

0
bXðt � t0ÞVðt � t0Þfðt0ÞFY ðt

0Þdt0

�

Z t

0
Vðt � t0ÞCV ðt

0ÞOV ðt � t0; tÞdt0 (2)

The formal derivation of this model in terms of a mesoscopic
description is provided in Appendix A. Also, to facilitate under-
standing we provide in Table 1 a summary with all the temporal
distributions used in the present paper.

The functions CX , CY , CV are defined by their Laplace
transforms (we denote the Laplace transform of a function by
the brackets ½��s with the conjugate variable s)

½CX �s �
½jX �s

½FX �s
; ½CY �s �

½jY �s

½FY �s
; ½CV �s �

½jV �s

½FV �s
(3)
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Fig. 1. Scheme of the BMVD model with distributed lifespans and distributed

times to viral production.
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where FXðtÞ �
R1

t jXðt
0Þdt0 is the survival probability for the cells

of age t. Analogous definitions hold for FY and FV . According to
(3), the function CXðtÞ can be interpreted as the instantaneous
death rate for a cell X of age t. Then, the term

R t
0 Xðt �

t0ÞCXðt
0ÞOXðt � t0; tÞdt0 represents a generalized mortality term

with age-distributed death rates. To find the density of cells dying
at time t, the density of cells which are present at any previous
time Xðt � t0Þ is multiplied by the instantaneous rate CXðt

0Þ for
cells of age t0, and by the function OXðt � t0; t0Þ, which is the
probability that a cell X has not become infected during the time
interval ðt � t0; tÞ.

Similarly, the term
R t

0 bXðt � t0ÞVðt � t0Þfðt0ÞFY ðt
0Þdt0 in the

equation for VðtÞ represents the release of new virions from
infected cells. The factor bXðt � t0ÞVðt � t0Þ gives us the density of
cells that became infected at time t � t0. This expression is then
multiplied by the viral production function fðt0Þ and by the
survival probability of the infected cells during that period
(FY ðt

0Þ).
The system of Eqs. (2)–(3) represents our generalization of the

BMVD. An important conclusion from (2) is that the density of
infected cells Y does not appear in the equations for XðtÞ and VðtÞ.
It means that the formalism introduced here allows us to reduce
the BMVD to a two-species model. We do not need to consider
explicitly the density YðtÞ; the existence of the infected cells is
implicitly considered by means of the function FY appearing in
the equation for VðtÞ. Similar results were found in previous works
closely related to ours; actually, our model can be seen as a
extension of those studied in Nelson et al. (2004) and Rong et al.
(2007) to the case of distributed lifespans.

3. Equilibrium states and their stability

The equilibrium states of the model (2) come from the analysis
of the fixed points of the system at t!1. There are two possible
equilibrium states: the first one is the trivial, infection-free state,
given by

ðXeq;Yeq;VeqÞ ¼ ðltX ;0;0Þ (4)

where we use ti ¼
R1

0 FiðtÞdt to denote the average lifetime of
species i, with i ¼ X;Y ;V . The second state corresponds to the case
of a successful infection defined by

Xeq

Z 1
0

e�bXeqtFV ðtÞdt ¼
ltX

R1
0 e�bltX tFV ðtÞdt

R0

Yeq ¼ ltYbVeq

Z 1
0

e�bVeqtFXðtÞdt

Z 1
0

e�bVeqtFXðtÞdt ¼
Xeq

l
(5)

where Eqs. (27) and (28) have been used, and we have defined

R0 � bltX

Z 1
0

e�bltX
tFV ðtÞdt

� � Z 1
0

fðtÞFY ðtÞdt

� �
(6)

As can be seen from (5), it is not possible to give explicit
expressions for the equilibrium densities in the infected state.
However, it can be proved that this state has biological meaning
(Yeq40 and Veq40) only if R041. To see this, note that the
condition R041 applied to the first equation of (5) implies
necessarily XeqoltX, which means that the equilibrium density in
the infected state is lower than in the infected-free state.
Introducing XeqoltX into the third equation in (5), it follows that
only in that case Veq has a positive value. Hence, R0 can be
properly defined as the basic reproductive ratio, which is a key
parameter in epidemiology and virus dynamics in order to predict
the emergence of an infection (Anderson and May, 1991; Nowak
and May, 2000). For R0o1 we have that every single virus
generates statistically less than one new virus, so a permanent
infection is not possible and the infected state Veq40 does not
exist. We also note that the case explored in the present paper,
and so the expression (6), is more general than recent estimations
for R0 where the possibility of a distributed intracellular period
was also taken into account (Heffernan and Wahl, 2006).

We will now explore the stability of the equilibrium states
found. For this purpose, we will use the usual linear-stability
analysis, so we introduce XðtÞ ¼ Xeq þ dXðtÞ and VðtÞ ¼ Veq þ dVðtÞ.
Inserting these definitions into (2) and linearizing about the
equilibrium state we obtain the following system for the
perturbations:

ddXðtÞ

dt
¼ � bVeqdXðtÞ � bXeqdVðtÞ

�

Z t

0
dXðt � t0ÞCXðt

0Þdt0

þ bXeq

Z t

0
dVðt � t0ÞCXðt

0Þt0 e�bVeqt0 dt0

ddVðtÞ

dt
¼ � bXeqdVðtÞ � bVeqdXðtÞ

þ bVeq

Z t

0
dXðt � t0Þfðt0ÞFY ðt

0Þdt0

þ bXeq

Z t

0
dVðt � t0Þfðt0ÞFY ðt

0Þdt0

�

Z t

0
dVðt � t0ÞCV ðt

0Þdt0

þ bVeq

Z t

0
dXðt � t0ÞCV ðt

0Þt0 e�bXeqt0 dt0 (7)

Since this system is now linear, we can propose for the
perturbations exponential solutions of the form emt to get the
characteristic equation

0 ¼ ðmþ bXeq þ ½CX �mÞðmþ bXeq � bXeq½fFY �m þ ½CX �mÞ

� b2XeqVeq 1�
d½CX �m

dm

� �
1� ½fFY �m �

d½CV �m

dm

� �
(8)

where we define ½f �m �
R

e�mtf ðtÞdt in accordance with the
notation used above for the Laplace transform.

3.1. Infection-free equilibrium state

First we analyze the stability of the trivial state corresponding
to the absence of viruses. Introducing (4) into (8) we obtain

1 ¼ bXeq½FV �mþbXeq
½fFY �m (9)

From (9), it is easy to find the necessary condition for the
transition from stability to instability. In the BMVD it is known
that for values of R0o1 the infected-free state is stable, and
becomes unstable otherwise. From (9), it is possible to prove that,
in general, this condition holds for any choice of the PDFs. The
right-hand side in that equation is a monotonically decreasing

ARTICLE IN PRESS

Table 1
Summary of the notation for the temporal distributions used in the model

PDF Meaning

fðtÞ Probability of time to virus release after a cell is infected

jiðtÞ Time to death of cells of species i

FiðtÞ Survival (no-death) probability of cells of species i and age t (see (23))

CiðtÞ Instantaneous death rate for cells of age t (see (3))

Oiðt � t0 ; tÞ Survival (no-infection) probability of a cell of species i from time t � t0

to t

D. Campos et al. / Journal of Theoretical Biology 254 (2008) 430–438432
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positive function of m and takes the value R0 at m ¼ 0 (see 6). Then,
if R041 Eq. (9) has a solution for a positive value of m, which is
nothing but the sufficient condition for the state to be unstable. If
R0o1 the solution to (9) will be a negative value of m. In this case
the infection-free equilibrium state is linearly stable and the
infection dies out.

3.2. Infected equilibrium state

Using (5), the characteristic equation (8) for the infected state
becomes extremely complicated to treat, and it makes impossible
to determine analytically the stability of the infected state.
However, we can still deduce the characteristics of this state by
imposing some conditions to prevent the system from behaving in
an unrealistic way. First, we mention again that the infected state
does not exist for R0o1, so we only need to study the case R041.
Second, we can rewrite the first equation in (5), using (6) and the
definition of the Laplace transform, as

½jV �bXeq
¼
½fFY �m � 1

½fFY �m
(10)

Then, we conclude that, for any given PDFs, there is only one
possible solution for Xeq, as the left-hand side of this equation is a
monotonically decreasing function of Xeq. From that, similar
arguments can be applied to the third equation in (5), so it follows
that the value for Veq is unique too. As a whole, we have that the
infected state is always unique. This, together with the instability
of the non-infected state for R041, allows us to conclude that the
infected state cannot be an unstable node or a saddle point, as it
would imply that for some initial conditions the system would
grow without control towards the state X !1 and/or V !1.
This unbounded behavior is not possible in our system. Then, the
only possibility is that the infected state is stable for R041.

The derivations presented in this section show that the
introduction of distributed lifespans and viral production does
not modify the stability of the BMVD. Although our mesoscopic
model (2) is much more general that the original version (1), we
still find that the condition R0 ¼ 1 defines a bifurcation point at
which the infection-free state changes its stability and a stable
infected state appears. Finally, note that R041 can also be
interpreted as a threshold value for the contact rate

b4
1

ltX ½
R1

0 e�bltX
tFV ðtÞdt�½

R1
0 fðtÞFY ðtÞdt�

(11)

4. The BMVD with a delayed eclipse phase

We have presented a very general model which takes into
account age-structured effects for the cellular lifespan and the
eclipse phase. However, it can be useful to study some specific and
simpler cases which have a special interest for application
purposes.

First, we consider here the case when no age-distributed
effects are introduced in the death process, i.e., the probability of
death is independent of the age of the cells. This corresponds to
the situation used in the BMVD, which in our integrodifferential
model is recovered by assuming jX , jY , jV as exponentially
decaying functions (jXðtÞ ¼ d e�dt , jY ðtÞ ¼ a e�at , jV ðtÞ ¼ u e�ut).
For the eclipse phase, we can assume that when a cell is infected,
it takes a fixed constant time t until the first virion is released and
after that, virions are continuously released at a constant rate k.
The delay t is the time necessary to inject the viral core into the
cell and make its genetic machinery start the reproduction
process. So that, the function fðtÞ in our model will be taken as

a step function fðtÞ ¼ kHðt � tÞ, where Hð Þ is the Heaviside
function.

This specific example has been studied by some authors before
(Herz et al., 1996; Tam, 1999; Culshaw and Ruan, 2000), so we can
compare the predictions from our model with those from previous
approaches. Replacing the distribution functions jiðtÞ; fðtÞ into
the general model (2) we obtain

dX

dt
¼ l� dX � bXV

dY

dt
¼ bXV � aY

dV

dt
¼

Z t

t
bXðt � t0ÞVðt � t0Þk e�at0 dt0 � bXV � uV (12)

In the equation for VðtÞ, the expression bXðt � t0ÞVðt � t0Þ repre-
sents those cells that became infected at time t � t0. So, the new
virions appeared are equal to that expression multiplied by the
rate k and by the probability e�at0 that the infected cells have
survived from time t � t0 to t. The expression of R0 that one
obtains for this case, from (6), is

R0 ¼
bl
du

k

a
e�at � 1

� �
(13)

Note that the system (12) is apparently different to the previous
models proposed before for the analysis of a delayed eclipse phase
(Herz et al., 1996; Tam, 1999; Culshaw and Ruan, 2000). In those
works a delayed term bXðt � tÞVðt � tÞ was introduced ad hoc in
the evolution equation for YðtÞ:

dX

dt
¼ l� dX � bXV

dY

dt
¼ bXðt � tÞVðt � tÞ e�at � aY

dV

dt
¼ kY � bXV � uV (14)

However, it is easy to see that the value of R0 for this model is
exactly the expression (13), and the equilibrium states coincide
with those found from our model too. Actually, both models
represent the same underlying process except for one subtle
detail. In the model (14), the fraction of cells bXðt � tÞVðt � tÞ are
considered as infected cells only after the time delay t, which
means that Y is taken as the density of productively infected cells.
So, from the time of infection t � t to the time of first release t
these cells do not belong neither to species Y nor to X, so they are
in a transient state not considered explicitly in the model. Instead,
in our model the cells become Y cells at time t � t and they start
releasing the new virions at time t. So that, the only difference
between (12) and (14) will be in the solution for YðtÞ: the value
predicted by the model (14) will be always below the one
predicted by (12).

5. The effect of age-distributed times for cellular death

Now we study a more realistic case, in accordance to the
experimental data available in the literature. We will consider that
the eclipse phase follows the same dynamics as that in Section 4,
but the death times are now assumed to follow gamma
distributions, which are common functions used for fitting
experimental data to cellular death times (see for example
Hawkins et al., 2007). Hence, in this case we will use

fðtÞ ¼ kHðt � tÞ; jiðtÞ ¼
tai�1 e�t=t�

i

ðt�i Þ
aiGðaiÞ

(15)

for i ¼ X;Y ;V, where Gð�Þ denotes the gamma function. From the
characteristic parameters of the gamma distribution ai and t�i we
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can also find the expression for the average lifetimes as ti ¼ t�i ai

(with arbitrary time units).
Inserting (15) into (6) the basic reproductive ratio R0 yields

R0 ¼
ð1þ bltXt�V Þ

aV � 1

ð1þ bltXt�V Þ
aV

kt�Y e�t=t
�
Y

XaY�1

j¼0

aY � j

j!

t
t�Y

� �j
" #

(16)

for aY integer. From (16), it follows that the influence of
distributed death ages could be important for the value of R0

and, in consequence, it modifies the value of the virus load at
equilibrium. This effect is represented in Fig. 2, where we have
plotted the expression (16) and the equilibrium virus load
obtained from (5) as a function of the parameters a (for simplicity
we define a � aX ¼ aY ¼ aV ) and t. As seen there, R0 depends
linearly on a, which at the same time yields a power-law
dependence of Veq on a. On the contrary, the dependence of
these magnitudes on t does not seem to follow any simple
function; specifically, a very sharp behavior for Veq is observed
near the critical point R0 ¼ 1 (indicated by dotted lines).

Fig. 3 shows the numerical solution VðtÞ obtained from the
model (2) for different values of the parameter a. For a ¼ 1 we
recover the situation where lifespans are exponentially distrib-
uted, it is, the case of the BMVD. In the three curves shown, the
average lifetimes for the three species are the same; it allows us to
compare properly the effects of the mortality distributions on the
virus load dynamics. Note that the virus loads decrease in time for
to5; this is because we have used a value t ¼ 5 for the eclipse
phase, so only after t ¼ t the infected cells start to release the first
virions, and then the virus load increases drastically. As observed,
the values of the virus load for a ¼ 1 are lower than in the other
two cases for small times. This is because the BMVD assumes
unrealistic high probabilities of death for the early stage of the
infection, an effect which can be corrected by the gamma-
distributed mortalities used here. This point is of great impor-
tance concerning the probability of a fast primary immune
response to clear the infection. We also find important differences
between the maximum virus loads reached at equilibrium; for the

parameters used in Fig. 3, the final virus load for a ¼ 1 is
approximately seven-fold higher than in the case a ¼ 3.

Therefore, we conclude that the BMVD underestimates the
virus loads in the early stages of the infection and overestimates
the peak of the virus load, if compared with the case of distributed
mortalities considered here. In consequence, it turns out that we
need to know with some detail the life cycle of viruses and cells to
obtain an accurate picture of the infection dynamics.

6. Application to phage–bacteria interactions

The interaction between phages and bacteria can be described
as two consecutive steps: adsorption and reproduction (McGrath

ARTICLE IN PRESS
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and van Sinder, 2007). Adsorption involves a collision between
phage and bacteria resulting in a group, called infected bacteria,
constituted by the bacteria and the phage attached to its
membrane. The second step begins when the phage inoculates
its genetic material into the host bacteria and a replication process
starts. From this time onwards the number of new viruses
increases inside the bacteria, stopping when the bacteria bursts
at the end of the latent period. Basically, the main difference
between this situation and those explored in the previous sections
is that for phages the eclipse phase finishes with a lytic process
that involves the death of the infected cell. In terms of the model
presented here, this idea can be introduced simply by choosing
the appropriate form for the function fðtÞ.

Here we deal with the reproduction process, which is known to
produce a characteristic one-step growth curve VðtÞ for virulent
phages. Let us consider that at t ¼ 0 the phage inoculates its
genome and all the bacteria become infected instantaneously,
with Yðt ¼ 0Þ ¼ Yð0Þ. Then, we can define JV ðtÞ ¼ Yð0ÞfðtÞ as the
rate of viruses released at time t, following the same notation as in
Appendix A (see Eq. (26) and the comments below). As all the cells
are assumed to be already infected at t ¼ 0, the infection process
for t40 can be obviated. We can thus take OV ðt � t0; tÞ ¼ 1 for
0ot0ot in Eq. (26) to obtain

VðtÞ ¼ Vð0ÞFV ðtÞ þ

Z t

0
Yð0Þfðt � t0ÞFV ðt

0Þdt0 (17)

which constitutes our theoretical model for the one-step growth
curve. If the one-step growth is known from experiments, the
function fðtÞ can be determined by fitting that curve to some
function and applying

fðtÞ ¼
1

Yð0Þ

dV

dt
þ

Z t

0
Vðt � t0ÞCV ðt

0Þdt0
� �

osg

(18)

which comes directly from the solution of (17) and the subindex
osg stands for one-step growth. Expression (18) can only be
applied if we know the function CV , which is related to the
mortality distribution jV according to (3). At practice, the
probability of death for the viruses is usually considered to be
very small in the time scale of the experiments, so it can be
neglected. In that case, CV � 0 and then we find that fðtÞ becomes
proportional to the derivative of the one-step growth curve

fðtÞ ¼
1

Yð0Þ

dV

dt

� �
osg

(19)

For fitting the one-step growth VðtÞ, some authors have con-
sidered before different possibilities. A piecewise (or ‘segments’)
function, for example, has been used in (You et al., 2002; Hadas et
al., 1997). Continuous functions have been proposed too; for
example, a Gaussian function has also been considered for fitting
the distribution function fðtÞ (Rabinovitch et al., 1999), or logistic-
like functions for the curve VðtÞ (Fort and Méndez, 2002; Alvarez

et al., 2007). For these three cases one finds that the correspond-
ing expressions for fðtÞ are those shown in Table 2. We have
written there the functions in terms of three parameters r, t and
V1. For the sake of completeness, we also show for each case the
relation between these parameters and the eclipse time, the rise
rate and the burst size, which are commonly used in experimental
works to characterize the one-step growth curve (a proper
definition of these is provided in Fig. 4). Note, for example, that
in the case of Gaussian function the variance (which is a measure
of the width of the one-step growth curve) is 8=ðpr2Þ:

In Fig. 5 we show the experimental results (symbols) for one-
step growth of phage T7 on Escherichia coli BL21 grown at different
rates (You et al., 2002), while the specific values obtained from the
adjustment (lines) in each case are detailed in Table 3. The solid
curves in Fig. 5 represent the fitting of the experimental results to
the logistic-like function, exhibiting a good agreement. The
segments (dotted lines) and the Gaussian function (dashed lines)
fittings are also shown in the plot; in the latter, the coincidence
with the logistic-like case is so high that the two curves are
almost indistinguishable.

From each one of the fittings the corresponding expression for
fðtÞ has been estimated. The comparison between them is shown
in Fig. 6, where we plot only one of the three cases presented in
Fig. 5 for simplicity (the two cases non-shown exhibit a very
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Table 2
Characteristics of the three functions proposed for fitting the one-step growth curve, with their explicit expressions for the eclipse time, the rise rate and the burst size

VðtÞ fðtÞ Eclipse time Rise rate Burst size

Piece-wise 0; tot

rðt � tÞ; tototþ V1
r

V1; t4tþ V1
r

8>>>><
>>>>:

Hðt � tÞ

�H t � t� V1
r

� � t r V1

Gaussian function V1
2

1þ erf
t � t

4
r
ffiffiffiffi
p
p

� �� � r

4
e�r2pðt�tÞ2=16 t� 2=r rV1=4 V1

Logistic-like V1
1þ e�rðt�tÞ

r e�rðt�tÞ

½1þ e�rðt�tÞ�2
t� 2=r rV1=4 V1

From (19), the estimations for fðtÞ are also shown.

time

ph
ag

es

burst size
rise rate

eclipse time

one-step growth

Fig. 4. Definition of the basic parameters that characterize the one-step growth

curve. The burst size represents the asymptotic value of the virus load reached for

large times. The rise rate measures the value of the maximum slope of the one-step

growth. Finally, sketching a tangent line to the curve at the point corresponding to

the maximum slope, the crossing with the horizontal axis defines the value of the

eclipse time. From these definitions, the expressions shown in Table 2 come

straightforward.
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similar behavior). We observe that for the ‘Gaussian’ and the
‘logistic-like’ cases, peaked fðtÞ functions with very similar
characteristics are obtained. The ‘segments’ case, in turn, leads
to a discontinuous expression for fðtÞ which slightly differs from
the other two. So, we can conclude that the ‘segments’ fitting
gives a poorer estimate for fðtÞ and this can influence the final
value of R0.

We note that in the specific case of phages considered here a
new definition for R0 would be convenient. To this end, we must
find the equilibrium states of the system

dX

dt
¼ �bXðtÞVðtÞ

dV

dt
¼ �bXðtÞVðtÞ þ

Z t

0
bXðt � t0ÞVðt � t0Þfðt0Þdt0 (20)

and their stability. Introducing XðtÞ ¼ Xeq þ dXðtÞ and VðtÞ ¼ Veq þ

dVðtÞ and linearizing about the equilibrium states ðXeq;0Þ and
ð0;VeqÞ one can check that the basic reproductive ratio

R0 �

Z 1
0

fðtÞdt (21)

must be higher than 1 for a successful phage growth. Making use
of (19)

R0 ¼
1

Yð0Þ

Z 1
0

dV

dt

� �
osg

dt ¼
½V1 � Vð0Þ�osg

Yð0Þ
(22)

which is nothing but the burst size. This result simply demon-
strates that in the case of phage–bacteria interactions the burst
size plays the role of a basic reproductive ratio (the infection is
successful only for R041).

7. Conclusions

In the present paper, we have derived a generalization of the
BMVD by considering a more accurate life cycle for viruses and cells
which includes age-structured effects for mortality and the eclipse
phase. As a result, we have shown how the infection dynamics gets
modified. Our main motivation here has been to present a rigorous
approach to this problem, as many time delays have been introduced
in this kind of model just by intuitive or ad hoc arguments. For this
reason, we have provided here a mesoscopic derivation based on
explicit balance equations that provide a very accurate physical
description of the underlying process. In our approach, the life cycle
properties are implemented in a probabilistic way by the distribu-
tion functions jX , jY , jV and f (see Fig. 1). Then, although our
model requires a more complex formalism, it is advantageous
provided that one has the data necessary to evaluate these functions.
Anyway, we stress that the BMVD and some possible extensions of it
as that presented here are just an oversimplified representation of a
real infection process. So, it is unlikely that any quantitative
prediction can actually be achieved from these models, whose main
value is to provide a qualitative insight into viral dynamics.

We have carried out a formal analysis of the equilibrium states
and their stability. Furthermore, we have illustrated how the
model works for some simple situations of interest. Specifically,
for phage–bacteria interactions we have been able to provide
analytical expressions to estimate the function fðtÞ from a one-
step growth curve.

In short, the main conclusions obtained from our study are the
following:

(i) The mesoscopic formalism presented here allows to reduce
the BMVD of three-species to only two species (X and V).
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Table 3
Values of the burst size, the rise rate and the eclipse time obtained from the

fittings shown in Fig. 3, using the definitions provided in Table 2

Three segments Gaussian function Logistic-like

Burst size ðPFU ml�1
Þ 35:9� 1:5 ð	Þ 36� 1 ð	Þ 37� 1 ð	Þ

35:7� 0:9 ðnÞ 37:8� 0:6 ðnÞ 38:3� 0:6 ðnÞ
75:2� 2:5 ð
Þ 75� 25 ð
Þ 76� 25 ð
Þ

Rise rate ðPFU ml�1 min�1) 1:5� 0:1 ð	Þ 1:7� 0:2 ð	Þ 1:8� 0:2 ð	Þ

3:4� 0:4 ðnÞ 3:6� 0:2 ðnÞ 3:8� 0:2 ðnÞ

4:9� 0:2 ð
Þ 5:9� 0:65 ð
Þ 6:3� 0:75 ð
Þ

Eclipse time (min) 24:1� 0:9 ð	Þ 25:6� 0:4 ð	Þ 26:3� 1:6 ð	Þ

21:1� 0:5 ðnÞ 21:4� 0:1 ðnÞ 21:7� 0:4 ðnÞ
17:9� 0:3 ð
Þ 19:1� 0:25 ð
Þ 19:5� 0:85 ð
Þ

The symbols in parenthesis indicate the corresponding curve in Fig. 3.
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Fig. 6. Comparison between the function fðtÞ predicted from the three different

fittings proposed in Table 1. Results shown correspond to the case of growing at 0.7

doublings h�1 shown in Fig. 3. The solid, dashed and dotted lines correspond to the

predictions from the logistic-like, Gaussian function and segments, respectively.
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Then, albeit our model requires a more complex mathema-
tical treatment, this simplification can be an interesting
advantage.

(ii) We have formally proved that the stability diagram of the
BMVD is insensitive to any PDFs considered. It means that the
model has an equilibrium infected-free state which becomes
unstable for R041, which is exactly the same condition
necessary for the existence of a stable infected state. This
generalizes similar results previously found (Culshaw and
Ruan, 2000; Nelson and Perelson, 2002; Wang et al., 2007)
that reached the same conclusions for more specific cases.

(iii) The reproductive ratio R0 and the virus loads can be very
sensitive to the distributed mortalities considered. It demon-
strates that one needs to know in detail the cellular life
cycles, especially for viruses, to describe the infection
process. We stress that similar conclusions were already
achieved in previous works on age-structured models (Lloyd,
2001; Nelson et al., 2004; Rong et al., 2007).

(iv) For phage–bacteria interactions, we have found that fittings
of the one-step growth based on logistic-like and Gaussian
functions yield very similar expressions for fðtÞ. From the
analysis shown here, it is not possible to determine which
one of them is more accurate. Anyway, it is clear that both
cases give better and more realistic estimates for fðtÞ and R0

than fittings based on piecewise functions.

In short, we have found that introducing age-distributed
processes in the BMVD may modify the dynamics of viral
infections. These corrections can be of great interest when the
effects of an immune response are also considered in the model.
Then, the dynamics of the model is expected to become richer (as
happens in the absence of age-structured effects, too) and the role
of the cellular life cycles could be more dramatic. Specifically, we
expect that age-distributed processes can be able to induce new
dynamical patterns as periodicity or chaos, in the line of recent
works on this field (Liu, 1997; Buric et al., 2001; Canabarro et al.,
2004; Wang et al., 2007). We will address these ideas in a
forthcoming paper (currently in preparation).
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Appendix A. Derivation of the model

We have introduced jXðtÞ, jY ðtÞ and jV ðtÞ as the mortality
PDFs (see Fig. 1). So that, the probability that a target cell which
‘was born’ at time t ¼ 0 has not died yet at time t is given by FXðtÞ

(hereafter we will refer to it as the ‘survival probability’) according
to

FXðtÞ ¼ 1�

Z t

0
jXðt

0Þdt0 (23)

and analogous arguments hold for FY ðtÞ and FV ðtÞ.
Then, we can write the balance equation for the population

densities as

XðtÞ ¼ Xð0ÞFXðtÞOXð0; tÞ

þ

Z t

0
JXðt � t0ÞFXðt

0ÞOXðt � t0; tÞdt0 (24)

YðtÞ ¼ Yð0ÞFY ðtÞ þ

Z t

0
JY ðt � t0ÞFY ðt

0Þdt0 (25)

VðtÞ ¼ Vð0ÞFV ðtÞOV ð0; tÞ

þ

Z t

0
JV ðt � t0ÞFV ðt

0ÞOV ðt � t0; tÞdt0 (26)

where JXðtÞ represents the density of particles of species X

appeared at time t, with equivalent definitions for JY ðtÞ and JV ðtÞ.
The function OXðt � t0; tÞ is the probability that a particle X does
not become infected during the time interval ðt � t0; tÞ, while
OV ðt � t0; tÞ is the probability that a virus has not been adsorbed by
a cell during the same interval. So that, the balance equation (24)
simply says that the density of particles X at time t is given by the
initial density of particles Xð0Þ not infected yet and still alive, plus
those target cells appeared at any time so far, provided they have
neither died nor become infected yet. The meaning of Eqs. (25)
and (26) can be found using analogous arguments.

Regarding the functions O, their explicit form can be found in
the following way. For OX we take

OXðt � t0; tÞ ¼ exp �

Z t

t�t0
bVðt00Þdt00

� �
(27)

which corresponds to the solution of the infection equation
dX=dt ¼ �bXV . As the infection is considered independent on the
other processes (death and production of new cells by the host),
the solution of that ODE within the interval ðt � t0; tÞ gives us a
proper definition for the probability OXðt � t0; tÞ. Similarly, from
dV=dt ¼ �bXV we can write

OV ðt � t0; tÞ ¼ exp �

Z t

t�t0
bXðt00Þdt00

� �
(28)

The validity of the expressions (27) and (28) can be demonstrated
from more rigorous arguments using the age-structured models
by Vlad and Ross (2002). In fact, our model (24)–(26) can be seen
as a particular case of the very general model by Yadav and
Horsthemke (2006), which was in turn based on the original work
(Vlad and Ross, 2002). Accordingly, we will follow the formalism
in Yadav and Horsthemke (2006) to derive our model.

First, we differentiate the system (24)–(26) with respect to t:

dX

dt
¼ � Xð0ÞOXð0; tÞ½jXðtÞ þ bVðtÞFXðtÞ� þ JXðtÞ

�

Z t

0
JXðt � t0ÞjXðt

0ÞOXðt � t0; tÞdt0

� bVðtÞ

Z t

0
JXðt � t0ÞFXðt

0ÞOXðt � t0; tÞdt0 (29)

dY

dt
¼ �Yð0ÞjY ðtÞ þ JY ðtÞ �

Z t

0
JY ðt � t0ÞjY ðt

0Þdt0 (30)

dV

dt
¼ � Vð0ÞOV ð0; tÞ½jV ðtÞ þ bXðtÞFV ðtÞ� þ JV ðtÞ

�

Z t

0
JV ðt � t0ÞjV ðt

0ÞOV ðt � t0; tÞdt0

� bXðtÞ

Z t

0
JV ðt � t0ÞFV ðt

0ÞOV ðt � t0; tÞdt0 (31)

Then, we introduce (24) and (26) into (29) and (31), respectively,
so we obtain

dX

dt
¼ � Xð0ÞOXð0; tÞjXðtÞ þ JXðtÞ � bXðtÞVðtÞ

�

Z t

0
JXðt � t0ÞjXðt

0ÞOXðt � t0; tÞdt0 (32)

dY

dt
¼ �Yð0ÞjY ðtÞ þ JY ðtÞ �

Z t

0
JY ðt � t0ÞjY ðt

0Þdt0 (33)
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dV

dt
¼ � Vð0ÞOV ð0; tÞjV ðtÞ þ JV ðtÞ � bXðtÞVðtÞ

�

Z t

0
JV ðt � t0ÞjV ðt

0ÞOV ðt � t0; tÞdt0 (34)

On the other side, we divide (24) by OXð0; tÞ and transform that
equation to the Laplace domain (again, we denote the Laplace
transform of a function by the brackets ½��s with the conjugate
variable s). After some simple algebra, it can be written as

s½jX �s

1� ½jX �s

X

OXð0; tÞ

� �
s

¼ Xð0Þ½jX �s þ ½jX �s½JXOX �s (35)

Finally, introducing the inverse Laplace transform of (35) into
(32), the evolution equation for the species X reads

dX

dt
¼ JXðtÞ � bXV �

Z t

0
Xðt � t0ÞCXðt

0ÞOXðt � t0; tÞdt0 (36)

where CX is defined in the Laplace domain by (3). For the species
Y and V we can use exactly the same derivation, so that Eqs. (33)
and (34) turn into

dY

dt
¼ JY ðtÞ �

Z t

0
Yðt � t0ÞCY ðt

0Þdt0 (37)

dV

dt
¼ JV ðtÞ � bXV �

Z t

0
Vðt � t0ÞCV ðt

0ÞOV ðt � t0; tÞdt0 (38)

with CY , CV defined implicitly in (3).
Hence, we have obtained the general evolution equations

(36)–(38) for the model. However, note that we still need to give
expressions for the densities Ji. From Eq. (1), assuming a constant
source of target cells, the number of new target cells appearing at
any given time can be expressed as

JXðtÞ ¼ l (39)

Similarly, the density of infected cells appearing at time t is given
by

JY ðtÞ ¼ bXðtÞVðtÞ (40)

Finally, the new viruses appeared at time t are given by the function
fðtÞ applied to those cell which were infected at any previous time
t � t0, provided they have not died yet. This allows us to write

JV ðtÞ ¼

Z t

0
JY ðt � t0Þfðt0ÞFY ðt

0Þdt0 (41)

Once we have the explicit expressions for JX, JY and JV , our model
takes the final form (2):

dX

dt
¼ l� bXV �

Z t

0
Xðt � t0ÞCXðt

0ÞOXðt � t0; tÞdt0

dY

dt
¼ bXV �

Z t

0
Yðt � t0ÞCY ðt

0Þdt0

dV

dt
¼

Z t

0
bXðt � t0ÞVðt � t0Þfðt0ÞFY ðt

0Þdt0

� bXV �

Z t

0
Vðt � t0ÞCV ðt

0ÞOV ðt � t0; tÞdt0
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